To calculate the regression line using the Z-score approach, you'll need some to generate some tables:

x (x - xmean) Zx (x-xmean)^2 y (y-ymean) Zy (y-ymean)^2 Zx Zy
5       6        
1       0        
10       8        
4       6        
20       20        

[That last row gives the totals.] Thus xmean = 20/4 = 5.0 and ymean = 20/4 = 5.0.

 

x (x - xmean) Zx (x-xmean)^2 y (y-ymean) Zy (y-ymean)^2 Zx Zy
5 0   0 6 1   1  
1 -4   16 0 -5   25  
10 5   25 8 3   9  
4 1   1 6 1   1  
20 0   42 20

0

  36  

Thus the standard deviation of x is sqrt(42/(4-1))=sqrt(14) = 3.74, while the standard deviation of y is sqrt(36/(4-1))= sqrt(12) = 3.46.

Now we can calculate Zx = ( x - 5.0) / 3.74 and Zy = (y - 5.0) / 3.46.

x (x - xmean) Zx (x-xmean)^2 y (y-ymean) Zy (y-ymean)^2 Zx Zy
5 0 0.00 0 6 1 0.29 1 0.000
1 -4 -1.07 16 0 -5 -1.44 25 1.543
10 5 1.34 25 8 3 0.87 9 1.158
4 1 -0.27 1 6 1 0.29 1 -0.077
20 0 0 42 20

0

0 36 2.623

Finally, we have the correlation r = 2.623 / (4-1) = 0.874.

With these numbers calculated, we can proceed to calculate the regression line (on the original scale) here.