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LECTURE 1

Strategy of Experimentation I

“Experiments are an efficient way to learn about the world.”
A. C. Atkinson

1. Introduction

• Text: Myers and Montgomery
• Computer: SAS
• Paper: oral presentation and short paper
• Take Home Final: Simulation
• Topics:

1. Strategy of Experimentation
(a) 2-level factorial and fractional factorial
(b) Screening experiments
(c) Response surface methodology

2. Evolutionary Operation (EVOP)
3. Optimal Design
4. Computer-assisted design
5. Mixture Experimentation
6. Taguchi methods

2. Stategy of Experimentation

Typically, an experimenter is faced with a shopping list of factors, and must
decide which ones are important. We would like to

1. Identify the primary factors.
2. Identify the region of interest for the primary factors.
3. Develop useful models in the region of the optimum settings of the factors.
4. Confirm the results.

3. Two Level Factorial Experiments

Perhaps the most common experimental technique, to the horror of statisti-
cians, is to vary one factor at a time. For example, an experimenter might hold all
factors fixed except for factor A, find the value for that factor that maximizes the
response, and then repeat the process for factor B, and so on. We will see later why
this is not a good plan.

c©Steven Buyske and Richard Trout.
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2 1. STRATEGY OF EXPERIMENTATION I

Recall that a factorial experiment considers all possible treatments consisting
of combinations of factors. For example if there are two factors with four and three
levels, respectively, the experiment will have a total of 4 × 3 = 12 treatments.

In a two level factorial experiment, each factor is examined at two levels. These
designs allow the examination of a relatively large number of factors with relatively
few experimental runs. Why two levels? We need at least two to estimate the size
of the effect, but using just two conserves resources.

They are restricted in terms of the size of the design space that can be explored.
They can be modified to reduce the number of the runs as well as increase the

size of the design space.
They are excellent building blocks.
Three principles underlie our methods here. They are

Hierarchical Ordering Principle: Lower order effects are more likely to be
important than higher order effects.

Effect Sparsity, or Pareto, Principle: The number of important effects is gen-
erally small.

Effect Heredity Principle: For an interaction effect to be significant, (at least
one of) its parent effects should be significant.

You can find a fuller description in C. F. J. Wu & M. Hamada, Experiments: Plan-
ning, Analysis, and Parameter Design Optimization, New York: John Wiley &
Sons, Inc, 2000.
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3. TWO LEVEL FACTORIAL EXPERIMENTS 5

Let us examine a two-factor factorial so that we can set up some basic notation
as well as introduce some fundamental ideas.

Notationally the designs are 2K , where

K = number of factors,

and

2K = number of treatment combination runs (usually just called “treatments”).

For example if K = 2, the design requires 22 = 4 runs.

Run A B
1 - -
2 + -
3 - +
4 + +

B

(–,–) (+,–)

(–,+) (+,+)

A

We may also denote these points using the Yates notation:

Run Yates notation A B data
1 (1) - - 2
2 a + - 4
3 b - + 6
4 ab + + 10

If we wanted to know the effect of variable A we could fix B, say −, and look
at the difference between A+ and A−, i.e., 4 − 2 = 2. We could then average this
value with the difference when B is high, 10 − 6 = 4. Therefore the A effect is

(4 − 2) + (10 − 6)

2
= 2 + 4

2
= 3,
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or, using the Yates notation,

(a − (1)) + (ab − b)

2
.

In general, we can determine how the effects are computed by constructing the
following table:

A B AB
(1) - - +
a + - -
b - + -
ab + + +

Therefore, except for the divisor,
Mean = 1 + a + b + ab

A effect = −(1) + a − b + ab
B effect = −(1) − a + b + ab

AB effect = (1) − a − b + ab
From the effects we can generate the SS for each factor (recall that the sum of

squares for any contrast is the contrast squared divided by the number of observa-
tions times the sum of the squares of the contrast coefficients).

SS = (numerator of effect)2

2K
.

Therefore,

SSA = 62

4
= 9

SSB = 102

4
= 25

SSAB = 22

4
= 1

SST OT = 35.

ANOVA
Source df SS MS
Total 3 35

A 1 9 9
B 1 25 25

AB 1 1 1
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An alternative method to compute the effects and SS is to use the Yates Algo-
rithm.

Order the data in the Yates standard notation.

Yates notation data col 1 col 2 effect= col K
2K−1 SS= (col K)2

2K

(1) y1 y1 + ya y1 + ya + yb + yab

a ya yb + yab ya − y1 + yab − yb

b yb ya − y1 yb + yab − y1 − ya

ab yab yab − yb yab − yb − ya + y1

For the data
Yates notation data col 1 col 2 effect= col K

2K−1 SS= (col K)2

2K

(1) 2 2 + 4 = 6 6 + 16 = 22 = ∑
y 22/4 = 5.5 = ¯̄y 121=C.F.

a 4 6 + 10 = 16 2 + 4 = 6 3 9
b 6 4 − 2 = 2 16 − 6 = 10 5 25
ab 10 10 − 6 = 4 4 − 2 = 2 1 1

NB In the (1) row and the effect column, by dividing by 2K instead of 2K−1,
we get the overall mean ¯̄y.

NB Because we have used -1 and +1 as the levels in our model, if you use a
regression method to find the factor effects the coefficients you find will be one-half
of that given here.

The Yates Algorithm is also described in Appendix 10A of Box, Hunter, and
Hunter (on reserve).

Now let us consider a 23 factorial experiment given in Box, Hunter, and Hunter’s
Statistics for Experimenters.

We have two factors, Temperature and Concentration, that are quantitative, and
Catalyst which is qualitative. The response is the chemical yield.

Temperature Concentration Catalyst Yield
T (– 160, + 180) C (–20, + 40) K (– A, +B) data

(1) – – – 60
t + – – 72
c – + – 54
tc + + – 68
k – – + 52
tk + – + 83
ck – + + 45
tck + + + 80
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C

T

K

Put data on corners of cube. Just by looking at the cube one can see a T effect,
and C effect, and perhaps some sort of interaction.

To calculate the effect, we run the Yates algorithm.

(1) (2) 3 (3)/2K−1 (3)2/2K

(1) 60 132 254 514 64.25 33024.5
t 72 122 260 92 23 1058
c 54 135 26 -20 -5 50
tc 68 125 66 6 1.5 4.5
k 52 12 -10 6 1.5 4.5
tk 83 14 -10 40 10 200
ck 45 31 2 0 0 0
tck 80 35 4 2 0.5 0.5

Effect SS
SST OT = 1317.5

Now, the problem remains how to determine which of the factors is important,
“significant” in the scientific, not statistical, sense.

If we have duplicate observations within each cell then we can perform our
usual test of significance.

Many times, only one observation is collected within each cell. How can we
handle the problem?

An alternative approach is to use normal probability plotting. To do this, first
rank the effects. Next, calculate the cumulative percentiles. There are numerous
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was to do this. The first column below is probably best, but the second and third
are easier if you are doing it by hand or calculator. The conclusions that you draw
will not be noticeably different.

Cum Percent
i−3/8

# of effects+1/4 × 100 i−1/2
# of effects × 100 i

# of effects × 100 Effect Source
8.6 7.1 12.5 -5 C

22.4 21.4 25.0 0 CK
36.2 35.7 37.5 0.5 TCK
56.9 50.0 56.25 1.5 TC
56.9 64.3 56.25 1.5 K
77.6 78.6 75.0 10 TK
91.4 92.9 87.5 23 T

NB The second column contains the values used in plotting on the next page.

Discuss Plotting this info on normal probability paper.
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The problem with this approach is that you need to look at both tails of the
distribution as the sign of the effect is arbitrary as far as the importance of the
effect is concerned. People tend to miss important effects this way.

An alternative approach is to use half-normal probability plotting. This paper
can be purchased for varying values of p or it can be constructed from the usual
normal probability paper. To do this, delete the scale for values of p less than 50%.
For p greater than 50%, replace each value of P with P ′, where P ′ = 2P − 100.
Now rank the absolute value of the effects and plot the data as was done earlier.
People tend to see too many important effects this way.

Cum. Percent |Effect| Source
7.1 0 CK

21.4 0.5 TCK
35.7 1.5 TC
50.0 1.5 K
64.3 5 C
78.6 10 TK
92.9 23 T

See graph below.
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/*
SAS code for a
demonstration of normal and half normal
probability plots of effects from
factorial experiments.
Stat 591, Rutgers University
Steve Buyske Sept 99

*/

data effects;
input effect @@;
label effect=’Effect Size’;
heffect=abs(effect);
label heffect=’Abs Effect Size’;
cards;
23 -5 1.5 1.5 10 0 .5;;

run;

/* calculate normal scores */
proc rank data=effects normal=blom out=normals;

/* normal=blom means use (i-3/8)/(# of effects +1/4)*/
var effect;
ranks neffect;

run;

data normals;
set normals;
label neffect=’Normal score’;
run;

/* produce normal probability plot */
/* the lines commented out below give low-res plots */
/*
proc plot nolegend data=normals;

title ’Normal Probability Plot’;
plot effect*neffect=’*’ ;

run;
*/

goptions ftext=none htext=1 cell;

proc gplot data=normals;
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title ’Normal Probability Plot’;
plot effect*neffect=effect;

run;

/* calculate half normal scores */
proc rank data=effects out=hnranks;

var heffect;
ranks hneffect;

run;

data hnormals;
set hnranks nobs=n;
label hneffect=’Half Normal score’;
hneffect=probit(((hneffect-1/3)/(n+1/3))/2+.5);
run;

/* produce half normal probability plot */

/*
proc plot nolegend data=hnormals;

title ’Normal Probability Plot’;
plot heffect*hneffect=’*’ ;

run;
*/

proc gplot data=hnormals;
title ’Half Normal Probability Plot’;
plot heffect*hneffect=effect;

run;

goptions reset=all;
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An alternative approach to the use of this probability plotting is to assume (for
higher values of p) that all higher order interactions are not important (say 3-factor
and higher). The SS for these terms may then be pooled together and be used
as an estimate of the experimental error. This estimate may then be used as the
divisor for the F test for the remaining factors. I personally do not recommend this
approach, although it is popular in some quarters.

There are other formal methods of testing for important factors. A review of
such methods can be found in M. Hamada & N. Balakrishnan, “Analyzing Unrepli-
cated Factorial Experiments: A Review with Some New Proposals (with discus-
sion),” Statistica Sinica, 8, 1–41. The most popular is due to R. V. Lenth, “Quick
and Easy Analysis of Unreplicated Factorials,” Technometrics 31, 469–473. First
calculate the pseudo standard error,

P SE = 1.5median|θ̂i |<2.5s0
|θ̂i |,

where
s0 = 1.5median|θ̂i |.

The PSE is a robust estimator the standard error of the non-active effects. Finally,
one forms

tP SE,i = θ̂i

P SE
,

and compares to critical values in a table.
Extensions can be made of the Yates algorithm.
For example, the so called reverse Yates algorithm can be used to estimate the

residuals. To see this consider the data we worked with earlier.

1. Take the last column prior to computing effects and SS, i.e., column 3 in
this case.

2. For those factors felt to be n.s., replace the value shown with zero. In our
example, replace TC, K, CK, TCK with zero. Discuss this in terms of mod-
els.

3. Reverse the order of the values from top to bottom.
4. Repeat the Yates algorithm.
5. Divide column 3 by 2K giving ŷ.
6. Find the residuals y − ŷ.

Reverse Yates Algorithm
Reversed and data

Effect modified col(3) col 1 col 2 col 3 ŷ = col3
2K =8 (reverse also) y − ŷ

TCK 0 0 40 626 78.25 80 1.75
CK 0 40 586 362 45.25 45 -0.25
TK 40 -20 -40 666 83.25 83 -0.25
K 0 606 402 402 50.25 52 1.75

TC 0 0 40 546 68.25 68 -0.25
C -20 -40 626 442 55.25 54 -1.25
T 92 -20 -40 586 73.25 72 -1.25

(1) 514 422 442 482 60.25 60 -0.25
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These residuals can be analyzed using techniques that you have learned earlier.
In particular, you should look at a plot of residuals versus predicted, a plot of
residuals versus observation number (or time), and a normal probability plot of the
residuals.

The Yates algorithm can be used if more than one observation is observed
for each treatment combination. In this case, cell totals are used in place of each
observation. Effects and SS are then divided by n, the number of observations per
cell. Everything is as usual except that the error SS will need to be computed by
subtraction. (Note the Correction Factor is okay as well as all treatment effects.)

Homework. Read Chapter 1 of Myers and Montgomery, skim Chapter 2, and
read Chapter 3. Additionally, do the handout.



LECTURE 2

Strategy of Experimentation II

Comments

• Computer Code.
• Last week’s homework
• Interaction plots
• Helicopter project
•

[4I 2A 2B 2AB] = [µ(1) µA µB µAB]




+1 −1 −1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 +1 +1 +1




1. Blocking

To this point we have assumed that the experimental units are sampled from
a homogeneous population and that the experimental treatments are randomly as-
signed to the experimental units (Completely randomized design). Normally, when
the units do not come from a homogeneous population, a blocking design is used.
That type of design can also be used with 2K factorial designs.

Consider the following problem.
We have a beaker of material which we need to sample. The factors of interest

are the radius (center versus edge) and depth (top versus middle). The sampling
procedure, however, may disturb the material. Furthermore, all four samples can’t
be removed simultaneously, as we have only two hands. Therefore, to obtain all
four samples, the sampling must be done twice.

c©Steven Buyske and Richard Trout.
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16 2. STRATEGY OF EXPERIMENTATION II

A

B
(1) a

b ab

How should the samples be taken?
Suppose we took (1) and a first, b and ab second. Consider the effect table

A B AB block
(1) - - + 1
a + - - 1
b - + - 2
ab + + + 2

You can see that the blocking effect is confounded with the B effect. Can we avoid
confounding the blocking effect with treatment effects? Consider the ANOVA table

Source df
Total 3

A 1
B 1

AB 1
blocks 1

Since the total of degrees of freedom is 3, and we would like to partition it so that
the total is 4, we clearly have a problem. Thus, some confounding is necessary.
In this case, the best choice would be to confound the blocking effect with the
AB effect so that the main effects are not confounded. Thus we should draw (1)
and ab at the same time, and a and b at the same time. In doing so, the contrast
y(1) − ya − yb + yab will estimate (twice) the AB effect plus the blocking effect
(that’s what we mean by confounding). Notationally we write Block = AB. Note
that the A and B effects will be estimated independently of the blocking effect,
because the contrasts are orthogonal.

Now consider a 23 factorial.
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A B AB C AC BC ABC
(1) - - + - + + -
a + - - - - + +
b - + - - + - +
ab + + + - - - -
c - - + + - - +
ac + - - + + - -
bc - + - + - + -
abc + + + + + + +

Think ANOVA
Source df
Total 7

A 1
B 1

AB 1
C 1

AC 1
BC 1

ABC 1
Block 1

?????
With two blocks, we might decide to confound blocks with ABC. Then treat-

ments (1), ab, ac, and bc will be in one block, and a, b, c, and abc in the other.
Alternatively, we might need to use four blocks. To get started, we might con-

found two effects with blocks, say BC and ABC. In this case, (1) and bc would be
in one block, a and abc in another, b and c in a third, and ab and ac in the fourth
block. This design, however, has a serious weakness. Notice that this blocking pat-
tern is also confounded with A. That is, we could have used A and BC to generate
the block pairings. This should not surprise us as the degrees of freedom for blocks
is 3.

The procedure to find confounding patterns is to pick out the two factors, BC
and ABC and do binary arithmetic on the letters

(BC)(ABC) = AB2C2 = A.

Thus the third factor that is confounded is A.
An alternative procedure for blocking might be AB and BC giving AB2C =

AC as the third factor confounded.
The resulting ANOVA table is then

Source df
Total 7

A 1
B 1
C 1

ABC 1
Blocks, AB, AC, BC 3
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[The SS may be computed from the Yates algorithm using the usual procedures,
and with AB, AC, and BC being pooled together afterwords.] In general, with p
blocks we will have 2p −1 degrees of freedoms for blocks, and can estimate 2k −2p

unconfounded effects.
For this set up we have

Block Treatment Run
1 (1), abc
2 a, bc
3 b, ac
4 ab,c

Incidentally, the block that contains treatment (1) is called the principal block.
Notice that every other block could be obtained from the principal block by multi-
plying by the right letter(s) and using binary arithmetic.

With 2K designs it is sometimes necessary to replicate the study.

E.g., 23 23

Consider the ANOVA table.
Source df
Total 15

A 1
B 1

AB 1
C 1

AC 1
BC 1

ABC 1
Block 1

A × Block 1
B × Block 1

AB × Block 1
C × Block 1

AC × Block 1
BC × Block 1

ABC × Block 1

Discuss direct tests versus combining these factors. Block is a random effect, so
the proper F tests of the effects have F(1, 1) distributions. The resulting tests have
almost no power. The common practice is to pool all the Block×Factor interactions
into the error term, thereby assuming that there is no Block×Factor interaction.
The practical statistician might want to check for any unusual result first, however,
by looking at residuals by block.

Now, if within each replication, blocking is necessary, what options do we have
available?
1. We could use the same blocking pattern in each rep, thus completely confound-
ing one factor with blocks.

E.g.,
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Rep I Rep II
Blk 1 Blk 2 Blk 1 Blk 2

(1) a a (1)
ab b b ab
ac c c ac
bc abc abc bc

Here, Block = ABC . See below for the ANOVA table.

2. We could confound one factor in Rep I and a second factor in Rep II.
E.g.,

Rep I Rep II
Blk 1 Blk 2 Blk 1 Blk 2

(1) a (1) b
ab b a ab
ac c bc c
bc abc abc ac

Block = ABC Block = BC

These two different choices would give the following ANOVA tables.

Design 1 Design 2
Source df Source df
Total 15 Total 15
Rep 1 Rep 1

ABC = Block(Rep) 2
+R × ABC

A 1 A 1
B 1 B 1

AB 1 AB 1
C 1 C 1

AC 1 AC 1
BC 1 BC 1′

ABC 1′

A × R 1 A × R 1
B × R 1 B × R 1

AB × R 1 AB × R 1
C × R 1 C × R 1

AC × R 1 AC × R 1
BC × R 1 BC × R 1′

ABC × R 1′

ABC totally confounded ABC and BC partially
with blocks confounded with blocks

To analyze a partially confounded data, run the Yates algorithm separately on
each replication. Then calculate each effect by averaging over the unconfounded
estimates of that effect (i.e., omitting the estimate in any replication in which that
estimate was confounded with the replication. For the SS, take the same approach
with the square of the unconfounded effects.
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References:
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Davies, O. L. The Design and Analysis of Industrial Experiments, Hafner,

1971.
Cochran and Cox, Experimental Designs, Wiley, 1957.
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Theory of the Design of Experiments, Chapman & Hall/CRC, 2000.

2. Fractional Factorial Designs

With two-level factorial designs, when K becomes large, the number of exper-
imental runs can become unmanageable. For example, if K = 7,

2K = 27 = 128.

What do we get for all this work? The ability to estimate all main effects and
interactions. For example, if K = 7

Interactions number

grand mean 1
(7

0

)
main effects 7

(7
1

)
2-way 21

(7
2

)
3-way 35

(7
3

)
4-way 35

(7
4

)
5-way 21

(7
5

)
6-way 7

(7
6

)
7-way 1

(7
7

)
The problem is that in most cases the higher order interactions are not likely to
be real. Therefore we have expended a tremendous amount of effort and are not
receiving full benefit.

A B C AB AC BC ABC
(1) - - - + + + -
a + - - - - + +
b - + - - + - +
ab + + - + - - -
c - - + + - - +
ac + - + - + - -
bc - + + - - + -
abc + + + + + + +
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If we confound Blocks=ABC, then
(1), ab, ac, bc go in block I
a, b, c, abc go in block II.

Suppose we only ran the data in block II

A B C AB AC BC ABC
a + - - - - + +
b - + - - + - +
c - - + + - - +

abc + + + + + + +

The defining contrast or defining relation

I = ABC

gives

C =ABCC = ABC2 = AB(I ) = AB

B =AC

A =BC

Working our way forward to construct the design

C =AB

I =ABC

A B AB=C
(1) c - - +
a + - -
b - + -
ab c + + +

This gives the previous design, with A=BC, B=AC, and AB=C, all generated by
the relation I=ABC.

Consider a 24 factorial
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y Estimated Effect
(1) 71 72.25

• a 61 -8.00 ∗
• b 90 24.00 ∗

ab 82 1.00
• c 68 -2.25 ∗

ac 61 0.75
bc 87 -1.25

• abc 80 -0.75
• d 61 -5.5 ∗

ad 50 0.00
bd 89 4.50 ∗

• abd 83 0.50
cd 59 -0.25

• acd 51 -0.25
• bcd 85 -0.75

abcd 78 -0.25

The effects, when plotted, show that the ∗ effects are important, with A and B being
the most important. Now suppose that only half of the data had been collected, e.g.,
the points with •’s.

D = −ABC
A B C D

a + - - -
b - + - -
c - - + -

abc + + + -
d - - - +

abd + + - +
acd + - + +
bcd - + + +

Yates algorithm:
Col 1 Col 2 Col 3 Effect SS

(1) d 61 122 245 579 ( ¯̄y) 72.38 CF 41905.125
a 61 173 284 -29 -7.25 105.125
b 90 119 -7 97 24.25 1176.125
ab d 83 165 -22 5 1.25 3.125
c 68 0 51 -11 -2.75 15.125
ac d 51 -7 46 -15 3.75 28.125
bc d 85 -17 -7 -5 -1.25 3.125
abc 80 -5 12 19 4.25 36.125

How do we interpret this analysis? What has been lost by our using only one-half
the data? Look at the table of + and − below. Observe that effects are confounded.

How do we determine the factors that are confounded? That is, the confound-
ing pattern. First, we decide what factor is to be confounded with D.
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For example, D = −ABC . This is called the generator. From this we deter-
mine the defining relation.

DD = −ABC D

D2 = −ABC D

I = −ABC D

You can interpret this as ABC D is confounded with the intercept term.

A B C D ABC
(1) - - - - -

• a + - - - +
• b - + - - +

ab + + - - -
• c - - + - +

ac + - + - -
bc - + + - -

• abc + + + - +
• d - - - + -

ad + - - + +
bd - + - + +

• abd + + - + -
cd - - + + +

• acd + - + + -
• bcd - + + + -

abcd + + + + +
Next:

A × (−ABC D) = −BC D

B × (−ABC D) = −AC D

AB × (−ABC D) = −C D

C × (−ABC D) = −AB D

AC × (−ABC D) = −B D

BC × (−ABC D) = −AD

ABC × (−ABC D) = −D

Therefore A is confounded with -BCD, et cetera. This is called the alias pat-
tern. Because A is confounded with -BCD, in the Yates algorithm above the
effect nominally estimated for A is in fact an estimate of A − BC D. Looking
back at the full results, we see that the estimate of the A effect is −8.00 and the
BCD estimate is −0.25, while our estimate of A − BC D using half the data is
−8.00 − (−0.75) = −7.25. IF BCD is only noise, the estimates of A for the full
factorial and the half factorial have the same expected value. At any rate, from
the half factorial we have estimates of A-BCD, B-ACE, AB-CD, C-ABD, AC-BD,
BC-AD, and ABC-D of -7.25, 24.25, 1.25, -2.75, 3.75, -1.25, and 4.25, respec-
tively.
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Having examined the alias pattern and decided what it is that you want, how
do we decide the treatments that need to be run for this 1/2 fraction of 24, or 24−1

fractional factorial.
Set up the table of (+,-) for the first 4 − 1 = 3 factors to be run.

A B AB C AC BC ABC
(1) d - - + - + + -
a + - - - - + +
b - + - - + - +
ab d + + + - - - -
c - - + + - - +
ac d + - - + + - -
bc d - + - + - + -
abc + + + + + + +

IF D = −ABC (I = −ABC D), we match the levels of D with the +, - in the
above column. We could also run the other half of the design,

I = ABC D,

which corresponds to interchanging high and low levels of D. Notice that if we
combine the two halves of the design, the design is complete, and, if the two halves
constitute blocks, then the blocks are confounded with the defining relation. That
is Blocks=ABCD.

We conclude with SAS and Splus code for analyzing an unreplicated 24 facto-
rial design; this code can be adapted to the situations discussed in this lecture.

options linesize=80 pagesize=100 pageno=1;
*************************************************;
* unrep2n.sas
*
* Construct normal probability plot for
* Unreplicated 2ˆ4 factorial
*
* First homework problem
*
* 9/21/98
***************************************************;
data rate;
do d=-1 to 1 by 2;
do c=-1 to 1 by 2;
do b=-1 to 1 by 2;
do a=-1 to 1 by 2;
input y @@;
ab=a*b; ac=a*c; ad=a*d; bc=b*c; bd=b*d; cd=c*d;
abc=a*b*c; abd=a*b*d; acd=a*c*d; bcd=b*c*d;
abcd=a*b*c*d;
output;
end; end; end; end;
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cards;
1.68 1.98 3.28 3.44 4.98 5.70 9.97 9.07 2.07 2.44 4.09 4.53 7.77 9.43 1

run;

/* if PROC FACTEX is available, then there’s an easier way to generate
the design matrix

*/

proc print;
var a b c d y;
run;

* Compute main effects and interactions and output to a file;

proc reg data=rate outest=regout;
model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;
title ’Drill rate 2ˆ4 factorial’;

proc transpose data=regout out=ploteff name=effect prefix=est;
var a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

proc print data=ploteff;
title2 ’Dataset produced by the OUTEST option in REG’;
title3 ’Transposed to form useful for graphing’;

* Compute normal scores ;

proc rank data=ploteff normal=blom out=qqplot;
var est1;
ranks normalq;

* Plot normal scores vs the effect estimates;

proc gplot data=qqplot;
plot normalq*est1=effect;
title2 ’Normal probability plot of effects’;

data hnormal;
set ploteff;
heffect=abs(est1);
run;

proc rank data=hnormal out=hnranks;
var heffect;
ranks hneffect;
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run;

data hnormals;
set hnranks nobs=n;
label hneffect=’Half Normal score’;
hneffect=probit(((hneffect-1/3)/(n+1/3))/2+.5);
run;

proc gplot data=hnormals;
title2 ’Half Normal Probability Plot’;
plot heffect*hneffect=effect;

proc reg data=rate graphics;
model y=b c d bc cd;
plot rstudent.*p. rstudent.*b rstudent.*c rstudent.*d;
plot rstudent.*nqq.;
title2 ’Residual plots for model y=b c d bc cd’;

run;

Here’s some Splus code

#Get the data and the design in

drill.design<-fac.design(rep(2,4))
y<-c(1.68,1.98,3.28,3.44,4.98,5.70,9.97,9.07,2.07,2.44,4.09,4.53,

7.77,9.43,11.75,16.3)
drill.df<-data.frame(drill.design,y)
drill.df #just a check

# Now analyze the data

plot.design(drill.df) #this gives a first look at the data

drill.aov<-aov(y˜(A+B+C+D)ˆ4,drill.df)
coef(drill.aov)
summary(drill.aov)

# Now plot the effects

# a half-normal plot

qqnorm(drill.aov, label=T)
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# a normal plot

qqnorm(drill.aov, full=T, label=T)

#fit a model
drill.aov.model<-aov(y˜B+C+D+B*C+C*D, drill.df)
summary(drill.aov.model)

qqnorm(resid(drill.aov.model))
plot(fitted(drill.aov.model),resid(drill.aov.model))
plot(drill.df$B,resid(drill.aov.model))
plot(drill.df$C,resid(drill.aov.model))
plot(drill.df$D,resid(drill.aov.model))

Homework: Carefully analyze the data from the helicopter experiment. Analyze
the bean data as well. In both cases, bring to class your calculations (including
computer code if you used a computer), your plots, and a brief description of your
conclusions. I’ll collect one of the two analyses. Additionally, finish Chapter 3 of
the text and start Chapter 4.
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LECTURE 3

Strategy of Experimentation III

Comments:

• Homework

1. Design Resolution

A design is of resolution R if no p factor effect is confounded with any other
effect containing less than R − p factors.

For example, a 23−1 design with I=ABC is resolution 3, because

p R − p
1 2

that is main effects are not confounded.
Another example. A 24−1 design with I=ABCD is resolution 4 since

p R − p
1 3
2 2

That is, main effects are not confounded with other main effects or two-factor
interactions. Two factor interactions are confounded.

Another example. A 25−1 design with I=ABCDE is resolution 5.

p R − p
1 4
2 3

That is, main effects are not confounded with other main effects, two and three-
factor interactions. Two-factor interactions are not confounded with other two-
factor interaction.

In general, the resolution of the design is the length of the shortest word in the
defining relation. The notation commonly used with fractional factorials is 2K−k

R .
For example, 24−1

I V .
If, in a particular experimental situation, an experimenter believes that not

more than R − 1 factors are important, and then uses a resolution R design, and
this belief turns out to be true, then the experiment is a complete factorial for the
the R − 1 factors. To see this, geometrically consider a 23−1

I I I design with I=ABC.

c©Steven Buyske and Richard Trout.
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A B AB
(1) c - - +
a + - -
b - + -
ab c + + +

we can project into any dimension and have a 22 factorial.

A

C

B

C n.s.

B n.s.

A 
n.s
.

In general, any power of 2 fraction of the design can be used: 1/2, 1/4, 1/8,
. . . .

To see how this works, consider a 1/4 fraction of 2K , i.e., 2K−2.
Let K = 5, p = 2, so that 25−2 = 8 treatment combinations.
Let D=AB and E=AC for the generators. The defining relations are

I = AB D

I = AC E

so I = (AB D)(AC E) = A2 BC DE = BC DE . This means that we have a
resolution 3 design. Remark: the number of defining relations of length R is called
the aberration of the design. For a given resolution, generally the smaller the
aberration the better.

We can find the alias pattern by multiplying the “core” 23 factorial by the var-
ious relations.
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I = I I = AB D I = AC E I = BC DE
A A(AB D) = B D A(AC E) = C E A(BC DE) = ABC DE
B AD ABCE CDE
AB D BDE ACDE
C ABCD AE BDE
AC BCD E ABDE
BC ACD ABE DE
ABC CD BE ADE

show treatments run to achieve this pattern
We can use the other 3 possible fractions, e.g.

I = −AB D

I = AC E

I = AB D

I = −AC E

I = −AB D

I = −AC E

References for fractions of two-level factorials:
C. Daniel, Applications of Statistics to Industrial Experimentation, Wiley, 1976.
Box and Hunter, “The 2K−p fractional factorial designs,” Technometrics (1961),

pp311– and pp449–.
The original paper on fractional designs is by Finney, “Fractional replication

of factorial arrangements,” Annals of Eugenics 12 (1945) 291–301.
In general, a

2K−p

fractional factorial has p generators and 2p defining relations (including I ). Each
factor is aliased with 2p − 1 others, and the design has 2p distinct fractions. For
example,

p = 1 1 generator
2 defining relations
2 fractions

p = 2 2 generators
4 defining relations
4 fractions

If R is the resolution of the design then for a 2K−1, we have K ≥ R, e.g., . . . .

For a 2K−2, we have K ≥ 3

2
R, e.g., . . . . For a 2K−3, we have K ≥ 7

4
R.
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In general, if we have a 2K−p
R design then

R ≤ 2p−1

2p − 1
K .

Where does this come from? Well, the number of relations that a given letter
(=main effect) can appear in is (1/2)2p = 2p−1, and there are K letters. On the
other hand, there are 2p−1 relations other than I , and R is the length of the shortest
one(s). Thus

2p−1 K ≥ (2p − 1)R,

which gives the relation above. It is possible, however, that a particular design may
not be attainable.

1.1. Augmenting fractional designs. After a fractional design has been run,
many times the question arises how to supplement the design points. Lots of work
has been done on this subject. To give you some ideas along these lines, consider
the following situations.

With resolution III designs the main effects are confounded with two-factor
interactions. Suppose that a factor from the first experiment looks interesting. The
factor may be “de-aliased” by running a second fraction in which the sign of the
variable has been switched.

For example, suppose we run a 25−2
I I I design with D = AB and E = BC ,

giving

I = AB D

I = BC E

I = (AB D)(BC E) = AC DE

indeed making this resolution III.
The treatment run would be

A B C D=AB E=BC
(1) de - - - + +
a e + - - - +
b - + - - -
ab d + + - + -
c d - - + + -
ac + - + - -
bc e - + + - +
abc de + + + + +

If we found from this experiment that A was important then we could run
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A B C D E
a de + - - + +

(1) e - - - - +
ab + + - - -
b d - + - + -
ac d + - + + -
c - - + - -

abc e + + + - +
bc de - + + + +

that is, the first column switched, but everything else unchanged.
If we arrange the 16 treatments for a 25−1

(1) e
a e
b

ab
c

ac
bc e

abc e
d e

ad e
bd

abd
cd

acd
bcd e

abcd e

By looking at the ± table, we find E = BC or I = BC E , thus giving 25−1
I I I . But

the alias patterns are
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25−2
I I I 25−1

I I I
A BD ABCE CDE A ABCE
B AD CE ABCDE B CE

AB D ACE BCDE AB ACE
C ABCD BE ADE C BE

AC BCD ABE DE AC ABE
BC ACD E ABDE BC E

ABC CD AE BDE ABC AE
D BCDE

AD ABCDE
BD CDE

ABD ACDE
CD BDE

ACD ABDE
BCD DE

ABCD ADE

Note that both designs are resolution 3 but in the second design, A, and two-factor
interactions with A, are confounded only with higher-order interactions, giving a
resolution V design for A. Note that the design could have been resolution V from
the beginning.
Fold Over An alternative might occur when it is of interest to free up all the main
effects. In this case all you need to do is switch the signs of all the treatments. For
example, in the previous problem, we would add to the first experimental run

A B C D=-AB E=-BC
abc + + + - -
bc d - + + + -
ac de + - + + +
c e - - + - +

ab e + + - - +
bc de - + - + +
a d + - - + -

(1) de - - - - -

If we arrange the 16 treatments for a 25−1
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(1)
a e
b

ab e
c e

ac
bc e

abc
d e

ad
bd e

abd
cd

acd e
bcd

abcd e

By looking at the ± table for this set of treatment combinations we find that
E = AC D, giving I = AC DE , which is a 25−1

I V design, which means that main
effects are not confounded with two-factor interactions. Note that two-factor are
confounded (including A). The generators for the various fractions are thus

Original Fraction Enhance A Fold Over
D = AB D = −AB D = −AB
E = BC E = BC E = −BC

This type of procedure to create a second fraction is called folding over. In
general, folding over a resolution III design gives a resolution IV design.

We have seen that, by examining the specific treatments, we can obtain the
generators for the defining contrasts. If the design is complicated, this procedure
can be messy. It can be done directly with the use of the generators, as is now
shown.

In the first pair of designs,

fraction 1 D = AB and E = BC , giving, as the generators

I = AB D = BC E,

the defining relations then begin

I = AB D = BC E = AC DE .

fraction 2 D = −AB and E = BC , giving, as the generators

I = −AB D = BC E,

the defining relations then begin

I = −AB D = BC E = −AC DE .

Since I = BC E is common to both fractions, this is the generator when both
fractions are put together (this is the result obtained earlier).

In the second pair of designs,
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• fraction 1
I = AB D = BC E = AC DE

• fraction 2D = −AB, E = −BC , so

I = −AB D = −BC E = AC DE .

Since I=ACDE is common to both halves the combined fractions have this as the
generator.

1.2. More on Augmenting Designs. One problem with the fold-over or enhance-
a-single-factor designs is that they require a set of runs as large as the original
design. This may or may not be a problem, but there are a few alternatives.

1.2.1. Adding a few orthogonal runs. Consider the set of runs above the line.

Run A B C D=ABC AB CD Block
1 - - - - + + -
2 + - - + - - -
3 - + - + - - -
4 + + - - + + -
5 - - + + + + -
6 + - + - - - -
7 - + + - - - -
8 + + + + + + -
9 + + + + + + +

10 - - + - + - +
11 - + + + - + +
12 + - + - - - +

Suppose that based on the first 8 runs, we decided that A was the strongest effect,
but that C and the contrast AB + CD also appeared active. We would like to be able
to decide whether AB, CD, or both are actually active. We can do so in 4 runs. For
the 4 additional runs (shown below the line), we pick 2 orthogonal vectors (+,+,-,-)
and (+,-,+,-). There’s only one more orthogonal vector, (+,-,-,+), so we assign it
to the largest main effect, A. These choices determine the vector for B. A more or
less arbitrary choice for C likewise determines the vector for D. We should also
include a blocking effect, because these runs will be performed after the first eight.
Finally, since the full matrix is no longer orthogonal, a regression analysis will be
needed for the resulting data.

1.2.2. Optimal Design for Augmenting Designs. We will talk about optimal
design later in the semester, but for now let us suppose that after a first set of runs
we have some effects we would like to de-alias. For concreteness, assume as above
that A was the strongest effect, but that C and the contrast AB + CD also appeared
active. We might then consider the model

y = β0 + βA A + βB B + βC D + βD D + βAB AB + βC DC D + ε.

Writing X as the model matrix, if you’ve had regression you know that the least
squares estimator of the β vector is β̂ = (XtX)−1Xty, with covariance matrix σ 2(XtX)−1.
This suggests the D-optimality criterion for a design, namely maximizing |XtX|.
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Actually, since we really just want to de-alias AB and CD, we probably want
a different criterion. We can write

XtX =
[

Xt
1 X1 Xt

1 X2

Xt
2 X1 Xt

2 X2

]
,

where X2 would be the model matrix for AB and CD only. Then the lower right
submatrix of XtX−1 is (

Xt
2X2 − Xt

2X1(Xt
1X1)

−1Xt
1X2

)−1

and so the criterion is to maximize∣∣Xt
2X2 − Xt

2X1(Xt
1X1)

−1Xt
1X2

∣∣ ,
which is known as the Ds criterion. One might also add the constraint that the two
effects have orthogonal contrasts. At any rate, programs such as SAS (using proc
optex) can find suitable designs given this optimality condition.

Homework: Work on the two handouts. I will collect one of them.
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LECTURE 4

Strategy of Experimentation IV

1. Fractional Factorials Continued

1.1. A Followup Note to the Bean Problem. C. Daniel pointed out that the
effect of S, K , and SK are all about the same magnitude, although the sign of S is
negative. Suppose we look at a regression model of just these factors,

E(y) = β0 + βS S + βK K + βSK SK .

Simplifying the βs for the moment as 0 −1, 1, and 1, (and recalling that the settings
for each factor are −1 and 1), we have

Treatment Expected Value
(1) 1

s -3
k 1

sk 1
This sort of pattern comes up surprisingly often; the regression-interaction

model tends to obscure the pattern.

1.2. Resolution III. Let us summarize how designs can be created. To create
resolution III designs one assigns the additional factors to the interactions to create
the generators. For example, in a

27−4,

we let D = AB, E = AC , F = BC , G = ABC . These designs are called
“saturated designs;” with 2K−p runs, one can estimate 2K−p − 1 main affects,
assuming all two-way and higher effects are negligible. If we have few factors, we
reduce p and K by equal amounts. That is,

26−3, 25−2, 24−1.

In each case one fewer generators is needed allowing us more flexability in select-
ing the confounding.

1.3. Resolution IV. We start by creating, when possible, a resolution III de-
sign. Each of these designs may then be “folded over” to create a resolution IV
design.

Suppose that we cannot create a resolution III design, e.g., we want to have a
28−4

I V . We would start, using the previous procedure, with a 28−5
I I I and fold it over.

The problem is there is no resolution III design. This can be seen by noting that

c©Steven Buyske and Richard Trout.
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there are only 4 interactions but there are 5 extra factors, or simply by noting that
with 8 runs one cannot estimate 8 main effects plus an overall mean.

An easier way is to set up the full matrix for K−p variables. Then we confound
each extra variable with an interaction with an odd number of letters. For example,
a 28−4 has interactions ABC, ABD, ACD, BCD which have an odd number of
letters (2 and 4 factor interactions will not work). Therefore, the generators are

E = ABC, F = AB D, G = AC D, H = BC D.

You may check to determine this is resolution IV by finding all of the defining
contrasts (24 of them).

1.4. Development of resolution V designs. In this case all main effects and
two-factor interactions are not confounded with each other. This means that we
must have at least

K +
(

K

2

)
= K + K (K − 1)

2
= K (K + 1)

2

data points.
Earlier we saw that for resolution V, K ≥ 5. For example, if K = 4, then

4 + 4 ∗ 3/2 = 10 and 24−1 = 8, which is not enough data.
For K = 5, 5 + 5 ∗ 4/2 = 15, which means that a 25−1

V is possible with
E = ABC D.

For K = 6, 6 + 6 ∗ 5/2 = 21, which means that a 26−2 = 16 will not work. A
26−1 is okay where F = ABC DE .

For K = 7, 7+7∗6/2 = 28. In principle a 27−2 = 25 = 32 might be possible.
It does not work out, however (try F = ABC D and G = BC DE , for example).
Therefore we must use G=ABCDEF for 27−1.

For K = 8, 8 + 8 ∗ 7/2 = 36, while 28−2 = 26 = 64. We wish to pick two
five-factor interactions which have minimal overlap. For example,

G = ABC D H = C DE F,

or

I = ABC DG = C DE F H = AB E FG H.

2. Screening Designs

One of the uses of the fractional factorial designs is in “screening” designs. By
this we mean that the experimenter has a large number of factors and is interested
in determining those that are not important.

In these procedures the experimenter usually must assume that there are no
interactions. A little later we will discuss this issue a little further.

In screening designs we wish to expend as little effort as possible. In the first
group of these designs we will make them as close to saturated as possible.
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2.1. Fractional Designs. Let us start by considering fractional designs of res-
olution III. Note that we use resolution III because a lower resolution will confound
main effects and a higher resolution will require too many treatments to run.

For example, if K = 7 we can run 27−4
I I I = 8 treatments. They are

A B AB C AC BC ABC
(1) - - + - + + -
a + - - - - + +
b - + - - + - +
ab + + + - - - -
c - - + + - - +
ac + - - + + - -
bc - + - + - + -
abc + + + + + + +

Let the generators be

D = AB

E = AC

F = BC

G = ABC

giving I = AB D = AC E = BC F = ABCG and the other relations by multipli-
cations giving resolution III.

If K = 5, 25−2
I I I . If K = 6, 26−3

I I I . If K = 8, we can’t obtain a resolution III
design with 8 treatments. Therefore we must use 28−4, giving 16 treatments which
gives a resolution IV design.

We see then, that we are expending 16 − 9 = 7 more data points than we need.
The problem with the fractional designs is that we must have some power of 2 as
the number of data points.

2.2. Plackett-Burman Designs. An alternative to these designs, proposed by
Plackett and Burman (1946), allows for the number of data points to be a multiple
of 4, e.g., 8, 12, 16, . . . .

Consider the design for N = 8. + + + - + - - is given. The design is then (show
how the design is generated)

Run
1 + + + - + - -
2 - + + + - + -
3 - - + + + - +
4 + - - + + + -
5 - + - - + + +
6 + - + - - + +
7 + + - + - - +
8 - - - - - - -

(Note that the final row is added to the end of each design.) Note that with Plackett-
Burman designs, if we have fewer factors, say 6 in this case, we drop off columns.
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Changing the row order to 1, 2, 3, 6, 5, 7, 4, 8 gives the 27−4
I I I we found earlier.

-G -B -C -D -A -E -F
1 + + + - + - -
2 - + + + - + -
3 - - + + + - +
6 + - + - - + +
5 - + - - + + +
7 + + - + - - +
4 + - - + + + -
8 - - - - - - -

The advantage of the Plackett-Burman designs is that we do not have the power of
2 restriction, the 4N being much more flexible. The disadvantage compared to a
fractional factorial design, is that the aliasing pattern for a Plackett-Burman design
is much more complex. Generally, each main effect is aliased with every 2-way
interaction not involving that effect.

Calculations for a Plackett-Burman design are illustrated in the following ex-
ample. Six flavors were being screened by a small group of judges during the early
stages of development of a new food product. The response is the total number of
points given to the formulation. Six of the eleven columns of the 12 run Plackett-
Burman design were used.

Flavors Unused Factors
Run A B C D E F G H I J L Scores

1 + + - + + + - - - + - 65
2 - + + - + + + - - - + 88
3 + - + + - + + + - - - 52
4 - + - + + - + + + - - 49
5 - - + - + + - + + + - 43
6 - - - + - + + - + + + 52
7 + - - - + - + + - + + 10
8 + + - - - + - + + - + 83
9 + + + - - - + - + + - 69

10 - + + + - - - + - + + 17
11 + - + + + - - - + - + 100
12 - - - - - - - - - - - 18

Contrast -18 110 -127 -44 268 -10 -52 -14 38 -24 44
Effect=Contrast/6 -3.0 18.3 -21.2 -7.3 44.7 -1.7 -8.7 -2.3 6.3 -4.0 7.3

Now using the techniques of QQ plots the above effects may be evaluated.
In addition to the effects being examined by QQ plots, statistical tests can be

performed to determine if the effects are statistically significant. In the above ex-
ample the last 5 columns give effects that are measures of experimental variation.
The average effects from these column can be used to estimate the standard devia-
tion of the effects.

s =
√

1

M

(
E2

G + E2
H + · · · + E2

K

)
,
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where EG is the average effect for column G, etc., and M is the number of contrasts
used to assess experimental error.

An effect associated with each of the six flavors is statistically significant if it
exceeds tM,.05 × s, where t is Student’s t based on M d.f.

t = 2.57

s =
√

1

5
(−8.7)2 + . . . (7.3)2 = 6.616

indicating that B, C, and E are statistically significant.

2.3. Supersaturated Designs. Another stategy for screening designs is to use
so-called super-saturated designs. This means that for K −1 factors we have fewer
than K data points.

One such group of designs are those proposed by Booth and Cox (1962). Oth-
ers have been proposed and will be topics at the end of the semester.

In the Booth and Cox designs we have N observations and p parameters, where
N is even. Each column of the design matrix will have N/2 +1’s and N/2 −1’s.
In the Plackett Burman designs, the columns are orthogonal. That is , if Cn×1

i is the
i th column vector, then C ′

i C j = 0 for all i �= j . This condition cannot be satisfied
for all columns i and j if K > N − 1. The rank of the matrix must be ≤ K .
Recognizing this the authors wish to have this requirement satisified as nearly as
possible. The criteria that they select is

min

(
max
i �= j

C ′
i C j

)
,

i.e., find the worst case of dependence and then make that as close to independence
as possible.

Furthermore, if two designs have the same value for the above, the design in
which the number of pairs of columns attaining the above minimum is chosen.

In the handout, note that their f is our K . In the designs handed out, if K is
less than shown, drop off the appropriate number of right hand columns. Also, for
design I, for K = N − 1, we have the usual Plackett-Burman design. Finally, note
that the paper has several more pages of designs.

Hamada and Wu (JQT, 1992) have some interesting methods to analyze exper-
iments with complex aliasing. They involve looking at a large number of possible
regression models and invoking effect sparsity and the hierarchical principle and
enable one to pick up 2nd order interactions even in saturated and supersaturated
designs.

2.4. Group Screening Designs. Another approach to the screening problem
is the “Group Screening Method.” With this procedure the factors are placed in
groups, the groups are tested, and then the factors within the significant groups are
tested. (This is actually two-stage grouping.)

For example, suppose that K = 9 and three groups are formed. In
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group X place A, B, C
group Y place D, E, F
group Z place G, H, I

With the 3 groups we can run 23−1. Let’s suppose the half we run is

x, y, z, xyz,

then with x , for example, actually run

A+, B+, C+, D−, E−, F−, G−, H−, I −.

After the experiment is run then an experiment is run on the significant group. For
example, if one group is significant, say X, run a 23−1 on A, B, C using N = 4.
If two groups, say X, Y, are significant, run Plackett Burman, N = 8, on A, B, C,
D, E, F. This procedure was proposed by Watson (1961) in Technometrics. In this
paper, the author sets up the following assumptions.

1. All factors have, independently, the same prior probability of being effec-
tive.

2. Effective factors have the same effect, � > 0.
3. There is no interaction present.
4. The required designs exist.
5. The directions of possible effects are known.
6. Errors are independent, normal with constant variance.
7. K = g f , where g is the number of groups, f is the number of factors per

group, and K is the number of factors.

In a few minutes we will remove assumption (1).
(2) is required to obtain optimal group size and is not important.
Assumptions (3) and (5) are important because they guarantee that effects can’t

cancel each other out.
Assumption (4) allows the development of group-sizes that minimize the total

number of runs.
Assumption (6) is the usual assumption to do ANOVA.
And assumption (7) allows for equal group sizes.
Using the above assumptions the first question is what is optimum group size.

The criteria for “optimum” used by Watson was that the expected number of ex-
perimental runs be minimized. Watson showed that

E(R) = K (1 − pK + 1

f
+ 1

K
),

where K equals number of factors, p equals the probability of a factor not being
important, f equals the number of factors per group, and R equals the number of
runs.

The result is shown in Table 2 (Handout). The first column is prior probability
for the factor being important. The second column is the optimum group size. The
third column is not important, while the fourth is the probability that a group will
contain at least one important factor. The fifth is the probability that a group will
contain at leasst two important factors.
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As was mentioned earlier the first assumption can be relaxed. What we can do
is place the factors into g groups where the factors in the same group have equal
probability of being effective but between groups they do not. From the previous
handout we can see that important factors should be placed in small groups while
unimportant factors should be placed in large groups.

For example, suppose there are 50 factors (K = 50) of which 30 have a prob-
ability of .02, 10 have a probability of ,07, and 10 have a probability of .12. For

probability =.02, optimum f =8
probability =.07, optimum f =5
probability =.12, optimum f =4

Therefore we might consider

4 groups of 8 32
2 groups of 5 10
2 groups of 4 8
8 50

This gives up 8 groups in the first stage. We could then use a Plackett Burman
design with N = 12. If we could reduce the number of groups to 7 then we could
use 24−1. For example,

5 groups of 8 40
1 groups of 6 6
1 groups of 4 4
7 50

or

5 groups of 8 40
2 groups of 5 10
7 50

The nearest equal group design would require on of the factors being dropped.
Alternatively, if we decide to go with 12 groups we could consider

4 groups of 6 24
3 groups of 5 15
2 groups of 4 8
1 groups of 3 3
10 50

or

11 groups of 4 44
2 groups of 3 6

13 50

and run a 24.
Let’s see how this last design might compare to the use of a regular P-B design.

Based on the original assumptions, we can expect 2 to 3 factors being effective.
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That is,

30 × .02 = .6

10 × .07 = .7

10 × .12 = .12

Total = 2.5 ←− expected number

Let’s say 3, and assume they fall in different groups of size 4. This leaves us with
12 factors to test. We could use a P-B design with n = 16. Therefore, the total
number of runs is 16(phase I) + 16(phase II) = 32. we could have used a Plackett-
Burman design without grouping. This would have required 52 runs, thus saving
20 runs.

These methods have, of course, been extended. One obvious strategy is to have
more than two stages.

In conclusion, the most crucial assumptions are that

1. No interaction.
2. The direction of the effects are known.
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LECTURE 5

Response Surface Methodology I

1. Introduction

Response surface methodology is a collection of experimental strategies, math-
ematical methods, and statistical inference which enable an experimenter to make
efficient empirical exploration of the system of interest.

The work which initially generated interest in the package of techniques was a
paper by Box and Wilson in 1951.

Many times these procedures are used to optimize a process. For example,
we may wish to maximize yield of a chemical process by controlling temperature,
pressure and amount of catalyst.

The basic strategy has four steps:

1. Procedures to move into the optimum region.
2. Behavior of the response in the optimum region.
3. Estimation of the optimum conditions.
4. Verification.

Now let’s set up the problem. We have p factors. Call them x1, x2, . . . , x p.
We have a response y, and a function φ, such that

E(y) = φ(x1, x2, . . . , x p).

Initially, φ is usually approximated by a first order regression model over narrow
regions of x , that is, where there is little curvature. That is,

E(y) = β0 + β1x1 + · · · + βpx p = β0 +
p∑

i=1

βi xi .

In regions of higher curvature, especially near the optimum, second order mod-
els are commonly used:

E(y) = β0 + β1x1 + · · · + βpx p

+ β11x2
1 + · · · + βppx2

p

+ β12x1x2 + · · · + βp−1,px p−1x p

= β0 +
p∑

i=1

βi xi +
p∑

i=1

βi i x
2
i +

∑
i

∑
j>i

βi j xi x j .

c©Steven Buyske and Richard Trout.
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Therefore, the overall strategy is to use first order models to “climb” the response
surface and then higher order models to sexplore the optimum region.

Let us now consider the first phase of experimentation. There are basically two
issues that will be considered. First the types of experimental designs that are used
and then procedures to determine where the next experimental design should be
run. Remember we are climbing the response surface.

2. First order models

First we will consider designs for fitting first order models. In a regression
problem, in matrix notation

Y = Xβ + ε,

where

Y =




y1

y2
...

yn


 , β =




β0

β1
...

βp


 , ε =




ε1

ε2
...

εn


 ,

and X is the design matrix

X =




1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp


 ,

but we will code the data to center it at 0, and use ±1.
Using the above coding, one of the designs used with first order models is 2p

factorials. For example, suppose that p = 3 and we wish to center the experiment
as follows:

x1 = 225

x2 = 4.25

x3 = 91.5

Next we must decide how how far to extend the design from the center. As a rough
guideline:

1. Make them far enough apart to allow the effect of the factor to be seen.
2. Make them not so far apart as to feel the surface is curving appreciably.

For example,

x1 ± 25

x2 ± .25

x3 ± 1.5

This gives
x1 200 250
x2 4.0 4.5
x3 90 93
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Now let

x ′
1 = x1 − 225

25

x ′
2 = x2 − 4.25

0.25

x ′
3 = x3 − 91.5

1.5
,

giving

X =




1 −1 −1 −1
1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 −1 −1 +1
1 +1 −1 +1
1 −1 +1 +1
1 +1 +1 +1




.

From regression methods we know that

β̂ = (X ′ X)−1 X ′y

Cov(β̂) = σ 2(X ′ X)−1.

Notice that for our example

(X ′ X)−1 =




1/8 0 0 0
0 1/8 0 0
0 0 1/8 0
0 0 0 1/8


 .

Since this is diagonal the estimates of the regression coefficients are independent.
Of course we already knew that from the work done earlier in this semester. At any
rate,

β̂0 = ȳ

β̂i = effect i

2
i = 1, 2, 3

Var(β̂i ) = σ 2

8
i = 0, 1, 2, 3

In evaluating the designs one question we might ask concerns the problem that
we might run into if a 2nd order model is required.

Of course, we know that the interactions are orthogonal to the main effects, so
they will be okay. The quadratic forms, x2

i , will give a column of 1’s, thus they will
be confounded with β̂0.
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As we have studied earlier we can fractionate the 2-level design. For example,
we might have a 23−1 design where we let C = AB. The design matrix will be

X =




1 −1 −1 +1
1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 +1


 .

Again, what happens if we need a quadratic model?
x0 x1 x2 x3 x1x2 x1x3 x2x3 x2

1 x2
2 x2

3
+1 -1 -1 +1 +1 -1 -1 +1 +1 +1
+1 +1 -1 -1 -1 -1 +1 +1 +1 +1
+1 -1 +1 -1 -1 +1 -1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1

We see
β̂1 confounded with β̂23

β̂2 confounded with β̂13

β̂3 confounded with β̂12

β̂0 confounded with β̂11, β̂22, β̂33.

The confounding pattern of the interactions we have observed before, of course.
The previous designs do not allow for an estimate of experimental error and

therefore do not allow for a test of lack of fit for the model.
For example in the 23 design, using the first order model gives

Source df
Total 7

Regression 3
Residual 4

The “residual” is a composite of both lack of fit and experimental error.
To allow for an estimate of experimental error and a little information about

quadratic terms, the 2p or 2p−q design can be supplemented by nc center points.
For this design the design matrix is

x0 x1 x2 x3 x1x2 x1x3 x2x3 x2
1 x2

2 x2
3

+1 -1 -1 -1 +1 +1 +1 +1 +1 +1
+1 +1 -1 -1 -1 -1 +1 +1 +1 +1
+1 -1 +1 -1 -1 +1 -1 +1 +1 +1
+1 +1 +1 -1 +1 -1 -1 +1 +1 +1
+1 -1 -1 +1 +1 -1 -1 +1 +1 +1
+1 +1 -1 +1 -1 +1 -1 +1 +1 +1
+1 -1 +1 +1 -1 -1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 0 0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 0 0 0
+1 0 0 0 0 0 0 0 0 0

What we notice is that the quadratic terms can be estimated independently from
β0, although not from each other. Also, as we have run more than one center point,
we can obtain an estimate of experimental error. The ANOVA for this design is
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Source df
Total 11
β1 1
β2 1
β3 1
β12 1
β13 1
β23 1
β11, β22, β33 1
β123 1
Exp. Error 3

or

Source df
Total 11
Linear 3
Lack of fit 5

Interaction 4
Quadratic 1

Exp Error 3

While other designs have been proposed, these are the most popular for first order
models.

Other first order designs can be used. One type, which we have not seen before,
is called a simplex design. This design will be used extensively later on in the
semester when we discuss Mixture Experimentation. But we will briefly introduce
the concept of a simplex design now.

The simplex designs that we will discuss today are orthogonal designs which
have n = p + 1 points. Geometrically, the design points represent the vertices of a
p-dimensional regular sided figure, or simplex. For example, if p = 2, the points
form an equilateral triangle.

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
��

� �

�

The design may be constructed with the following procedure. Construct the design
matrix,

X (p+1)×(p+1),

by letting X = √
nO , where O is an orthogonal matrix (i.e., O−1 = OT ). For

example, for p = 2, we may construct O as follows. First, find a (p +1)× (p +1)

matrix whose columns are independent and whose first column is 1. For example,
1 1 −1

1 −1 −1
1 0 2


 .
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Now divide each element of a given column by
√∑

c2
i , that is, the length of the

column considered as a vector. For our example

column 1:
√∑

c2
i =√

3

column 2:
√∑

c2
i =√

2

column 3:
√∑

c2
i =√

6

giving

O =

1/

√
3 1/

√
2 −1/

√
6

1/
√

3 −1/
√

2 −1/
√

6
1/

√
3 0 2/

√
6


 .

Note that O ′O = I . Thus

X = √
nO =

√
3O

=




1
√

3
2 − 1√

2

1 −
√

3
2 − 1√

2

1 0 2√
2


 .

Note that

X ′ X =

3 0 0

0 3 0
0 0 3


 ,

indicating that the design is orthogonal.
If p = 3, starting with 23−1,

O =




1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2


 .

Now,
√

nO = 2O , so

X =




1 1 −1 −1
1 −1 −1 1
1 1 1 1
1 −1 1 −1


 .

Notice that this is in fact a 23−1 factorial.
Draw picture.
One final note is that this procedure will not necessarily generate a unique

design; this is because different O’s can be generated. For example, with p = 3,

O =




1/2 0 1/
√

2 −1/2
1/2 −1/

√
2 0 1/2

1/2 0 −1/
√

2 −1/2
1/2 1/

√
2 0 1/2


 ,
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giving

X =




1 0
√

2 −1
1 −√

2 0 1
1 0 −√

2 −1
1

√
2 0 1


 .

While both designs are simplex designs one may be preferable to another regarding
the biases of the regression coefficients against second order coefficients. As we
have seen, with 23−1

β̂0 is confounded with β̂11, β̂22, β̂33

β̂1 is confounded with β̂23

β̂2 is confounded with β̂13

β̂3 is confounded with β̂12

In the second design,
x0 x1 x2 x3 x2

1 x2
2 x2

3 x1x2 x1x3 x2x3

1 0
√

2 -1 0 2 1 0 0 −√
2

1 −√
2 0 1 2 0 1 0 −√

2 0
1 0 −√

2 -1 0 2 1 0 0
√

2
1

√
2 0 1 2 0 1 0

√
2 0

This indicates that x2
1 + x2

2 = x0 and x2
3 = x0. Therefore,

β̂0 is confounded with β̂11,β̂22,β̂33

β̂1 is confounded with β̂13

β̂2 is confounded with β̂23

β̂3 is confounded with β̂11 and β̂22

Now let’s briefly discuss how the computations can be carried out for these
simplex designs. Continuing with the example suppose we used 23−1

(1)x1 x2 x3 = x1x2 y
+1 -1 -1 +1 51.6
+1 +1 -1 -1 54.1
+1 -1 +1 -1 31.2
+1 +1 +1 +1 51.6

You can see that X ′ X = diag(4, 4, 4, 4), and since

β̂ = (X ′ X)−1 X ′y,

we have

β̂0 = ȳ = 195.5

4
= 48.9

β̂1 = 112.7 − 82.8

4
= 7.5

β̂2 = 89.8 − 105.7

4
= −4.0

β̂3 = 110.2 − 85.3

4
= 6.2
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This gives us the estimated regression model

ŷ = 48.9 + 7.5x1 − 4.0x2 + 6.2x3.

The next issue is one of obtaining a graphical representation of the model. A
procedure that has been found to be successful is one of using response contours.
For two variables,
insert picture
This may be obtained from the estimated regression model

ŷ = β̂0 + β̂1x1 + β̂2x2,

by solving for, say, x2,

x2 = ŷ − β̂0

β̂2

− β̂1

β̂2

x1.

Now all we need to do is select a value of ŷ, say ŷ0, and we have a line

x2 = ŷ0 − β̂0

β̂2

− β̂1

β̂2

x1.

This can be repeated for several values of ŷ giving the contour plot.
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Response Surface Methodology II
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The basic paper:

Box, G. E. P. and K. B. Wilson (1951). “On the experimental attainment of
optimal conditions,” JRSS, Series B, 13 1–.
Reviews:
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from a biometric point of view,” Biometrics, 803–.

Myers, Khori, and Carter (1989). “Response surface methodology 1966–88,”
Technometrics, 66–88.

There are several good books as well.

1. Steepest Ascent

We know that to maximize the response, the movement of the design center
must be in the direction of the directional derivatives of the response function, that
is, in the direction of

∂φ

∂x
= ( ∂φ

∂x1
, . . . ,

∂φ

∂x p

)
.

We then multiply by a constant A so that

�x = A
∂φ

∂x
,

where
A = r√∑ (

∂φ

∂xi

)2
.

Thus
∑

�x2
i = r2.

For the first order model,
∂φ

∂xi
= β̂i ,

so �xi = Aβ̂i and A = r/
√∑

β̂2
i . From this we see that the movement of xi up

the path of steepest ascent is proportional to β̂i . Since this is the case it is easier

c©Steven Buyske and Richard Trout.
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not to pick particular values of r but rather fix a value of β̂i and make the other
changes proportional to it. To see the procedure consider the following example:

x1 x2 x3 x ′
1 x ′

2 x ′
3

1 Base Level 0 0 0 225 4.25 91.5
(Center Point)

2 Unit Change 1 1 1 25 0.25 1.5
(divisor in codings)

3 β̂ from coded 7.5 -4.0 6.2
regression model

4 Uncoding of slope to 7.5 × 25 = 187.5 -1.0 9.3
original x scale

5 Change relative to one 1 -0.53 0.83 1 −1.0
187.5 =-0.0053 0.0496

unit change in β̂1 = 1
6 Path of 1 -0.53 0.83 250 4.12 92.7

steepest ascent 2 -1.07 1.65 275 3.98 94.0
3 -1.6 2.48 300 3.85 95.2

Now discuss where the next design might be centered. Probably would choose
center set of points to center design.

Where to center the next experiment?

1. Center the design on the path of steepest ascent.
2. Remember that points outside of ±1 are extrapolations from the model.
3. One possibility is to try a set of points along the path of steepest ascent, and

then center the next experiment where the largest response was.
4. A more conservative approach would be to center the next experiment near

the boundary of the first experiment.

This procedure would be continued until is appears that a stationary point has
been reached. One should look at lack of fit if at all possible as this might indicate
a region of high curvature.

2. Second Order Models

Having reached the region the optimum we wish to explore this region more
carefully, using a second order model. Orthogonality now becomes less important,
while the prediction variance Var(ŷ) becomes more important. Again, there are
two issues, one of design and the other of analysis.

2.1. Design. Since we are using second order models we must have at least
three levels for each factor. For example, a 3k design would be possible. For
example, if K = 2,
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x1 x2

-1 -1
0 -1

+1 -1
-1 0
0 0

+1 0
-1 +1
0 +1

+1 +1

We use a full second order model of the form

E(y) = β0 + β1x1 + β2x2 + β12x1x2 + β11(x2
1 − c) + β22(x2

2 − c),

where c = x̄2
i = 2/3 for 3K designs. Discuss why we subtract off c. The design

matrix is
x0 x1 x2 x1x2 x2

1 − 2/3 x2
2 − 2/3

1 -1 -1 +1 1/3 1/3
1 0 -1 0 -2/3 1/3
1 +1 -1 -1 1/3 1/3
1 -1 0 0 1/3 -2/3
1 0 0 0 -2/3 -2/3
1 +1 0 0 1/3 -2/3
1 -1 +1 -1 1/3 1/3
1 0 +1 0 -2/3 1/3
1 +1 +1 +1 1/3 1/3

giving

X ′ X =




x0 x1 x2 x1x2 x2
1 − c x2

2 − c
9 0

6
6

4
2

0 2




and Cov(β̂) = σ 2(X ′ X)−1. We see that the estimates are independent of each
other.

The problem with 3k models is the large number of data points for relatively
small k (e.g., k = 3 gives n = 27, and k = 4 gives n = 81). In addition,Var(β̂i i ) is
relatively large;

Var(β̂i i ) = σ 2

2
for k = 2

as opposed to

Var(β̂i ) = σ 2

6
for k = 2.
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2.2. Central Composite Designs. Another type of design, developed by Box
and Wilson (1951), is called the Central Composite Design.

These designs are first order designs (2k or a fraction of 2k , but almost always
resolution V or better) augmented by center points and star, or axial, points. For
example, for k = 2,

2k = 22 = 4

center point(s) = 1

star points = 4

giving, as the design matrix

x1 x2

-1 -1
+1 -1
-1 +1
+1 +1

0 0
−α 0
+α 0

0 −α

0 +α

Pictorially (assuming α > 1)
Draw picture

Again using the same model as before we will let

c = 2k + 2α2

n
= x̄2

i ,

where n equals the total number of points in the design.
For the full second order model the design matrix will be, for k = 2, so c =

(4 + 2α2)/9, and if we let α = 2, c = (4 + 8)/9 = 4/3,

x0 x1 x2 x1x2 x2
1 − 4/3 x2

2 − 4/3
1 -1 -1 +1 -1/3 -1/3
1 +1 -1 -1 -1/3 -1/3
1 -1 +1 -1 -1/3 -1/3
1 +1 +1 +1 -1/3 -1/3
1 0 0 0 -4/3 -4/3
1 -2 0 0 8/3 -4/3
1 +2 0 0 8/3 -4/3
1 0 -2 0 -4/3 8/3
1 0 +2 0 -4/3 8/3
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giving

X ′ X =




x0 x1 x2 x1x2 x2
1 x2

2
9 0 0 0 0 0
0 12 0 0 0 0
0 0 12 0 0 0
0 0 0 4 0 0
0 0 0 0 20 −12
0 0 0 0 −12 20




.

There are several points worth making

1. The linear and quadratic terms have greater precision than those of 3k de-
signs (the interaction is slightly worse off).

2. The quadratic terms have a non-zero covariance.
3. For k = 2, the number of experimental runs is the same. In general, it is

much less for the central composite.

k CC 3k

2 9 9
3 15 27
4 25 81

The question to discuss is that of selecting α. One of the criteria that can be used
to select α is to make the estimates of the quadratic terms orthogonal, that is, make
the X ′ X matrix diagonal.

If we use a 2k−p design with 2k axial points and nc center points then

α =




[(
2k−p + 2k + nc

) 1
2 − 2

k−p
2

]2

2k−p

4




1
4

,

will make X ′ X diagonal. For example, if we let p = 0 and nc = 1,

k α

2 1.000
3 1.216
4 1.414
5 1.596
6 1.761

Now a logical question that might be asked is whether 3k or the orthogonal
central composite design is better. An answer requires criteria to be developed
to compare the designs. Later on in the semester we will have a discussion on
optimality criteria. At that time we will develop procedures which will allow us to
compare these designs.

Another criteria that is used to select α is to make the design rotatable. A
design is said to be rotatable when the variance of ŷ is a function only of the
distance from the center of the design and not a function of the direction.

Geometrically
Draw picture
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Points 1 and 2 are both distance ρ from center (0, 0) and so would have the same
Var(ŷ). The concept of rotatable is not uniquely related to second order models or
central composite designs. Myers, and Box and Hunter give a detailed description
relating to rotatibility.

Remember from regression that

ŷ = x1×pβ̂ p×1,

where Var β̂ = σ 2(X ′ X)−1. Thus

Var(ŷ) = σ 2x1×p(X ′ X)−1x ′,

where x1×p is a particular row of the design matrix.
For example, it turns out that, for first order designs, an orthogonal design is

also a rotatable design. As an illustration consider a 22 factorial

X =




1 −1 −1
1 +1 −1
1 −1 +1
1 +1 +1




X ′ X =

4 0 0

0 4 0
0 0 4




(X ′ X)−1 =

1/4 0 0

0 1/4 0
0 0 1/4




If we take x to be row 1 of X , then

x(X ′ X)−1x ′ = [
1 −1 −1

] 
1/4 0 0

0 1/4 0
0 0 1/4





 1

−1
−1




= [
1/4 −1/4 −1/4

] 
 1

−1
−1


 = 3/4

For row 2,

x(X ′ X)−1x ′ = [
1/4 1/4 −1/4

] 
 1

1
−1


 = 3/4

and so on for the remaining two rows.
It must be emphasized that in general, for other than first order models, orthog-

onal designs are not necessarily rotatable and vice versa.
For central composite designs, the design can be made rotatable if

α = 2(k−p)/4.



2. SECOND ORDER MODELS 61

k 2k−p p star center n α

2 4 0 4 1 9 1.414
3 8 0 6 1 15 1.682
4 16 0 8 1 25 2.000
5 16 1 10 1 27 2.000
6 32 1 12 1 45 2.378
5 32 0 10 1 43 2.378
6 64 0 12 1 77 2.828

For p = 2
Draw picture
all points lie on a circle (except center point) x2

1 + x2
2 = 2. The design matrix is

X =




1 −1 −1 +1 1/9 1/9
1 +1 −1 −1 1/9 1/9
1 −1 +1 −1 1/9 1/9
1 +1 +1 +1 1/9 1/9
1 −√

2 0 0 10/9 −8/9
1 +√

2 0 0 10/9 −8/9
1 0 −√

2 0 −8/9 10/9
1 0 +√

2 0 −8/9 10/9
1 0 0 0 −8/9 −8/9




.

X ′ X =




9 0
8

8
4

44/9 −28/9
0 −28/9 44/9




.

(X ′ X)−1 =




1/9 0
1/8

1/8
1/4

.34375 .21875

.21875 .34375




.

This gives for the first row of the design matrix

Var(ŷ) = σ 2x(X ′ X)−1x ′

= σ 2
[
1/9 −1/8 −1/8 1/4 .0625 .0625

]
x ′

= σ 2 [1/9 + 2/8 + 1/4 + .0139]

= 0.625σ 2.
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For one of the axial points,

Var(ŷ) = σ 2x(X ′ X)−1x ′

= σ 2
[
1/9 −√

2/8 0 0 .1875 −.0625
]

x ′

= σ 2 [1/9 + 2/8 + .2639]

= 0.625σ 2.

They will be equal for all points in the design except for the center point. (Recall
that all of the points are equidistant from the center.)

For some of the rotatable CCD (when fractions are used) the points do not all
lie on a hypersphere. The designs are still rotatable as the points that are equidistant
from the center will have equal variance.

In the above designs for second order models we have noted that they all have
a single center point. As with the first order designs, in order to obtain an estimate
of experimental error, multiple center points are recommended.

In general, what conditions are required for a design to be rotatable? (See Box
and Hunter for a much more complete discussion of this topic.)

For a linear model, the criterion that must be met is (assuming that
∑n

u=1 xiu =
0 and

∑n
u=1 x2

iu = n) that

n∑
u=1

xiu x ju = 0 i �= j = 1, . . . , p.

This means that

X ′ X =




n 0
n

. . .

0 n


 .

This yields the 2k type of design. Also the simplex designs that we discussed are
rotatable.

For a second order model the criteria are (again assuming
∑n

u=1 xiu = 0)

n∑
u=1

xiu x ju = 0 i �= j = 1, . . . , k

n∑
u=1

xiu x ju xku = 0 i, j, k = 1, . . . , k

n∑
u=1

x4
iu = 3

n∑
u=1

x2
iu x2

ju, i �= j

This means that all off diagonal elements, except for the pure quadratics, are equal
to zero.



2. SECOND ORDER MODELS 63

For example, if we have a central composite design, with axial points at ±α,
then

∑
x4

iu = 2k−p + 2α4∑
x2

iu x2
ju = 2k−p i �= j

giving 2k−p + 2α4 = 3(2k−p) or α = 2(k−p)/4, a result that we saw earlier.
While central composite designs are the most often used class of rotatable

designs, nonetheless many other types of rotable designs exist, especially for k
fairly small. For example, if k = 2, then points lying on a circle and equidistant,
along with a center point, forms a rotatable design. For example, if we place six
points on a circle
Draw picture
Notice that we have divided the 360o into six sections, 60, 120, . . . , 300. If we let
the distance from the center to each point (the radius) be equal to 1, then

x1 x2

1 0
0.5

√
.75

-0.5
√

.75
-1 0

-0.5 −√
.75

.5 −√
.75

Note that
∑

x1u = ∑
x2u = 0,

∑
x1u x2u = 0,

∑
x4

1u = ∑
x4

2u = 2.25,
∑

x2
1u x2

2u =
0.75, and so

∑
x4

1u = ∑
x4

2u = 3
∑

x2
1u x2

2u .
Note that if we don’t add the center point then the design matrix will be singular

X =




x0 x1 x2 x2
1 x2

2 x1x2

1 1 0 1 0 0
1 .5

√
.75 .25 .25

√
.75/2

1 −.5
√

.75 .25 .75 −√
.75/2

1 −1 0 1 0 0
1 −.5 −√

.75 .25 .75
√

.75/2
1 .5 −√

.75 .25 .75 −√
.75/2




.

Note that x2
1 + x2

2 = x0. If we add the center point the confounding disappears.
The question that arises is how many center points. One proposal, made by

Box and Hunter, is to have roughly the same precision as elsewhere in the design.
To achieve near uniform precision the number of center points needed is show
below.
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k 2k−p number of center points
2 4 5
3 8 6
4 16 7
5 16 6
5 32 10
6 32 9
6 64 15

In general most researchers will not run this many points at the center simply to
achieve homogeneous precision.

In general, for spherical designs, 3–5 center points will be sufficient. For face-
centered cube designs, that is, CCD with α = 1, 1 or 2 center points will do.
References: Box, G.E.P. and J. S. Hunter (1957). “Multifactor experimental de-
signs for exploring response surfaces,” Ann. Math. Stat. pp. 195–.

2.3. Box-Behnken Designs. Reference: Box, G. E. P., and D. W. Behnken
(1960). Technometrics, pp. 455–.

Box Behnken designs are fractional 3k factorials. The designs either meet,
or approximately meet, the criterion of rotatability. These designs are formed by
combining two-level factorial designs with incomplete block designs.

For example, k = 3,

T1 T2 T3

b1 ∗ ∗
b2 ∗ ∗
b3 ∗ ∗

.

For each line, replace “∗” with a 22 factorial and put 0 in for blank cells. This gives

x1 x2 x3

-1 -1 0
+1 -1 0
-1 +1 0
+1 +1 0
-1 0 -1
+1 0 -1
-1 0 +1
+1 0 +1
0 -1 -1
0 +1 -1
0 -1 +1
0 +1 +1

Then add the indicated number of center points, in this case, 3.
Draw picture.
For other values of k, the paper shows how the designs can be constructed.
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2.4. An Example. Before we go any further, let us consider an example. Sup-
pose that a first order model is initially used, namely a 23 design.

X =




1 −1 −1 −1
1 +1 −1 −1
1 −1 +1 −1
1 +1 +1 −1
1 −1 −1 +1
1 +1 −1 +1
1 −1 +1 +1
1 +1 +1 +1




Y =




55.9
70.6
67.5
68.6
63.3
68.0
68.8
62.4




X ′ X =




8 0
8

8
0 8




X ′Y =




525.1
14.1
9.5

−0.1




β̂ = (X ′ X)−1 X ′Y =




65.6375
1.7625
1.1875

−0.0125




Y ′Y = 34629.47

β̂ ′ X ′Y = 34502.385

ResidSS = 127.0856

ResidM S = 31.7712

From an examination of the model and the data there is an indication that we have
reached a stationary point. We therefore would like to supplement this design so
that a second order model can be estimated. Brief discussion of blocking—more
later.
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x1 x2 x3 y
0 0 0 66.9

+2 0 0 65.4
-2 0 0 56.9
0 +2 0 67.5
0 -2 0 65.0
0 0 +2 68.9
0 0 -2 60.3

It should be noted that this design is neither orthogonal nor rotatable, although it is
a central composite design. If we fit a full second order model we get

X ′ X =




x0 x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

15 16 16 16 0
16

16
16

40 8 8
8 40 8
8 8 40

8
8

0 8




.

What we notice is that the pure quadratic terms are correlated (the correlation with
β̂0 can be removed if we subtract

∑
x2

i from the pure quadratic terms). While this
design is not rotatable the correlation among the quadratic terms is characteristic
of that design also.

We find the estimated regression model to be

ŷ = 67.71 + 1.944x1 + 0.906x2 + 1.096x3

− 1.539x2
1 − 0.264x2

2 − 0.676x2
3

− 3.088x1x2 − 2.188x1x3 − 1.212x2x3

The ANOVA table relating to this analysis is
Source df SS=ms df ms
Total 14279.33
β1 1 60.45
β2 1 13.14 3 30.62
β3 1 18.28
β12 1 76.26
β13 1 38.28 3 42.10
β23 1 11.76
β11 1 31.24
β22 1 0.62 3 12.31
β33 1 5.07

Residual 5 4.85



LECTURE 7

Response Surface Methodology III

1. Canonical Form of Response Surface Models

To examine the estimated regression model we have several choices. First, we
could plot response contours. Remember that we set ŷ to some specified value, y0,
and trace out contours relating x1, x2, and x3.

An alternative is to reduce the equation to its “canonical form.” That is, we
form an equation of the form

y − ys = λ1w
2
1 + λ2w

2
2 + λ3w

2
3,

where ys is the center of the contours (that is, the stationary point) and w1, w2, and
w3 are a new set of axes called the principal axes. The coefficients λ1, λ2, and λ3

give the shape of the surface (they are the eigenvalues of a matrix to be defined
shortly).

Using matrix notation for a bit, we could write the model as

ŷ = β̂0 + X ′β̂ + X ′ B̂ X,

where here X is just the linear part of the design matrix, β is the vector of linear
coefficients, and

B =




β̂11 β̂12/2 . . . β̂1k/2
... β̂22 . . . β̂2k/2

. . .
...

β̂1k/2 . . . β̂kk


 .

To find the stationary point Xs , differentiate ŷ to find

∂y

∂ X
= β̂ + 2B̂ X.

Setting this to zero, we find

Xs = −B̂−1β̂/2.

As to finding the right form for the λ’s and the z’s, you might recall that if you
form a matrix M with columns equal to the normalized eigenvectors of B̂, then

M ′ B̂ M = �,

c©Steven Buyske and Richard Trout.

67
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where � is a diagonal matrix with diagonal elements equal to the eigenvalues of
B̂. Now write

Z = X − Xs

W = M ′Z ,

we have

ŷ = β̂0 + X ′β̂ + X ′ B̂ X

= β̂0 + (Z + Xs)
′β̂ + (Z + Xs)

′ B̂(Z + Xs)

= [β̂0 + X ′
s β̂ + X ′

s B̂ Xs] + Z ′β̂ + Z ′ B̂ Z + 2X ′
s B̂ Z

= ŷs + Z ′ B̂ Z ,

because 2X ′
s B̂ Z = −Z ′β̂ from the definition of Xs . Rotating the coordinate sys-

tem, we have

ŷ = ŷs + Z ′ B̂ Z

= ŷx + W ′M ′ B̂ MW

= ŷs + M ′�M,

which is what we want.
The reason to do this is because the eigenvalues, the diagonal values of �, can

tell a great deal about the stable point.

• If the eigenvalues are all negative, the stable point is a maximum.
• If the eigenvalues are all positive, the stable point is a minimum.
• If the eigenvalues are of mixed sign, the stable point is a saddle.

That’s not all. The relative sizes of the eigenvalues also tell a great deal. For
example, if most of the eigenvalues are large positive numbers but a few are near
zero, then there is a ridge in the graph of the response function. Moving along that
ridge will make little difference in the value of the response (but might make a big
difference in some other aspect of the system, like cost, for example).

Let’s illustrate this with an example. Say

ŷ = 81.22 + 1.97x1 + 0.22x2 − 3.93x2
1 − 1.38x2

2 − 2.22x1x2.

To find ys , we must find the values of x1 and x2 which represent the stationary
point.

∂ ŷ

∂x1
= 1.97 − 7.86x1 − 2.22x2 = 0

∂ ŷ

∂x2
= 0.22 − 2.76x2 − 2.22x1 = 0

Solving this system of equations gives

x1,s = 0.30

x2,s = −0.16,
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which in turn gives
ŷs = 81.49.

To find the eigenvalues of B, we solve

0 = |B − λI |

=
∣∣∣∣β̂11 − λ β̂12/2

β̂12/2 β̂22 − λ

∣∣∣∣
=

∣∣∣∣−3.93 − λ −1.11
−1.11 −1.38 − λ

∣∣∣∣
= (−3.93 − λ)(−1.3λ) − (−1.11)(−1.11)

= λ2 + 5.31λ + 4.19

This yields

λ = −5.31 ±
√

5.312 − 4(1)(4.19)

2
= −5.31 ± 3.38

2
or

λ1 = −4.35

λ2 = −0.96.

Note that the choice of λ1 or λ2 is not important.
The next step, following the determination the eigenvalues, is finding the eigen-

vectors.
Graphically, what we are doing is (in two dimensions)

Draw picture.
w1 and w2 are the major and minor axes. The eigenvectors corresponding to each
λi can give

zi = mi1(x1 − x1,s) + mi2(x2 − x2,s),

which shows how the axes are translated. If we let

M =
[

m11 m12

m21 m22

]
= [

M1 M2
]
,

then the Mi are the eigenvectors determined by

[B − λI ]Mi = 0.

For example, for λ1 = −4.35,[−3.93 + 4.35 −1.11
−1.11 −1.38 + 4.35

] [
m11

m21

]
=

[
0
0

]
,

or

0.42m11 − 1.11m21 = 0

−1.11m11 + 2.97m21 = 0.

Note that there is no unique solution to this system of equations, because λ1 was
chosen to make the matrix of coefficients singular.
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What we want is to find a proportional relationship, subject to the constraint
that m2

11 + m2
21 = 1. For example, setting m ′

11 = 1, we find m ′
21 = .42/1.11 =

1.11/2.97 = .3784. Since
√

12 + .37842 = 1.07, we have m11 = 1/1.07 = 0.94
and m21 = .3784/1.07 = 0.35. Similarly, we could find that m21 = 0.35 and
m22 = −0.94, so

M =
[
.94 .35
.35 −.94

]
.

Note that the eigenvectors are orthogonal.
At any rate, we now know that

w1 = .94(x1 − .30) + .35(x2 + .16)

w2 = .35(x1 − .30) − .94(x2 + .16).

Draw picture
As mentioned earlier, when all eigenvalues are negative the stationary point is a
(local) maximum. When they are not all equal, the function looks like an ellipsoid
near the maximum. In our case, the ellipses of the contour plots are elongated
along the w2 axis. This means a small value in w1 corresponds to a larger value for
w2 as far as giving the same value of ŷ − ys .

Having found the canonical form we can now find how it can be used to de-
scribe the surface without having to plot the response contours. First, (x1,s, x2,s) is
the stationary point with ys being the response at the stationary point. The eigenval-
ues λ1, λ2 give the behavior of the response as we move away from the stationary
point.

In our example, λ1 = −4.35 and λ2 = −.96, which means that the response
decreases as we move away from the stationary point. Furthermore, since

|λ1| > |λ2|
we know that the contours are elongated along the w2 axis.

If λ1 = λ2 then the ellipses are actually into circles.
If λ1 and λ2 are both positive then the response is minimized at the stationary

point.
If λ2 is close to zero then we have a stationary ridge. This means that we have

a variety of x1 and x2 which will result in the maximum value.
In the above situations, the optimum conditions have been reached. All that

remains is that we run a experiment in the region the verify the model.
If λ1 < 0 and λ2 > 0 then we have found a stationary point that is a saddle

point. For example
Draw picture
. We have reached a maximum on one axis and a minimum along the other axis. If
our objective was to maximize the response then our next experiment should be in
the direction of w2.

If λ1 and λ2 are both negative but the stationary point lies well outside the
region of the design
Draw picture
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This is called a rising ridge. It means we have not yet found the proper region of
the maximum, a common occurance. Again the next experiment needs to be run
up the ridge.

2. Blocking in Response Surface Designs

The last issue that we will discuss is that of blocking response surface designs.
We have already discussed blocking of two-level designs, which can be used in
first order designs.

Now we will discuss blocking of second order models. The important issue is
to determine how, if at all, one can assign treatments to blocks so that the block
effects will be orthogonal to the model coefficients.

First we must consider the conditions necessary for the parameter estimates to
be orthogonal to blocks. Let zmu be a dummy variable which takes value +1 if the
u-th point is in the m-the block and zero otherwise. The model is then

Yu = β0 +
k∑

i=1

βi xiu +
k∑

i=1

βi i x
2
iu +

k∑
i=1

∑
j>i

βi j xiu x ju +
b∑

m=1

δm(zmu − z̄m) + εu.

To have orthogonality of parameter estimates and block effects, we need
N∑

u=1

xiu(zmu − z̄m) = 0 for i ≤ k and all m

N∑
u=1

x2
iu(zmu − z̄m) = 0 for i ≤ k and all m

N∑
u=1

xiu x ju(zmu − z̄m) = 0 for i �= j ≤ k and all m

With the usual coding for x’s so that
∑

xiu = 0 and
∑

xiu x ju = 0 for i �= j ≤ k,
these conditions are equivalent to

N∑
i=1

xiuzmu = 0 for i ≤ k and all m

N∑
u=1

x2
iu zmu =

N∑
u=1

x2
iu z̄m for i ≤ k and all m

N∑
u=1

xiu x juzmu for i �= j ≤ k and all m.

The first equation implies that the sum of the observations in the mth block, for
variable xi , is zero. The third equation implies that the cross-product of xi and x j

sums to 0 in the mth block.
In the second equation, z̄m is the proportion of observations that occur in block

m. Therefore, this equation specifies that the contributions from block m to the
total SS for each variable xi is proportional to the number of runs in the block.

For example, consider the following design.
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x1 x2 x3

1 1 1
1 -1 -1

-1 1 -1
-1 -1 1 Block 1
0 0 0
0 0 0
1 1 -1
1 -1 1

-1 1 1 Block 2
-1 -1 -1
0 0 0
0 0 0

-1.633 0 0
1.633 0 0

0 -1.633 0
0 1.633 0 Block 3
0 0 -1.633
0 0 1.633
0 0 0
0 0 0

As for the conditions

• The first equation:
∑

xiu = 0 within each block.
• The third equation:

∑
xiu x ju = 0 within each block.

• The second equation. Now
∑N

u=1 x2
iu = 13.33, the total SS for each vari-

able. For block 1, the sum
∑N

u=1 x2
iu zmu = 4. For block 2, the sum is 4. For

block 3, the sum is 5.33. On the other hand, for block 1,
∑

x2
iu z̄m = 4. For

blocks 2 and 3, the sums are 4 and 5.33

Since the conditions are met, the blocking in this design will be orthogonal to the
parameter estimates.

In general, for a central composite design, the question that remains is what
value of α do we select in order to make the blocks orthogonal to the regression
parameters.

First, let’s say we want two blocks. In this case we will place the 2p points
in one block and the axial points in the second block. In addition, we’ll place cF

center points in the factorial block and CA center points in the axial block.
From the second condition,

NA

N
SST OT = SSA,

NF

N
SST OT = SSF ,

which implies that

NA

NF
= SSA

SSF
.
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In turn, this means∑
axial block x2

iu∑
factorial block x2

iu

= number of points in axial block

number of points in factorial block
= 2k + CA

2k + CF
.

The left hand side of this equation is simply 2α2/2k , so

2α2

2k
= 2k + CA

2k + CF
,

yielding

α =
√

2k(2k + CA)

2(2k + CF)
.

Thus is the experimenter requires two blocks, the value of α given by this
equation, for the specified values of CA and CF , gives a Central Composite Design
that blocks orthogonally. For example, if k = 3 and CA = CF = 2, then

α =
√

23(2 · 3 + 2)

2(23 + 2)
≈ 1.7889.

What about rotatability? We know that that is also a desirable criterion. We
have seen that for rotatability,

α = 2k/4.

This implies that, for the design to be both rotatable and blocked orthogonally,

2k/4 =
√

2k(2k + CA)

2(2k + CF)

or

2k/2 = 2k(2k + CA)

2(2k + CF)
.

Thus, for a given value of k, the question remains of finding an appropriate value
for CA and CF to make the design rotatable. For example, if k = 2, we find

2 = 4(4 + CA)

2(4 + CF)
,

or CF = CA.
If k = 3, we get 1.5 + CA = .5625CF , making no solution possible. That

doesn’t mean, however, that you might not pick a design with orthogonal blocking
and near-rotatability. For example, with CA = 2 and CF = 3, for orthogonal
blocking we need α = 1.7056. For rotatability, we would want α = 1.6818. By
going with CA = 2, CF = 3, and α = 1.7056, we will get orthogonal blocking and
near-rotatability.

For k = 4, we get CF = 2CA.
Some experimental situations dictate the need for more than 2 blocks. To

achieve this we fractionate the 2-level portion of the design. We have discussed
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how we can fractionate this portion of the design earlier. Again we need to deter-
mine the appropriate value for α.

α =
√

2k−p(2k + CA)

2(2k−p + CF)
.

For example, if CA = CF = 2, k = 3, and p = 1, we have

α =
√

23−1(2 · 3 + 2)

2(23−1 + 2)
≈ 1.7889,

the design that we saw earlier.



LECTURE 8

Response Surface Methodology IV

1. Bias and Variance

If yx is the response of the system at the point x , or in short hand, yx = f (x),
then we can write ηx = E(yx). This is the true, and unknown model. We approxi-
mate ηx with ŷx , for example ŷx = β̂0 + β̂1x , but we need to always remember that
such a model is at best a workable approximation.

To measure how well out design will do, we could look at the mean squared
error

E(ŷx − ηx)
2 = E

(
ŷx − E ŷx) + (ŷx − ηx)

)2

= E(ŷx − E(ŷx))
2 + (E(ŷx − ηx))

2.

To normalize this for changes in the number of design points, N , and for different
values of σ , we can multiply each term by N/σ 2, and write the result as MX =
VX + BX .

The question is how the design affects MX . Without loss of generality, let us
assume that

∑
Xi = 0, so that σ 2

X = ∑
X2

i /N . We have

Var(ŷX ) = Var(x β̂)

= Var(x(X ′ X)−1 X ′y)

= x(X ′ X)−1 X ′ Var(y)X (X ′ X)−1x ′

= σ 2x(X ′ X)−1x ′.

Thus Var(ŷX ) = σ 2( 1
N + x2

Nσ 2
X
), for the simple linear regression model outlined

above (remember x ′ = [1x].) Thus VX = 1 + x2

σ 2
X

.

Suppose we have a 3 point symmetric design (−x0, 0, x0), so that σ 2
X =

∑
X2

i
N =

2x2
0/3, and

VX = 1 + 3x2

2x2
0

,

with a design space of X ∈ [−4/3, 4/3]. Now suppose f is actually quadratic, so
that

y = β0 + β1x1 + β11x2
1 + ε.

Consider x0 = 2/3.

c©Steven Buyske and Richard Trout.
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-1 1

Here we have smaller bias, but bigger variance. In fact, VX = 1 + 27x2/8.
Consider x0 = 4/3.

-1 1

This has bigger bias and smaller variance. Here X X = 1 + 27x2/32. This is better
if you are confident about your first-order model.

0.5 1 1.5 2

5

10

15

20

In fact, the minimum of M = V + B is attained at x0 = 1.2. Without the center
point, the minimum would be closer in.
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We write the p-th moment of the design as m p = ∑
X p

I /N , and let µp be the
moments of a (symmetric) prior. We can then write

M = V + B

= (1 + µ2

m2
) + α2

(
(m2 − µ2)

2 + (µ4 − µ2
2) + m2

3µ2

m2
2

)
,

where α = √
N β11

σ
. By using a symmetric design, m3 = 0, so the last term drops

out. To reduce bias, set m2 = µ2. To reduce variance, set m2 large.
We can thus distinguish among

1. the all variance case, 1 + µ2
m2

, where we want to maximize m2,
2. the all-bias case, where we want m2 = µ2, and
3. the balanced case, which we can index with V/(V + B).√

m2/µ2

V/(V + B) Uniform prior Normal prior
All bias 0 1.00 1.00

.2 1.02 1.04
.33 1.04 1.09

V = B .5 1.08 1.16
.67 1.14 1.26
.8 1.25 1.41

All variance 1 ∞ ∞
Let us briefly consider designs that minimize squared bias. Suppose a polyno-

mial model of degree d1,
ŷ(x) = x ′

1b1,

is fitted to the data, while the true model is a polynomial of degree d2,

η(x) = x ′
1β1 + x ′

2β2.

If we write

M11 = X ′
1 X

N
,

M12 = X ′
1 X2

N
,

and similarly µ11 and µ12 for the moments under the prior on the design region of
interest, it can be shown that, whatever the values of β1 and β2, a necessary and
suficient condition for the squared bias to be minimized is that

M−1
11 M12 = µ−1

11 µ12.

One way to satisfy this, of course, is to match to design moments with the prior
moments.

As an example, consider a minimum bias design for the k-sphere, where we
are going to assume a linear model, but a quadratic model actually holds. If we
take a uniform prior over the interior of the sphere (meaning all points inside the
sphere are of equal interest), the prior is thus constant within the sphere and zero
outside. Since d1 = 1 and d2 = 2, we will be interested only in moments up to
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d1+d2 = 3. Because of the symmetry of the sphere, only the pure second moments
will be non-zero. The second moments will be 1/(k + 2).

These conditions are satisfied by any two-level fractional factorial design of
resolution IV if it is scaled.

For example, with k = 3, the 23 factorial with points placed at ±a will have
second moment 1/N

∑
x2

iu = a2. This will equal 1/(k + 2) if we set a = 1/
√

5 ≈
.447, or place the vertices on a sphere of radius

√
3/5 ≈ .7746.

References:
Box & Draper, A basis for the selection of a response surface design, J. Amer. Stat.
Assoc., 54, 1959, 622–654.
Box & Draper, The choice of a second order rotatable design, Biometrika, 50, 1963,
335–352.

2. Practical Summary

Over the last eight weeks we have discussed how to procedd from ignorance to
optimization bliss. It might be worth a quick review of how to put it all together.

1. Begin with a screening design to pick out active factors. A resolution III
design is all that’s really needed. Typically one uses a fractional factorial
(but beware of making k − p too small to have a good background against
which to pick out the active factors) or Plackett-Burman design.

2. If there are any ambiguities from the screening runs, consider running ad-
ditional experiments to resolve them. This could be a fold-over design, an
enhance-one-factor design, or just a few runs chosen on an ad hoc basis.
You will almost certainly want to analyze the two sets of runs together, but
remember to include a blocking term in your model.

3. Now that you have decided on the active factors, re-analyze your results
using just those factors. From the parameter estimators, find the direction
of steepest ascent.

4. Decide how you will move in the direction of steepest ascent. One approach
is to select a set of runs along the path of steepest ascent for the next design.
A more conservative approach is to perform another full or fractional fac-
torial design centered along the path of steepest ascent. The braver you are,
the farther out that center can be. If the first design was spread out over a
wide region, you might pick the next design to be a smaller size; you might
also wish to re-scale based on the relative sizes of the active effects as found
from the screening design.

5. Based on the results of the last design, you should have a good idea of where
to place your next design. You will probably want to include a pair of center
points to check for curvature. If you have plenty of runs still available, and
if you have any uncertainty about your choice of active factors, you could
do a small fractional factorial design to check that. You could include just
the factors that you think are unimportant, or those plus the weakest active
factors, or everything. If you don’t pick up any new information at least
you’ll have a good estimate of σ 2.
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6. Once you detect curvature, it’s time to use a second order design. If you
used a (fractional) factorial design with center points, with an appropriate
choice of α you can augment that design with center and axial points to
get a second-order design with parameter estimates orthogonal to any block
effects. Some canonical analysis and ridge analysis will tell you where to
move next.

7. If you need another second order design, if possible do it all at once rather
than in blocks. That will save you a few center runs. You could also consider
a central composite design where the factorial part is just resolution III∗. In
general, because second order designs use a lot of design points and thus
cost a lot of money, you do want to be sure of your design before you
implement it.

8. Once you are sure of your optimum point, use a few runs to verify it.

3. EVOP

The techniques that we have been examining for the past few weeks are de-
signed to optimize a process in the Research and Development situation. However,
these techniques can also be used in a process already in production. This tech-
nique is called Evolutionary Operation, or EVOP. Basically, the idea is to let the
production facility act as a laboratory. Unlike the laboratory, the production facility
cannot make large changes in settings, nor would one expect to find large effects
(since presumably there has already been some optimization of the process). On
the other hand, it is easier to collect a large amount of data, since the plant is run-
ning anyway. A large amount of data will mean smaller standard errors for the
effect estimates, so even small effects may be readily detected. In effect, we are
looking for smaller things in the grass, but we are cutting the grass shorter.

To understand the basic idea, consider the following diagram showing the pos-
sible evolution of a species of lobster. It is supposed that a particular mutation
produces a type of lobster with “length of claws” and “pressure attainable between
claws” corresponding to a point P in the diagram.

Draw picture. horiz axis, length of claws, vert axis, pressure between claws,
contours show percent surviving long enough to reproduce in a given environment.

If the dots indicate offspring, then those that have the greatest chance of sur-
vival will help move the scatter of points toward the optimum. The key components
of the process of natural selection is

1. Variation
2. Selection of “favorable” variants.

It is this strategy that EVOP tries to exploit. That is, in the EVOP method
a carefully planned cycle of minor variants on the process is agreed upon. The
routine of plant operation then consists of running each of the variants in turn and
continually repeating the cycle. In this way we use routine manufacture to generate
not only the product we require but also the information we need to improve it.

The basic strategy is to use small designed experiments, while the process is
running, to determine the optimum conditions. Since the improvements may come
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in small amounts, it may be necessary to have several replicates in order to improve
the “signal to noise ratio” to the point of detecting the improvements.

It is generally found that, while there may be many potentially important inde-
pendent variables, no more than two or three of them are examined at a time. The
reason is that, in practice, this seems to be the limit that can be handled on a routine
basis.

The types of designs which are commonly used with EVOP are 22 or 23 de-
signs, sometimes supplemented with a center point. Of course, it sometimes be-
comes necessary to block the designs.

With these designs, linear models are commonly used, possibly with interac-
tion terms added in, to approximate the response surface. Then paths of steepest
ascent, or some other procedure is used to determine the next region of experimen-
tation.

Simplex design for EVOP.
Consider the following example of EVOP. Suppose there is a chemical process

running in your plant for which the EVOP committee would like to vary temper-
ature t and reaction time r . The current operating co nditions are t = 150oC and
r = 30 minutes. The EVOP procedure will use a 22 design with a center point,
run in the sequence (150,30), (145,73), (155,75), (155,74), (145,72). This run or-
der will be easy for plant personnel to remember, and will confound any time or
nuisance factor effects with blocks. The cycle is run at least twice. In our example,
suppose the means for the various settings are 73, 72, 75.5, 74.5, 72.5. This gives
a temperature effect of 2.75, a time effect of .75, an interaction effect of .25, and a
“change-in-mean effect” of .50. This last is a measure of curvature, computed as
(1) − ((2) + (3) + (4) + (5))/4.

Comments on EVOP

• Selection of variables
• Excuse of large run-to-run variation
• EVOP versus SPC
• Training and personnel

EVOP references
The basic paper: Box, G. E. P. (1957), “Evolutionary operation: a method for

increasing industrial productivity,” Applied Statistics, pp 81–101.
A review article: Hunter, William G., Kittrell, J. R. (1966) “Evolutionary op-

eration: A review,” Technometrics, 8, pp. 389–397.
A survey article: Hahn, Gerald J., Dershowitz, Arthur F. (1974) “Evolutionary

operation today – Some survey results and observations,” Appl Stat, 23 , pp. 214–
218.

A book: Box, G. E. P. and N. R. Draper (1969). Evolutionary Operation, New
York: Wiley.



LECTURE 9

Mixture Designs

1. Design and Analysis of Mixture Experiments

There are many times when the product we are interested in is a mixture. In
other words, we are more interested in the proportions than the total amounts of
the components. In product formulations, examples would be gasoline, soaps or
detergents, beverages, cake mixes, soups, and so on. There are examples in process
engineering, as well. For example, in the production of semiconductor wafers we
might be interested in the proportions of various acids for the acid wash.

The fact that the proportions must add up to one is the key attribute of mixture
designs. Specifically, the settings for various factors must satisfy

xi ≥ 0, for all i∑
i

xi = 1

The design region for mixture proportions is a simplex, a regularly sided figure
of dimenstion k − 1 with k vertices (and usually embedded into a k dimensional
space. For example, with two factors, the simplex is the line segment from (0,1)
to (1,0). With three factors, the simplex would have vertices at (1,0,0), (0,1,0), and
(0,0,1). There is a corresponding simplex coordinate system.
Draw pictures.

We can now consider models for mixture experiments. The usual first order
model is

E(y) = β0 +
∑

βi xi .

However, since
∑

xi = 1 for a mixture model, the βi ’s will not be uniquely de-
termined. We could choose to eliminate one of the xi ’s, but a better approach was
suggested by Scheffé. In the equation above multiply β0 by 1 = ∑

xi to get

E(y) =
∑

(β0 + βi )xi .

Relabeling the βi ’s, we get the following canonical forms.
Linear:

E(y) =
∑

βi xi ,

Quadratic:
E(y) =

∑
βi xi +

∑ ∑
i< j

xi x j ,

c©Steven Buyske and Richard Trout.
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Special Cubic:

E(y) =
∑

βi xi +
∑ ∑

i< j
xi x j +

∑ ∑ ∑
i< j<k

xi x j xk,

Full Cubic:

E(y) =
∑

βi xi+
∑ ∑

i< j
βi j xi x j+

∑ ∑
i< j

δi j xi x j (xi−x j )+
∑ ∑ ∑

i< j<k
xi x j xk .

This last is rarely used. There are many other possible models. We mention just
one, the Draper and St. John model, which can be useful when some of the com-
ponents work well in small amounts (spices, for example, in food products).

E(y) =
∑

βi xi +
∑

νi x
−1
i

E(y) =
∑

βi xi +
∑ ∑

i< j
βi j xi x j +

∑
νi x

−1
i .

The terms in the canonical mixture models have simple interpretations.
Draw pictures.
Geometrically, the parameter β j represents the expected response from a pure mix-
ture with x j = 1 (and all other components zero). The

∑
βi xi term is called the

linear blending term. The quadratic terms should not be thought of as interaction
but instead are called nonlinear blending terms. If βi j is positive, the term is syn-
ergistic, while if it is negative it is called antagonistic.

For constructing an ANOVA table, the usual formulas apply. That is

SST otal =
∑

(yi − ȳ)2

SSReg =
∑

(ŷi − ȳ)2

SSError = (yi − ŷi )
2.

Of course, the first has n − 1 degrees of freedom, the second p − 1, and the last
n − p. The F statistic is, as usual,

F = SSReg/(p − 1)

SSError/(n − p)
,

, while

R2 = SSReg

SST otal
,

and

R2
Ad just = 1 − SSError/(n − p)

SST otal/(n − 1)
,

Let’s look at a simple, though real, example courtesy of Lynne Hare. First, the
data.

Stearine Oil SFI-50F
1 0 14.7

2/3 1/3 17.5
1/3 2/3 24.0
0 1 35.5

First, let’s fit a linear model E(y) = β1x1 + β2x2. The results are



1. DESIGN AND ANALYSIS OF MIXTURE EXPERIMENTS 83

ANOVA
Source df SS MS F
Total 3 256.37 85.46
Model 1 237.36 237.36 24.96
Residual 2 19.01 9.51

R2 = .926
R2

A = .889

Now we will try a quadratic model E(y) = β1x1 +β2x2 +β12x1x2. The results are

ANOVA
Source df SS MS F
Total 3 256.37 85.46
Model 2 256.27 128.14 1281.4
Residual 1 0.10 0.10

R2 = .9996
R2

A = .9988
Additional SS due to curvature = 18.91

F = 189.1
F.05(1, 1) = 161.4

There are a number of standard mixture designs. The first set are known as the
Simplex-Lattice {q, m} designs, due to Scheffé. Here we have q components with
m + 1 equally spaced values from 0 to 1. The Simplex-Lattice Design includes ev-
ery possible combination of these (remembering that

∑
xi = 1). The total number

of points is then (
m + q − 1

m

)
.

For example, here are three 3-component examples: {3, 2}, {3, 3}, and {3, 4}.
Draw picture.

Another popular design is the Simplex-Centroid, also due to Scheffé. This will
consist of 2q − 1 points. There are

• q vertices of the form (1, 0, . . . , 0)

•
(

q
2

)
points of the form (1/2, 1/2, 0, . . . , 0)

•
•
•

(
q
r

)
points of the form (1/r, 1/r, . . . , 0)

• 1 point of the form (1/q, . . . , 1/q).

Here’s the picture for the 4-component example.
For testing lack-of-fit, a popular choice of design is a simplex-centroid with q

added interior points of the form ((q+1)/2q, 1/2q, 1/2q, . . . , 1/2q). These points
are sometimes called “axial check points” Here’s a picture of a 3-component, 10
run design.

As an example, consider measurements of SFI-50 resulting from blends of
stearine, vegetable oil solids.
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Run Stearine Veg. Oil Veg. Oil Solids SFI-50 F
1 1 0 0 4.6
2 0 1 0 35.5
3 0 0 1 55.5
4 1/2 1/2 0 14.4
5 1/2 0 1/2 25.7
6 0 1/2 1/2 46.1
7 1/3 1/3 1/3 27.4
8 2/3 1/6 1/6 14.5
9 1/6 2/3 1/6 32.0
10 1/6 1/6 2/3 42.5

With this data, the x2x3 term is insignificant, giving a model of

y = 4.6x1 + 35.9x2 + 56.0x3 − 21.5x1x2 − 16.6x1x3.

With this model, we get R2
A = .9981, and the ANOVA table looks like

ANOVA
Source df SS MS
Total 9 2250.58
Model 4 2248.02 562.00
Residual 5 2.57 .51

The additional SS due to x1x2 and x1x3 is 37.06, giving an F-statistic of 36.33 and
a p-value of 0.0011.

Although a program like Design-Expert will analyze mixture designs with
aplomb, analyzing the results with SAS is a little tricky. See the code below; the
first proc glm will calculate the estimates correctly, but not the ANOVA, F-test, R2,
and so on (because the no-intercept option does not adjust the SS for the overall
mean); the second proc glm will calculate the ANOVA correctly, but not the esti-
mates of the linear terms, but the additional code will calculate the correct linear
estimates. The data concerns an experiment with fruit juice. One final comment
about data analysis: any residual checking should be done with Studentized resid-
uals, because points in mixture designs can have substantial differences in their
leverage values. (Recall that the Studentized residual ri is given by

ri = yi − ŷi√
σ̂ 2(1 − hii )

,

where hii comes from the hat matrix H = X (X ′ X)−1 X ′.
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options ls=76 ps=62 ;
data;
input dpoint x1 x2 x3 y1 y2 y3;
array ys{3} y1-y3;
do i=1 to 3;
y = ys{i};
output;
end;
keep x1 x2 x3 y;
cards;
1 1 0 0 4.3 4.7 4.8
2 .5 .5 0 6.3 5.8 6.1
3 0 1 0 6.5 6.2 6.1
5 0 0 1 6.9 7 7.4
6 .5 0 .5 6.1 6.5 5.9
7 .34 .33 .33 6 5.8 6.4
8 .72 .14 .14 5.4 5.8 6.6
9 .14 .57 .29 5.7 5 5.6
10 .14 .29 .57 5.2 6.4 6.4
run;

proc glm;
model y=x1 x2 x3 x1*x2 x1*x3 x2*x3 / noint;
run;

proc glm;
model y=x1 x2 x1*x2 x1*x3 x2*x3;
estimate ’beta1’ intercept 1 x1 1;
estimate ’beta2’ intercept 1 x2 1;
estimate ’beta3’ intercept 1;
run;
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One graphical approach to understanding a mixture experiment analysis, be-
sides contour plotting, is to look at response trace plots. These plot the estimated
response along the line from a vertex, through the centroid, to the opposite edge.
One can look at the response trace lines for many variables at once. Any that are
nearly flat indicate inactive components.

For screening designs, Snee and Marquardt (1976) recommend the following
design. For q components, take

• q pure components,
• q interior points, half-way between the vertices and the centroid,
• 1 centroid, and
• q endpoints—all permutations of (0, 1/(q − 1), . . . , 1/(q − 1)),

giving 3q + 1 points altogether. The results can be analyzed by looking at the
response trace plots.

In many mixture situations, there will be constraints. In this case, the entire
simplex cannot be used, and the feasible region will be some polytope. One ap-
proach is called the extreme vertex design. All of the vertices of the polytope are
used, as well as the centroid of the region, and possibly centroids of the various
edges, faces, and so on.

One generally better approach is to use a D-optimal approach. D-optimality
means minimizing the determinant of the X ′ X matrix. We will discuss it in depth
next class. The XVERT algorithm of Snee and Marquardt (1974) is the basis for
many computer implementations of this approach.

Another good approach is the so-called Distance-Based Design. In this case
the algorithm picks points that are spread out uniformly in the feasible region.

A final important aspect of constrained components is the pseudocomponent
approach. We define new components by

x ′
i = xi − ai

1 − ∑
ai

,

where ai is the lower bound of xi . If the feasible region has only lower bounds,
the result is a new, full-size, simplex. If upper bounds are present as well, the new
region will at least be simpler than the old one.

If there are process variables (e.g., temperature, cooking time) involved besides
mixture variables, there are two usual approaches. The first is to transform the q
mixture variables into q − 1 independent variables and then proceed in the usual
way. One typically does this by using ratios of components. That is r1 = x1/x3,
r2 = x2/x3. The second approach is to directly model the mixture components.
The idea is to do a mixture experiment at each point of a factorial design. In any
case, the matter is tricky: there are many terms in the model, the variances and
covariances of the coefficients will be large, and the interpretation of significant
terms can be unclear.

Future research in mixture designs will need to include

• Blocking
• Process Variable Problem
• “Best Design Criteria”
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• Other Model Forms
• Education
• Graphical Display

Reference: J. A. Cornell (1990), Experiments with Mixtures: Designs, Models,
and the Analysis of Mixture Data, 2nd edition, John Wiley & Sons, New York.
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LECTURE 10

Robust Design and Taguchi Methods

1. Robust Design ala Taguchi

G. Taguchi, a Japanese engineer, had a big effect on quality control and exper-
imental design in the 1980s and 1990s.

Let’s begin with the sources of product variation. Some example of the random
influences or “noise,” that affect a product’s characteristics are

1. Manufacturing
• Operator
• raw materials
• machine settings
• environmental

2. Environmental (the customer’s environment)
• temperature
• humidity
• dust
• load

3. Product Deterioration (Aging)

Taguchi suggested that “quality” should be thought of, not as a product being
inside or outside of specifications, but as the variation from the target. Variation
from the target can be broken into two components, production variation, and bias.
Picture

To quantify quality loss, write T for the target value and Y for the measured
value. We want E(Y ) = T . Write L(Y ) for the loss (in dollars, reputation, cus-
tomer satisfaction, . . . ) for deviation of Y from T . A popular choice for the loss
function is

L(Y ) = k(Y − T )2,

where k is some constant. If E(Y ) really is T , then E(L(Y )) = kσ 2, where σ 2 =
Var(Y ).

If the product is off target, so that E(Y ) = T +d, then E(L(Y )) = k(σ 2 +d2).
Now consider the product development stages at which countermeasures against

various sources of variation can be built into the product.

c©Steven Buyske and Richard Trout.

89



90 10. ROBUST DESIGN AND TAGUCHI METHODS

Sources of Variation
Development Environmental Product Manufacturing
Stages Variables Deterioration Variations
Product Design O O O
Process Design X X O
Manufactoring X X O

O—Countermeasures possible
X—Countermeasures impossible

We can think of quality control during manufacturing as on-line quality control,
while quality control efforts during product design and process design are off-line
quality control. There are potentially bigger payoffs from off-line quality control.

Consider the example from Bell Labs. In designing a power circuit which is to
have a target output voltage of 115V.
Draw picture.
Voltage depends on transistor gain nonlinearly. The engineers set the transistor
gain at 350, where the voltage response curve was fairly flat. Then then adjusted
the resistor to return the voltage to the target of 115.

Taguchi recommended a two-step design process, robust design followed by
tolerance design. Robust Design is a technique that reduces variation in a prod-
uct by reducing the sensitivity of the design of the product to sources of variation
rather than by controlling their sources. Tolerance Design is concerned with how
much variation of the design and noise factors is permissible. It is a method for
determining tolerances that minimizes the sum of product manufacturing and life-
time costs. The basic idea is to set tolerances around nominal settingss identified
by parameter design, not by convention.

One must first identifify the control parameters. These are sometimes also
called design parameters. They are the product design characteristics whose nom-
inal settings can be specified by the product designers.

Next, one must state the problem and objectives. It works best to have a session
that includes all the interested parties, and not to work in isolation.

Here are the operational steps for robust design.

1. State your problem and objective.
2. List responses, control parameters, and sources of noise.
3. Plan the experiment.
4. Run experiment and predict improved parameter settings.
5. Run confirmation experiment.

If the objective is not met, then it’s back to step (2). Otherwise, you can adopt the
improved design.

For the response variable, one begins by identifying important measures that
are being targeted. One also wants a numerical representation of variability attrib-
uted to “noise.” It is sometimes called a performance statistic. Two commonly
used measures are

− log(s2),
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where s2 is the sample variance, and

log(mean2/s2).

In general, the higher the performance measure the better.
Because of the need to estimate s2, we are led to designs with two aspects.

First one creates a design with design parameters, called by Taguichi the Inner
Array. Then one creates the array of noise factors, called by Taguichi the Outer
Array. Thus for each setting in the design matrix, one runs one run for each setting
in the noise matrix. The measurements of the performance characteristic are then
grouped to give the performance statistic for that run of the design matrix.

The Inner Array is generally a nearly-saturated array, usually a fractional fac-
torial or Plackett-Burman design. The same kind of designs are used for for the
Outer Array.

In the analysis, we’ll look for factors that affect the targeted response only,
those that affect variability only, those that affect both, and those that affect neither.

Let’s consider an example from Bell Labs. The first step in silicon wafer fab-
rication is the growth of a smooth epitaxial layer onto a polished silicon wafer.
The epitaxial layer is deposited on wafers while they are mounted on a rotating
spindle called a susceptor. The problem: high drop-out rate caused by deviation in
thickness, both between and within wafers, from the target value of 14.5 microns.
Objective: reduce nonuniformity of epitaxial layer, and keep average thickness
close to 14.5 microns. List responses: Epitaxial thickness, with a target value of
14.5 microns, a current average of 14.5, and a current std dev of 0.4. Control
parameters: susceoptor rotation direction, arsenic flow rate, deposition time, noz-
zle position, and deposition temperature. List noise: uneven temperature in Bell
Jar, nonuniform vapor concentration, nonuniform vapor composition, deviation in
control parameter settings.

After settling on a 25−2 factorial for the control variables, the experimenters
placed four wafers with five sampling points each in the susceptor. In this wasy,
they got a total of 20 measurements of epitaxial thickness, using the same plan for
every run.

For each run, they calculated the mean, the variance, and the “robustness sta-
tistics,” namely − log(variance/mean2). The results were

Run Rot Dir As flow rate dep temp dep time nozzle mean robustness stat
1 clock 55 1210 low 2 13.860 2.780
2 clock 55 1210 high 6 14.888 3.545
3 clock 59 1220 low 6 14.037 3.725
4 clock 59 1220 high 2 14.757 2.665
5 osci 55 1220 low 6 13.914 3.149
6 osci 55 1220 high 2 14.415 2.631
7 osci 59 1210 low 2 13.972 2.637
8 osci 59 1210 high 6 14.878 2.961

A larger robustness statistic corresponds to improved performance.

Draw pictures.
There are a number of issues that go into the choice of experimental design.

These include
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1. Number of levels of factors
2. Number of factors
3. Factor Interactions
4. Modeling versus Pick the Winner

The experimental designs commonly used include

1. Orthogonal Arrays
2. Plackett-Burman Designs
3. Fractional factorials
4. Response surface designs

Incidentally, the phrase Taguchi Methods is a trademark held by the Ameri-
can Supplier Institute. It encompasses all work due to Taguchi including quality
engineering methods such as

1. Parameter Design
2. Tolerance Design
3. On-line quality control
4. The loss function
5. Signal-to-noise ratio

According to the ASI, if an experiment adheres to the following guidelines
then it is a Taguchi experiment:

1. Best selection of quality characteristics (go/no go is not good).
2. Maximum possible number of control factors.
3. Comparison of existing conditions with predicted optimum
4. Use of signal-to-noise ratios.
5. Use of loss function.
6. Minimum interactions among control factors.
7. Control factors and noise factors separated.
8. Use of orthogonal arrays.

Strong Points of Taguchi Methods

1. Think about quality regarding closeness to target, not specification limits.
• target
• loss function

2. Transmission of error.
3. Analyze variation in addition to location.

Issues of Concern about Taguchi Methods and Taguchi Experiments

1. Blind use of orthogonal arrays.
2. No regard for interactions.
3. “Analysis” leads toward “pick-the-winner” rather than modeling.
4. Signal-to-noise ratio.

Summary

1. Examine both target and variability.
2. Find settings of factors to reduce sensitivity of product to fluctuations in

noise parameters.
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3. Use experimental design to determine factors that influence variability at
target settings.

4. Attention needs to be paid to interactions.
5. Additional attention needs to be given to the interactive nature of experi-

mentation.
6. Additional analysis should be placed on modeling system.

2. Improving Robust Design from a statistical point of view

2.1. Experimental Designs. Although the designs for the inner array and the
outer array are economical individually, when they are crossed together they are
not as economic.

For example, consider the crossed array when control factors A, B, C, in a
23−1 crossed with another 23−1 using D, E, and F in the outer array. The sixteen
observations end up with one degree of freedom each for: A, B, C, D, E, F, AD,
AE, AF, BD, BE, BF, CD, CE, CF. In other words, all the degrees of freedom go
to main effects and noise × control interactions. These interactions are crucial, but
interactions among the control variables may be just as crucial.

We would like a design to allow estimability of a reasonable model in both
control and noise variables. To do that, we must first specify a reasonable model.

If we write x for the control variables and their settings, and z for the noise
variables, then we might consider the response surface model

y(x, z) = β0 + x ′β + x ′ Bx + z′γ + x ′�z + ε.

Notice that noise×noise interactions are left out here.
We could use a crossed design for this model, but we could also use a “com-

bined array,” chosen specifically for this sort of model. The designs generally offer
the concept of mixed resolution. For example, suppose there are three control fac-
tors A, B, C and three noise factors D, E, F. The usual design would be a crossed
array

23−1
I I I × 23−1

I I I

with a total of 16 runs. We could view this as a single array with defining relations
I = ABC = DE F = ABC DE F . A better alternative with the same number
of runs would be a 26−2 factorial with defining relations I = ABC D = DE F =
ABC DE . This is resolution III for noise×noise interactions and resolution IV for
other interactions.

For a second order example, consider suppose we have 3 control variables and
2 noise variables. The crossed array might be a 1/3 fraction of a 33 and the noise
array a 22, giving a total of 36 runs. A CCD with a 25−1, axial points in the control
variables, and nc center runs will total 22 + nc runs.

2.2. Analysis. Taguchi’s signal-to-noise approach, although easy to under-
stand, is really sub-optimal. Modeling both the mean response and variance di-
rectly seems a much better idea. One can do this by:

1. Modeling the response as a function of control and noise variables, and then
calculating the variance function from that, or
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2. Take advantage of the crossed design, to calculate the variance at each con-
trol variable design point, and then simultaneously model the mean response
and the variance. A classic paper by Bartlett and Kendall in 1946 suggests
that using a log-linear model of the form

log s2
i = x ′

iγ + ε,

will have approximately normal errors with constant variance.

Returning to the first point, from the given model the expected response, with
the expectation taken over the distribution of the noise parameters, is

E(y(x, z)) = β0 + x ′β + x ′ Bx .

The variance is

Var(y(x, z)) = Var(z′γ + x ′�z) + σ 2 = σ 2
z (γ ′ + x ′�)(γ + �′x) + σ 2).

Note that (γ ′ + x ′�) = ∂y/∂z.
The text covers this point and many others quite thoroughly in Chapter 10.



LECTURE 11

Optimal Design

The issue of how to optimally design experiments has been around for a lont
time, extending back to at least 1918 (Smith).

Before we start discussing the highlights of this topic we need to set up the
problem. Note that we are going to set it up for the types of situations that we have
enountered, although in fact the problem can be set up in more general ways.

We will define X (n×p) as our design matrix, β(p×1) our vector of regression
parameters, y(n×1) our vector of observations, and ε(n×1) our error vector giving

y = Xβ + ε.

We assume ε will be iid with mean zero and Cov(ε) = σ 2 I . As before, we have

β̂ = (X ′ X)−1 X ′y

Var(β̂) = σ 2(X ′ X)−1

ŷx = x β̂

Var(ŷx) = σ 2x(X ′ X)−1x ′.

The design problem consists of selecting row vectors x (1×p), i = 1, 2, . . . , n
from the design space X such that the design defined by these n vectors is, in some
defined sense, optimal. We are assuming that n is fixed. By and large, solutions
to this problem consist of developing some sensible criterion based on the above
model and using it to obtain optimal designs.

One of the first to state a criterion and obtain optimal designs for regression
problems was Smith(1918). The criterion she proposed was: minimize the maxi-
mum variance of any predicted value (obtained by using the regression function)
over the experimental space. I.e.,

min
xi ,i=1,...,n

max
x∈X

Var(ŷx).

This criterion was later called global, or G-optimality by Kiefer and Wolfowitz
(1959).

A second criterion, proposed by Wald (1943), puts the emphasis on the quality
of the parameter estimates. The criterion is to maximize the determinant of X ′ X .
That is

max
xi ,i=1,...,n

|X ′ X |.

c©Steven Buyske and Richard Trout.
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This was called D-optimality by Kiefer and Wolfowitz (1959). Comment on con-
fidence ellipsoids: the determinant is the product of the eigenvalues, which is in-
versely proportional to the product of the axes of the confidence ellipsoid around
β̂, so maximizing |X ′ X | is equivalent to minimizing the volume of the confidence
ellipsoid.

In their General Equivalence Theorem, the equivalence of D and G optimality
was established under certain conditions (to be discussed shortly).

While these criteria are the ones which have received the most attention in the
literature, others have also been used. For example, so called A-optimality,

min
xi ,i=1,...,n

trace(X ′ X−1),

minimizes the average variance of the parameter estimates (Chernoff, 1953). An-
other criterion, E-optimality, finds the design which maximizes the minimum eigen-
value of X ′ X (Ehrenfeld, 1955). A conceptually attractive criterion is called V -
optimality (sometimes I V -optimality or Q-optimality). Here the criterion is to
minimize the integrated prediction variance over the region of interest.

Of all these designs, only D-optimality is invariant under reparametrization.
Since D and G optimality are the criteria receiving the most attention in the

applied literature, we will have a more detailed discussion of these criteria. Before
doing so, we need to make a distinction between what is called the exact theory
and the approximate theory. Suppose you had a problem involving maximizing
a function over the integers. Standard calculus techniques don’t apply. A com-
mon technique would be to extend the function definition to the real numbers, use
calculus to find the number where the maximum occurs, and then argue that the
maximum over the integers will occur at an adjacent integer. The analogous design
problem distinguishes the exact theory (like the integers) from the easier approxi-
mate theory (like the reals).

All of the design criteria just discussed have the property that

φ(aX ′ X) = positive constant × φ(X ′ X),

so a design that maximizes φ(aX ′ X) also maximizes φ(X ′ X). Suppose that we
have an n-point design with ni observations at xi , so that

∑
ni = n. This. or any,

design can be viewed as a measure ξ on the design space X . Let ξ be a probability
measure on X such that

• ξ(xi ) = 0 if there are to be no observations at xi , and
• ξ(xi ) = ni/n if there are to be ni > 0 observations at xi .

For a discrete n-point design ξ takes on values which are multiples of 1/n, and
defines an exact design on X .

If we remove the restriction that ξ be a multiple of 1/n, we can extend this
idea to a design measure which satisfies

ξ(x) ≥ 0, x ∈ X∫
X

ξ(dx) = 1.
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Now let

mi j (ξ) =
∫
X

xi x jξ(dx), for all i, j = 1, . . . , p,

where mi j (ξ) is the i j element of the matrix M(ξ). Note, for an exact design (this
is called the moment matrix),

M(ξ) = 1

n
X ′ X.

Similarly, a normalized generalization relating to Var(ŷx) is

d(x, ξ) = x(M(ξ))−1x ′,

again for an exact design

d = d(x, ξ) = nx(X ′ X)−1x ′.

Using this notation we have the following definitions,

• ξ ∗ is D-optimal if and only if M(ξ ∗) is nonsingular and

max
ξ

|M(ξ)| = |M(ξ ∗)|.

• ξ ∗ is G-optimal if and only if

min
ξ

max
x∈X

d(x, ξ) = max
x∈X

d(x, ξ ∗).

It turns out that a sufficient condition for ξ ∗ to satisfy the G-optimality criterion is

max
x∈X

d(x, ξ ∗) = p,

where p is the dimension of M(ξ ∗), or equivalently, the number of parameters in
the model. To see that p is a lower bound for max d(x, ξ), consider

p = traceM M−1

= 1

n
traceX ′ X M−1

= 1

n

∑
i

trace(xt
i xi )M−1

=
∑

i

trace(xi M−1xt
i )

≤ max
x∈X

x M−1xt

How would one show that a specific design is the best there is? The key is to
look at the derivative. For a given design M and a given optimality criterion φ to
maximize, like log det, the Fréchet derivative is defined as

Fφ(M, xt x) = lim
ε→0+

1

ε

[
φ

(
(1 − ε)M + εxt x

) − φ(M)
]
.

For example, let’s consider D-optimality. We want to maximize the determinant of
M . This is equivalent to maximizing the log of the determinant of M . The function
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φ = log det has the advantage that it is convex on the space of information matrices
M , so that a local maximum will in fact be a global maximum. At any rate

Fφ(M, xt x) = lim
ε→0+

1

ε

[
φ

(
(1 − ε)M + εxt x

) − φ(M)
]

= lim
ε→0+

1

ε

[
log det

(
(1 − ε)M + εxt x

) − log det(M)
]

= lim
ε→0+

1

ε

[
log

det
(
(1 − ε)M + εxt x

)
det M

]

= lim
ε→0+

1

ε

[
log det

(
(1 − ε)I + εxt x M−1

)]
= lim

ε→0+
1

ε

[
log(1 − ε)p det

(
I + ε

(1 − ε)
xt x M−1

)]

= lim
ε→0+

1

ε

[
log(1 − ε)p

(
1 + ε

(1 − ε)
trace(xt x M−1) + O(ε2)

)]

= lim
ε→0+

1

ε

[
log(1 − ε)p + log

(
1 + ε

(1 − ε)
trace(xt x M−1) + O(ε2)

)]

= lim
ε→0+

1

ε

[
p log(1 − ε) + ε

(1 − ε)
trace(xt x M−1) + O(ε2)

]
= xt M−1x − p.

(Remember that log(1 + t) = t + O(t2).)
Why have we only considered the derivative of M in the direction of a matrix of

the form xt x and not something more general? As a consequence of Carathéodory’s
Theorem, every element of the design space can be expressed as a convex combi-
nation of no more than p(p + 1)/2 + 1 elements of the form xt x .

Finally, the equivalence of D- and G-optimality is established in the General
Equivalence Theorem of Kiefer and Wolfowitz. The General Equivalence Theo-
rem says: If φ is concave on M, the space of design information matrices, and
differentiable at M(ξ ∗), then the following are equivalent

1. The measure ξ ∗ is φ-optimal

2. The Fréchet derivative Fφ(M(ξ ∗), xt x) ≤ 0 for all x ∈ X .
3. The following equality holds

max
x∈X

Fφ(M(ξ ∗), xt x) = min
ξ

max
x∈X

Fφ(M(ξ), xt x).

This last is what gives the equality of D-and G-optimality.
The implication of this result is that we can use the sufficient condition for

G-optimality to verify whether or not a specific design is D-optimal. That is, if

max
x∈X

d(x, ξ ∗) = p,

where as before p is the number of parameters in the the model, including the
intercept, then the design is D-optimal.
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Note that D-optimality is essentially a parameter estimation criterion, whereas
G-optimality is a response estimation criterion. The Equivalence Theorem says
that these two design criteria are identical when the design is expressed as a mea-
sure on X .

Note that when dealing with exact designs the equivalence of the two criteria
does not hold.

In practice, the design problem consists of selecting an exact design to define
the experimental runs. The design measure that we just discussed gives us an
approximate design.

Measure designs are of interest primarily because the D-optimal measure de-
sign provides the reference against which exact designs can be evaluated, and also
because the points in an optimal exact design will often correspond to the points of
support (points of positive measure) of the D-optimal measure design.

For the practical problem we will let ξ be an n-point design. The moment
matrix

M(ξ) = 1

n
X ′ X

and

|M(ξ)| = 1

n p
|X ′ X |.

Again a normalized measure of the variance of the prediction at x is

d = x(M(ξ))−1x ′ = nx(X ′ X)−1x ′.

Note, with our usual assumption,

Var(ŷx) = 1

n
σ 2d.

The values of |M(ξ)| and d give an indication of the information per point for
a design, so designs having differing numbers of points can be compared. Then
designs can be compared based on their D- and G-efficiencies.

For a given design, call it ξ ′, define the D-efficiency to be[ |M(ξ ′)|
maxξ |M(ξ)|

] 1
p

.

Similarly, G-efficiency is defined as

p

maxx∈X d(x, ξ)
= p

nd
.

One should note that for finite designs, especially small ones, the efficiency is likely
to be quite a bit less than 1.

Now let’s briefly consider a few examples of D-optimal designs. First note in
the above presentation, that two pieces of information must be supplied prior to
obtaining an optimal design. These are:

1. model to be used
2. Number of data points
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We could also, as Kiefer did, talk about the location of points and proportion of
points at that location, rather than the number of points, but that is not the usual
practice in designing experiments.

Some examples:

1. Consider the model

E(y) = β0 +
∑

βi xi +
∑ ∑

i≤ j
βi j xi x j + β123x1x2x3,

with i, j, k = 1, 2, 3, so p = 8. Consider all possible designs with eight
points (so n = 8) with the restriction

|xi | ≤ 1.

It can be shown that, for fixed diagonal terms, |X ′ X | is largest when all off-
diagonal terms are zero. This can be achieved by adopting a 23 design with
points (±a, ±a, ±a) with |a| ≤ 1. For this design it can be shown that

|X ′ X | = n pa2(3+3·2+3) = 88a24.

Clearly this is maximized if |a| = 1. That, in turn, implies that the optimal
design is 23 with a = ±1. Also notice that d = nx(X ′ X)−1x ′ = 8 = p.

2.
E(y) = β0 + β1x1 + β2x2 + β3x3.

Here p = 4, n = 4. Using the same type of argument as in example 1, the
optimum design is 23−1 with I = 123.

3.

E(y) = β0+β1x1+β2x2+β11x2
1+β22x2

2+β12x1x2+β112x2
1 x2+β122x1x2

2+β1122x2
1 x2

2 .

Here p = 9 and n = 9. The optimal design is the 32 factorial with levels
(-1,0,1).

4.
E(y) = β0 + β1x1 + β2x2 + β11x2

1 + β22x2
2 + β12x1x2,

the full second-order model in two variables. Here p = 6 and suppose
n = 6. The optimal design is

x1 x2

-1 -1
1 -1

-1 1
−α −α

1 3α

3α 1

where α = 0.1315. These designs may be rotated by 90o or a multiple of
that.

5. Using the same model with n = 9 the optimal design is 32.
6. Using a full second-order model and the number of points for a central

composite for p ≥ 2, the D-optimal design places 2p points at ±1 and the
star points are placed on the face of the hypercube.
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Note that in the last two designs, the design space was a hypercube, not a hyper-
sphere.

A theory, no matter how beautiful, won’t be used much in practice if it’s not
practical. For optimal designs, this comes down to a question of having algorithms
to find optimal designs. These were first worked out for D-optimality in the early
1970s. The basic idea is quite simple. Suppose you have a design with information
matrix Mn . Find xn+1 to maximize F(Mnxxt). Unless Mn is optimal, this value
will be positive, and you can increase the design criterion measure by moving from
Mn in the direction of xn+1xt

n+1. Thus for some αn+1 we define a new measure by

ηn+1 = (1 − αn+1)ηn + αn+1ηn+1,

with corresponding information matrix

Mn+1 = (1 − αn+1)Mn + αn+1xn+1xt
n+1.

The step-length αn can either be chosen to maximize the criterion along that ray, as
was done by Federov (1972), or as a sequence converging to zero but with divergent
partial sums, as was done by Wynn (1970).

In particular, for D-optimality,

F(M, xxt) = xt M−1x − p.

Writing dn = xt M−1
n x and d̄n = max xt M−1

n x = xt
n+1 M−1

n xn+1, the optimal step-
size turns out to be

αn+1 = d̄n − p

p(d̄n − 1)
.

Further comments on algorithms.
SAS has proc optex to generate optimal designs. Typically one gives it a

set of candidate points and a model. For example, suppose you’ve done a resolution
IV fractional factorial design on seven factors. You’d like to augment the design so
that you can estimate all two-factor interactions. First generate a set of candidate
points:

proc factex;
factors x1-x7;
output out=can;
run;

and now the resolution IV design:

proc factex;
factors x1-x7;
model resolution=4;
size design=min;
output out=aug;
run;

Finally, find the augmented design totalling 30 points, according to the D-optimality
criterion:
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proc optex data=can
model x1|x2|x3|x4|x5|x6|x7@2;
generate n=30 augment=aug;
output out=design;
run;

You will note that the criteria, and therefore the optimal designs that are de-
veloped, are model dependent. A question that arises is how well do these designs
perform if the model is incorrect. We discussed that earlier in the lecture about bias
and variance.

In fact, when using a computer to find an optimal design, one should always
keep in mind that

1. The designs are model dependent, and may not be particularly good for
other models.

2. Exact designs for D-optimality do not address prediction variance; the equiv-
alence of D- and G-optimality does not hold for exact designs.

3. D-optimal designs do not allow for many center runs.

In general, for a situation that can be handled with a Central Composite Design or
Box-Behnken, those are better designs in an overall sense. Nonetheless, computer-
aided optimal designs can be invaluable for

1. Mixture designs
2. Constrained designs
3. Trying to salvage a “botched” experiment

References Although the literature on optimality is vast (over 600 articles), I’ll
stick to three books, in increasing order of difficulty:
A. C. Atkinson and A. N. Donev, Optimum Experimental Designs, Oxford Univer-
sity Press, 1992.
S. D. Silvey, Optimal Design, Chapman and Hall, 1980. (Just 86 pages but unfor-
tunately out of print.)
F. Pukelsheim, Optimal Design of Experiments, Chapman and Hall, 1995.



LECTURE 12

Computer Experiments

The advent of computers has had a profound effect on the design of experi-
ments. Most obviously, it is enormously easier to analyze an experiment. Subjects
like the theory of optimal designs (e.g. D-optimal designs) didn’t spread beyond
journal articles until computer algorithms became available. In the last twenty
years, the arrow has also gone the other way as statisticians have looked at experi-
ments done on computers, as opposed to the physical world.

Physical phenomena in science and engineering are widely simulated on com-
puters. Computers are used to model the flow of air over aircraft wings, behaviour
of metal structures under stress, nuclear reactor safety, and many other situations.
Probably the most important is the simulation of semiconductors. A process simu-
lator simulates taking unprocessed silicon through the steps of oxidation, etching,
and ion injection. A device simulator begins with the description of a semicon-
ductor device and simulates current flowing through it under varying conditions.
A circuit simulator begins with a list of such devices and their arrangement and
simulates the properties of the circuit as a whole.

In all these simulations, some variables are specified by the user. Given those
variable settings, the results are fixed. That is, there is no random variation in the
response. The number of variables can vary from under a dozen to several hundred.
The number of response variables is generally greater than one, and the time for
one run of the simulation can vary from milliseconds on a PC to several hours on a
supercomputer.

There are a variety of possible goals in computer experiments.

1. Finding a good value of X according to some criterion of Y,
2. Finding a simple approximation f̂ that is accurate enough in the region of

interest, but is far easier to calculate or understand,
3. Estimating the size of the error f̂ (X0) − f (X0),
4. Sensitivity of Y with respect to changes in X,
5. Finding which components of X are most important for each component of

the response Y,
6. Visualizing f ,
7. Uncovering bugs in the simulation.

As to (1), standard optimization methods (quasi-Newton or conjugate gradi-
ents) work well if one needs the precise optimum and has a good starting value,
but computer experiments can be useful is searching for a good starting place, or if

c©Steven Buyske
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one is looking for widely separated regions of the design space that might all have
good response values.

For convenience we will assume that every design variable is continuous and
runs from 0 to 1.

There are two approaches to the subject, Bayesian and frequentist. The Bayesian
approach is elegant and well developed. The disadvantage is computation: with n
runs, one must solve n equations in n unknowns. Thus the effort grows as n3.
Thus if one needs an hour for the computer simulations and one minute to solve
the equations, and then decides on increasing n by a factor of 24, one will need one
day for the simulations and 9.6 days for the equations.

1. The Bayesian Approach

The usual approach is the Kriging model. Here we consider

Y (x) =
k∑

j=1

β j h j (x) + Z(x),

where the h j are known fixed functions, the β j are unknown coefficients to be
estimated, and Z is a random function with 0 expectation and covariance dependent
on the separation of the two design points:

Cov(Z(xi ), Z(x j )) = σ 2 R(x j − xi ).

Typical choices for R include R(d) = exp(−θ |d|), R(d) = exp(−θ |D|q) (called
Gaussian when q = 2, and a cubic in |d|. Obviously the choice of R has a big
effect on the conclusions.

At any rate, given all responses yD over a design, we can consider the predictor

ŷ(x0) = λ′(x0)yD.

What predictor of this form does best? It is not to difficult to find the Best Linear
Unbiased Predictor, but I will omit it here. It has two terms, a generalized least
squares predictor for the point x0, and a term that pulls the response surface through
the observed points.

As for a choice of experimental design, we are in the unusual position of having
no random error, only bias, to consider. There are four standard design criteria:

1. Entropy, namely maximize the expected information, or in the Gaussian
case, maximize the determinant of the variance of YD

2. Mean squared error
3. Minimax, minimize the maximum distance to a design point
4. Maximin, maximize the minimum distance between any two design points.

Entropy designs tend to spread the points out in the design space and the favor
the boundaries over the interior. Mean squared designs favor the interior and tend
to clump when projected onto lower dimensions.
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2. The frequentist approach

Here we model Y as
Y = f (X) ≈ Z(X)β.,

where Z(X) is a row vector of predictor functions and β is a vector of parameters.
Z might be made out of low-order polynomials, trig polynomials, wavelets, or
other functions suitable to the application. The usual way criterion for estimating
β is to minimize the mean squared error of the approximation with respect to some
distribution on the design space.

If we pick the functions to be orthogonal and assume a uniform distribution on
the design space, then

β̂ = 1

n

∑
Z(xi )

′ f (xi ).

Here computations grow at a rate of n2, so in the earlier example, when the simu-
lations take a day, the estimate of β̂ takes 9.6 hours. The variance of β̂ is

1

n
Var(Z(X)′Y (X)).

A good design will allow good quality numerical integration and allow good esti-
mation of the sampling variance. Iid sampling, for example, makes variance esti-
mation easier but reduces the accuracy of the numerical integration. There is also
an issue of getting points into corners of the design space so that important features
are not missed.

One approach is to use a regular grid, say k values for each component of X .
This grows rather quickly, and the grid is poor for variance estimation. One could
instead pick “good lattice points,” perhaps with some random perturbations These
work quite well for smooth periodic functions.

Latin hypercubes are the predominant frequentist design. The design points
are determined by

X j
i = π j (i) − U i

j

n
,

where π j are uniform random permutations of the integers 1 through n, and U j
i

are iid U [0, 1]. Sometimes U i
j is just set to 0.5. At any rate, the sample points are

stratified on each of the input variable axes. This stratification reduces the variance
of the estimated integrals. A related approach is to use

X j
i = π j (A j

i ) − U i
j

n
,

where A j
i is an element of an orthogonal array.

A good reference (from which this lecture was drawn) is
J. B. Koehler and A. B. Owen, “Computer Experiments,” in Handbook of Statistics,
Vol 13, S. Ghosh and C. R. Rao, eds., Elsevier Science B. V., 1996.
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LECTURE 13

Gene Expression Arrays

1. Introduction

Microarrays are used by biologists to study what genes are expressed in certain
tissue. The array consists of samples of DNA of known sequence spotted onto a
glass slide. Purified mRNA from the tissue under study is converted into cDNA
and tagged with red or green flourescent dye, which is then washed across the
slide. Strands of cDNA that match the spots binds, while other cDNA washes off.
The red and green intensities from a spot indicate the relative abundance of the
mRNA in the original tissue samples; the more mRNA, the more gene expression.

Microarrays are a hot new tool in biology. The analysis of the data from them
has aroused a lot of interest from statisticians. Experimental design using microar-
rays is also an interesting problem, but one which has attracted considerably less
interest, with the notable exception of Gary Churchill at Jackson Labs.

There are a variety of factors of interest in a microarray experiment: varieties
(V), whether tumor versus non-tumor tissue, the tissue over time, the tissue ex-
posed to a drug, and so on; the genes (G), corresponding to the spots on the array;
the dyes (D), meaning red versus green, and the arrays (A), since quality control of
microarrays is far from perfect.

There are a number of two-way interactions of interest. First, the dyes are
bound to the cDNA in separate runs. Differences could result in a DV interaction.
The same gene on different arrays can have different amounts of cDNA, giving an
AG interaction. Occasionally one sees specific genes bind better to one dye than
the other, yielding a DG effect. Finally, the interaction of biological interest is the
variety by gene, VG, interaction.

2. Designs

The most common design is the so-called “reference” design. One dye is the
reference variety, the other dye is used for the varieties of interest. Observe that
V is confounded with G, meaning VG is confounded with DG. Note also that the
reference variety parameters are the best estimated.

With v varieties in addition to the reference, and n genes, one will have 2vn
observations. The mean, A, V, and G account for 2v + (n − 1) degrees of freedom.
VG has v(n − 1) degrees of freedom. The final (v − 1)(n − 1) degrees of freedom
go to the AG interaction (or if AG is ignored, they go to error).

c©Steven Buyske and Richard Trout.
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An alternative is a called a “loop” design. With the same number of arrays
as the reference design, the loop gives twice as much information on the non-
reference varieties, and varieties are balanced with respec to dyes. That is, VG is
unconfounded with DG.

With a loop design, after all factor main effects plus VG and AG interactions,
there are n − 1 degrees of freedom left for error.

3. Model

A classic ANOVA model for microarray data might be

yi jkg = µ + Ai + D j + Vk + Gg + (V G)kg + (AG)ig + εi jkg.

(Adding a (DG) jg term is also possible.) There’s really only one type of contrast
of interest: (V G)k1g − (V G)k2g. That suggests using an optimality criterion of
minimizing the average variance of

∑
Var (̂V G)k1g − (̂V G)k2g

Reference: M. K. Kerr and G. A. Churchill, “Experimental Design for Gene
Expression Microarrays,” Biostatistics 2, 2001, 183–201.



LECTURE 14

Miscellany

1. Errors in design parameters

Even in the lab, in can be difficult to precisely control the levels of the various
design parameters. What is the impact of errors of control of design levels? The
answer depends on the structure of the errror. Probably the most common instance
is when the experimenter decides on a level which is ostensibly used. That exact
level is used for the analysis. The actual level from the process’s point of view
is unknown (Myers and Montgomery, on whom this section is heavily drawn, call
this the “fixed design level” case.

The deviation between the actual and planned level is a random variable. For
the u-th run of the i th design variable we have

w ju = x ju + e ju,

where w ju is the actual level, x ju is the planned level, and e ju is the error in control,
not to be confused with ε, the usual error in y. The usual assumption is that

E(e ju) = 0

Var(e ju) = σ 2
j

Let us first consider a first order model. The model is

y = β0 + β1w1 + β2w2 + · · · + βkwk + ε

= β0 + β1(x1 + e1) + β2(x2 + e2) + · · · + βk(xk + ek) + ε

= β0 +
∑

β j x j + (ε +
∑

β jθ j )

= β0 +
∑

β j x j + ε∗.

Thus we can think of just having a larger error term. If we use this last equation,
and estimate parameters using least squares, we’ll have the following

1. The regression coefficients are unbiased.
2. The covariance matrix of b̂ = (X ′ X)−1 X ′y is (X ′ X)−1σ ∗2, where σ ∗2 =

σ 2 + ∑
β2

j σ
2
j (assuming the θ j are independent.

3. Standard response surface methods, such as screening, steepest ascent, and
modeling, remain valid, although if the β j are large they may be less effec-
tive.

c©Steven Buyske and Richard Trout.
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Now consider a second order model. We have

y = β0 +
∑

β jw j +
∑

β j jw
2
j +

∑ ∑
βi jwiw j + ε

= β0 +
∑

β j (x j + e j ) +
∑

β j j (x j + e j )
2 +

∑ ∑
βi j (xi + ei )(x j + e j ) + ε

= β0 +
∑

β j x j +
∑

β j j x
2
j +

∑ ∑
βi j xi x j

+ (
ε +

∑
β j e j +

∑
β j j e j (2x j + e j ) +

∑ ∑
βi j (ei x j + xi e j + ei e j )

)
= β0 +

∑
β j x j +

∑
β j j x

2
j +

∑ ∑
βi j xi x j + ε∗.

Clearly ε∗ is more complicated than in the linear model. First,

E(ε∗) =
∑

β j jσ
2.

Note that this doesn’t depend on x j . Thus the bias affects only the β0 term.
Before looking at the variance, we rewrite ε∗ as

ε∗ = ε +
∑ ∑

i �= j
e jβi j x j +

∑ ∑
βi j ei e j∑

e jβ j + 2
∑

β j j e j x j +
∑

β j j e
2
j .

Clearly,

1. The error variance is inflated, just as in the linear case
2. The error variance is no longer homogeneous, but depends on the design

levels.

For further reference, see the article by Box (1963) in Technometrics, or for a
more general discussion of measurement error, the book by Fuller or Carrol and
Rupert.

2. Split Plots

Our designs and analyses have been based on completely randomized run or-
ders. Sometimes, or even often, doing so is hard or impossible. For example, if
one of the factors is oven temperature, most experimenters would want to fix the
oven temperature, vary all the other factors, bake a batch, change the temperature,
and so on. Indeed, Taguchi designs are often run with fixed control settings and
varying environmental settings.

Designs with such hard to change factors can be run as “split plots.” (Blocks
might be a better term, but we already used that. The term “split plot” comes from
agriculture.) A split plot design traditionally has a factorial structure, but with
two different experimental units called whole plots and subplots. These two units
require different randomization and analysis. The difficult to change factor has
levels randomly assigned to whole plots. For each whole plot, the easier to change
factor levels are then randomly assigned to subplots. Suppose oven temperature
(T) is difficult to change and concentration (C) is easy to change, and that both
have two levels. Think of each replication of the design as looking like
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Whole Plot 1 Whole Plot 2
T, C T,C
-,- +,-
-,+ +,+

Clearly temperature is confounded with blocks. If this design were replicated r
times, then the ANOVA table is

Source df
Replications r-1
Temperature 1
Temperature×replication r-1 (whole plot error)
Concentration 1
Concentration×Temperature 1
Concentration×replications r-1
Concentration×temperature×replication r-1
Total 4r-1

The last two components in the table are together known as the subplot error.
Notice that

1. There are more degrees of freedom for estimating the subplot effects than
for the whole plot effects, so any tests on subplot effects will be more effi-
cient.

2. We could think of the subplot levels as a secondary replicated randomized
design

Notice that if we ignored the randomization scheme we would have the follow-
ing ANOVA table

Source df
Temperature 1
Concentration 1
Temperature×Concentration 1
Error 4(r-1)
hline Total 4r -1

Now consider a general situation with hard to change variables z1, z2, . . . and
more standard variables x1, x2, . . . , and the randomization has been done with a
split plot structure. This requires all combinations of the whole plot factors to
be crossed with the same combination of the subplot factors. An example would
be a complete factorial. Say there are a unique combinations of the z’s, and b
combinations of the x’s. The z-combinations are randomly assigned. Next, for
each z-combination, the x-combinations are randomly assigned. For example, if
we have a single z-factor, denoted with A, and three x-factors, denoted with B, C,
D, the split plot structure would look like
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(1) a
b ab
c ac
bc abc
d ad
bd abd
cd acd
bcd abcd

The general model is then

yi j = β0 + γ ′z j + β ′xi j + z′
i Bzz j + x ′

i j Bx xi j + z′
i�xi j + δi + εi j ,

where δi ∼ N (0, σ 2
δ ) and εi j ∼ N (0, σ 2).

Unfortunately, replication is a luxury in industrial experiments, so split plot
designs are problematic. For example, two observations from the same whole plot
share a common error component, and so have covariance σ 2

δ . In fact, the block of
the covariance matrix corresponding to one whole plot has σ 2 +σ 2

δ on the diagonal
and σ 2

δ on the off-diagonal, while the covariance across whole plots is zero. Param-
eter estimation in this situation depends on using “generalized least squares.” This
in turn requires estimation of σ 2 and σ 2

δ . For similar reasons, half- or full-normal
plots for screening should be done separately for whole- and sub-plot effects. On
the other hand, in Taguchi style experiments, one usually just wants the variance at
each control-factor design point, so these issues don’t really matter.

Box and Jones (1992), J. Appl Stat, Lucas and Ju (1992) it ASQC Quality
Congress Trans., and Letsinger et al. (1996) J. Qual Tech are the only discussions
of these issues that I know of.

3. Qualitative factors

Intro
Let us start with two levels of the qualitative factor. Qualitative factors are

usually modeled with dummy variables. While one could use 0 and 1 for the factor
levels, using -1 and 1 is consistent with our prior usage. As long as all qualitative
factors have two levels, for first order designs it doesn’t matter how many qualita-
tive factors there are: fractional factorial designs work just dandy.

As an example, consider an extraction process in which the factors are time,
temperature, and type of solvent. Solvents A and B are used, coded -1 and 1,
respectively. The fitted first order model is

ŷ = 17.5 + 4.7x1 + 10x2 − 3z,

where x1 is the variable for time, x2 for temperature, and z for solvent. One way to
interpret this model is to say that for solvent A, the model is

ŷ = 20.5 + 4.7x1 + 10x2,

and for solvent B the model is

ŷ = 14.5 + 4.7x1 + 10x2.
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For multiple levels of a qualitative factor, we could take the approach discussed
in one of the talks last week, or simply use the dummy variables. For example, is
solvent had three levels, we could code this with two (0,1) variables z1 and z2, so
that one level would be (0,0), the second (1,0), and the third (1,1). For four levels,
we could use 3 variables and code (0,0,0) for the first level, (1,0,0) for the second,
(0,1,0) for the third, and (0,0,1) for the last.

If there is no interaction between qualitative and quantitative factors, the qual-
itative factors can be thought of as only changing the model intercept. Otherwise,
the situation is more complicated. Here’s a first order plus interactions model of
the preceeding example

ŷ = b0 + b1x1 + b2x2 + b12x1x2 + cz + d1x1z + d2x2z.

That translates to saying that for solvent A, the model is

ŷ = (b0 − c) + (b1 − d1)x1 + (b2 − d2)x2 + b12x1x2

and for solvent B the model is

ŷ = (b0 + c) + (b1 + d1)x1 + (b2 + d2)x2 + b12x1x2.

In general, for first-order designs with qualitative factors, one wants

1. the ability to estimate the parameters of the quantitive factors
2. to estimate the interaction between qualitative and quantitative terms
3. to be able to test for simpler models.

Consider the model

y = β0 + beta1x1 + β2x2 + γ1z + ε.

A 23 factorial, with or without center points, would accomplish everything desired
here. What if you only had 5 runs? Consider the following 5 designs

x1 x2 z
-1 -1 -1
1 -1 -1

-1 1 -1
1 1 -1
0 0 1

x1 x2 z
-1 -1 1
1 -1 -1

-1 1 -1
1 1 1
0 0 -1

x1 x2 z
-1 -1 -1
1 -1 -1

-1 1 -1
1 1 1
0 0 -1

x1 x2 z
-1 -1 -1
1 -1 -1

-1 1 1
1 1 -1
0 0 1

x1 x2 z
-1 -1 1
1 -1 1

-1 1 -1
1 1 -1
0 0 -1

All of these designs allow estimation of β0 and β1 and are at both levels of the
qualitative factor. Furthermore, all allow estimation of β12x1x2. The third and fifth
designs also allow δ1x1z or δ2x2z to be estimated.

In general, two-level factorials and fractions with resolution V or better are
best. With resolution V designs, all two-level interactions are estimable. Another
approach is to use lower resolution designs that are high enough resolution in the
qualitative factors. For example, with 5 quantative factors and 1 qualitative factor,
suppose 26 and 26−1 are too many runs. There is no 26−2

V design. Nonetheless, if
we can live with a modelwith linear x and z terms plus x-z interaction, we can fit a
26−2 factorial with defining relations x1x2x3 = I , x1x3x4x5z = I , and x2x4x5z = I .
The design is resolution I I I but allows estimation of xi z.
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What about second order models? A safe, if costly, approach is to use a stan-
dard second order design for all combinations of the qualitative variables. An
example of a more economical design is the following. Suppose we have two
quantitative variables and one qualitative (two-level) variable. We can fit a model
that is second order in the quantitative variables, and allows two-way interaction
with the qualitative variable, with the following design

x1 x2 z
-1 -1 -1
1 -1 -1

−α 0 -1
1 1 -1
0 α -1
0 −α 1
0 0 1
α 0 1
-1 1 1

This works because at each level of the qualitative variable we have a resolution III
design, while taken across levels of the qualitative variable we can fit a full second-
order model. Draper and John (1988) Technometrics have an extensive discussion
of this sort of thing.

For more complicated designs, using computer generated designs base on opti-
mality considerations is probably the best bet. As a grid of candidate point one can
use the basic central composite design in the quantitative variables crossed with a
complete factorial in the qualitative variables.

4. Incomplete Block Designs

As the name implies, incomplete block designs are arranged in blocks that are
smaller than a complete replication. As one might imagine, many configurations
of these designs can be developed. To introduce the basic concepts we will start
with

5. Balanced Incomplete Block Designs

For example, suppose that we wish to conduct an experiment to compare 7
cooking oils with respect to taste. Because panelists cannot taste all oils, we decide
that there is enough time to run 3 oils by each panelist. This then becomes an
incomplete block design. Now what design do we use?

One way to set up this design is to take all possible combinations, i.e.,

(
7
2

)
=

35 panelists. Each pair of oils will occur with 5 panelists (given 2 oils, there are 5
other oils the pair can occur with).

An alternative to this design is one in which every pair of oils appears together
with only one panelist. For example
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Panelist Oils
1 A,B,C
2 B,C,E
3 C,D,F
4 D,E,G
5 A,E,F
6 B,F,G
7 A,C,G

Both designs are balanced incoplete block designs because the number of times
each pair of treatments occur together is the same. Balanced incomplete block
(BIB) designs were first developed by Frank Yates in 1936.

They are designs for t treatments in b blocks. Each block contains k exper-
imental units, or plots, with k < t . Furthermore, each treatment is replicated r
times, i.e., appears in r replicates. We will assume that no treatment appears more
than once in any block. Each pair of treatments occur in blocks λ times.

b = number of blocks

t = number of treatments

r = number of reps of treatments

k = number of plots per block

λ = number of times each pair of treatments occurs

Each of these is an integer but of course they are not independent.
If n is the number of observations in the design then

n = r t = bk,

λ = r(k − 1)

t − 1
,

as the r blocks in which any particular treatment occurs contain r(k − 1) other
plots, and these must be divided equally among the remaining (t − 1) treatments.
Finally

b ≥ t.

In the earlier example,

b = 7

t = 7

r = 3

k = 3

λ = r(k − 1)

t − 1
= 3(2)

7 − 1
= 1

To illustrate some of the issues in the analysis of data collected in balanced
incomplete block designs, consider the following data set.
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Panelist Oil and Response (7 pt scale) Totals
1 A(7) B(5) D(5) 17
2 B(6) C(4) E(3) 13
3 C(5) D(5) F(2) 12
4 D(4) E(4) G(1) 9
5 A(6) E(3) F(2) 11
6 B(7) F(4) G(3) 14
7 A(6) C(5) G(4) 15

91∑
y2 = 447∑
y = 91

C.F. = (
∑

y)2/n = 394.33
SST OT = 52.67.

Oil Treatment
Type Totals (T) Bt Q W

A 19 43 14 0
B 18 44 10 -10
C 14 40 2 -2
D 14 38 4 10
E 10 33 -3 24
F 8 37 -13 -8
G 8 38 -14 -14

91 273 0 0

T = Treatment Totals

Bt = Total of all blocks in which the treatment occurs

Q = kT − Bt

W = (t − k)T − (t − 1)Bt + (k − 1)n ȳ

ANOVA
Source df SS*MS F
Total 20 52.67
Treatment(adj) 6 32.86 5.48 7.50
Block(unadj) 6 14.00 2.33
Error 8 5.81 0.73

SST ot =
∑

y2 − C.F. = 52.67

C.F. = (
∑

y)2/n = 394.33

SSTreatment(adj) = (t − 1)
∑

Q2

ktr(k − 1)
= 32.86

SSBlk(unadj) = 172 + · · · + 152

3
− C.F. = 14.00

SSBlk(adj) = SSBlk(unadj) + SSTreatment(adj) − SStreatment(unadj) = 14.00 + 32.86 − 40.67 = 6.19

ANOVA
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Source df SS ms
Total 20 52.67
Treatment(unadj) 6 40.67 6.78
Blk(adj) 6 6.19 1.03 = Eb

Error 8 5.81 0.73 = Ee

The adjusted block mean square is called the “inter block error,” while the “error”
is called the “intra block error.”

A second type of incomplete block design is a

6. Partially Balanced Incomplete Block (PBIB)

The setup is the same as that which we discussed earlier for the balanced in-
complete block design.

The major difference between the two designs is that the BIB has one associate
class, while the PBIB has two associate classes. An associate class is a group of
treatments such that they occur together within the same block the same number of
times. As we saw earlier, a property of the BIB was that every pair of treatments
occurred λ times, which means it has one associate class.

A PBIB has two associate classes. Consider the following example

Block Treatments
1 1,2
2 1,3
3 2,3
4 3,4
5 3,5
6 4,5

1st associate (λi = 1) 2nd associate (λ2 = 0)
1,2 1,4
1,3 1,5
2,3 2,4
3,4 2,5
3,5
4,5

This condition, however, is not sufficient for the design to be a PBIB.
A second condition is that every block contains k units. Every treatment occurs

r times and no treatment appears more than once in a block.
Notice that in the design above the second condition is violated because treat-

ment 3 occurs 4 times while all others appear twice. Therefore this is not a partially
balanced incomplete block design.

Consider a second example
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Blocks Treatment
1 1,2
2 1,3
3 2,3
4 4,5
5 4,6
6 5,6

1st associate 2nd associate
1,2 1,4
1,3 1,5
2,3 1,6
4,5 2,4
4,6 2,5
5,6 2,6

3,4
3,5
3,6

A third criterion for the design to be a partially balanced incomplete block design
is examined with the following table.

Treatment 1
1st assoc 2nd assoc

Treatment 2 1st assoc 3
2nd assoc 4,5,6

This pattern must be reproduced for any other pair of 1st associates.
Similarly for pairs of second associates

Treatment 1
1st assoc 2nd assoc

Treatment 4 1st assoc 5,6
2nd assoc 2,3

This pattern must be reproduced for any other pair of 2nd associates.
Specifically, the 3rd criterion for a PBIB is “given any two treatments that are

i-th associates, the number of treatments that j-th associates of the first treatment
and k-th associates of the second treatment is the same no matter which pair of i-th
associates we start with.”

A more interesting example of a PBIB is

Block Treatment
1 1,2,4,5
2 2,3,5,6
3 1,3,4,6
4 1,2,4,5
5 2,3,5,6
6 1,3,4,6
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1st associate 2nd associate
1,4 1,2
2,5 1,3
3,6 1,5

1,6
2,3

6 2,4
2,6
3,5
4,5
4,6

Treatment 1
1st assoc 2nd assoc

Treatment 4 1st assoc
2nd assoc 2,3,5,6

same for 2,5 and 3,6
Treatment 1

1st assoc 2nd assoc
Treatment 2 1st assoc 5

2nd assoc 4 3,6
same for all other pairs of 2nd associates


