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UNBIASED ESTIMATORS OF A LATTICE MIXING
DISTRIBUTION AND THE CHARACTERISTIC FUNCTION

OF A GENERAL MIXING DISTRIBUTION∗

By CUN-HUI ZHANG
Rutgers University, Piscataway

SUMMARY. Let f(x|θ) be a known parametric family of probability density functions

with respect to a σ-finite measure µ. The density function f(x) of a random variable X

belongs to a mixture model if f(x) =
∫

f(x|θ)dG(θ). We derive unbiased estimators of the

characteristic functions of the mixing distribution G under some integrability conditions on G

and the probability mass function of G when G is a lattice distribution. Upper bounds for the

variances of these unbiased estimators are provided. Three types of exponential families and

a location-type model are considered, including the Poisson and gamma families.

1. Introduction

Let (X, θ) be a random vector such that

X|θ ∼ f(x|θ), θ ∼ G, . . . (1)

where the conditional density f(x|θ) belongs to a known parametric family of
probability density functions with respect to a σ-finite measure µ, and G is
an unknown mixing distribution. Let (Xj , θj), 1 ≤ j ≤ n, be independent
identically distributed random vectors from (X, θ). Suppose θ1, . . . , θn are latent
variables. We are interested in the demixing problem of estimating functionals
of G based on observations X1, . . . , Xn from the mixture density

f(x) =
∫

f(x|θ)dG(θ). . . . (2)

When f(x|θ) is a location family and µ is the Lebesgue measure, this is also
called the deconvolution problem.
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Problems related to mixture models were proposed by Robbins (1951, 1955)
in connection with the empirical Bayes approach to compound decision problems,
by Kiefer-Wolfowitz (1956) in connection with estimating an unknown parameter
in the presence of infinitely many nuisance parameters, and by many others in
various contexts.

Maximum likelihood estimation (MLE) of mixing distributions were stud-
ied by Kiefer and Wolfowitz (1956), Laird (1978), Lambert and Tierney (1984),
Lindsay (1983a,b), and Simar (1976) among others. Although the MLEs are
consistent under quite general conditions, their rate of convergence is still un-
known, unless we assume that G belongs to a finite-dimensional parametric fam-
ily. Recently, there were a spate of papers on the subject which provided rates
of convergence under smoothness assumptions on G. Minimum distance estima-
tion for the normal case was considered by Edelman (1988). Kernel estimation
in location models was considered by Carroll and Hall (1988), Fan (1991a,b),
Stefanski (1990), Stefanski and Carroll (1990), and Zhang (1990) among others.
Kernel estimation in the case of discrete exponential families was considered by
Loh and Zhang (1996, 1997) and Zhang (1995), while Walter and Hamedani
(1991) considered estimation based on orthogonal polynomial expansions. Most
of these rates of convergence are extremely slow. In fact, except for a few location
families such as the double exponential distribution, these estimators converge
to the true G at logarithmic rates. Mixture models were also considered by
Deely and Kruse (1968), Devroye (1989), Jewell (1982), Robbins (1950), Rolph
(1968), Teicher (1961) and Wise, Traganitis and Thomas (1977) among others.

We shall consider four types models: (A) gamma-type model f(x|θ) =
C(θ)q(x)fα(x|θ) with fα(x|θ) being the gamma(α + 1, 1/θ) density function;
(B) Poisson-type model f(x|θ) = C(θ)q(x)p(x|θ) with p(x|θ) being the Poisson
probability mass function; (C) discrete exponential model f(x|θ) = C(θ)q(x)θx,
x = 0, 1, 2, . . .; and (D) location-type model f(x|θ) = C(θ)q(x)f0(x − θ) for
some known f0. Here µ is the Lebesgue measure in models (A) and (D) and
the counting measure in models (B) and (C). In Section 2, we derive unbiased
estimators of the Fourier transformation

h∗C(t) =
∫

eitθC(θ)dG(θ) . . . (3)

for general G and unbiased estimators of the mixing probability mass function
when G is a lattice distribution. Clearly, h∗C(t) becomes the characteristic func-
tion of G when C(θ) ≡ q(x) ≡ 1. Upper bounds for the variance of the unbiased
estimators are provided under certain integrability conditions on G, so that the
unbiased estimators are asymptotically normal with the usual n−1/2 rate of con-
vergence.

Estimation of the characteristic function of the mixing distribution G is of-
ten an important step in demixing problems. In the location model f(x|θ) =
f0(x − θ), unbiased estimates of (3) with C(θ) ≡ 1 was used in Stefanski and
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Carroll (1990) and Zhang (1990) to derive estimates of the mixing density, while
Zhang (1995) used asymptotically unbiased kernels for (3) in model (C) de-
scribed above. In both instances, the resulting estimates of the mixing density
possess optimal rates of convergence under smoothness conditions. The unbi-
ased estimators here for the gamma- and Poisson-type models are new. Due
to the Fourier inversion formula, estimates of (3) can be used in many ways to
derive estimators of G or its density. Here we consider specifically lattice mix-
ing distributions. Due to computational difficulties with the MLEs, the mixing
distribution is often discretized in practice. The MLE can be easily computed
using the EM and other algorithms for lattice G, but convergence rates for the
MLE are still unknown when the support of G is unbounded. The methods here
provide simple estimates with tractable properties.

2. Unbiased Estimators

In this section, we derive unbiased estimators for the Fourier transformation
h∗C(t) in (3). From these estimators for h∗C(t), we derive unbiased estimators for
the mixing probability mass function p(a) = G(a)−G(a−) under the additional
condition ∞∑

j=−∞
p(aj) = 1, aj = a0 + jδ, . . . (4)

for some known δ > 0 and a0. Upper bounds for the variance of these unbiased
estimators are also provided.

Let (X, θ) be as in (1). A function K∗
C(x, t) is an unbiased kernel for h∗C(t)

if
EK∗

C(X, t) = h∗C(t) =
∫

eitθC(θ)dG(θ) . . . (5)

under certain integrability conditions. This provides an unbiased estimator
ĥ∗C,n(t) =

∑n
k=1 K∗

C(Xk, t)/n for h∗C(t) based on observations X1, . . . , Xn.
If E|K∗

C(X, t)|2 < ∞ in a set T , then the finite dimensional distributions of√
n
(
ĥ∗C,n − h∗C)(t), t ∈ T, converge to multivariate normal distributions with

the covariance kernel

nE
(
ĥ∗C,n − h∗C)(s)

(
ĥ∗C,n − h∗C)(t) = VC(s, t)− h∗C(s)h∗C(t), . . . (6)

where VC(s, t) = EK∗
C(X, s)K∗

C(X, t) and z̄ is the complex conjugate of z. Since
h∗C(t) = h∗C(−t),

{
K∗

C(x, t) + K∗
C(x,−t)

}
/2 is an unbiased kernel for h∗C(t)

with smaller variance than K∗
C(x, t). Thus, we shall consider kernels K∗

C(x, t)
satisfying K∗

C(x, t) = K∗
C(x,−t) in the rest of the paper.

Under condition (4), the Fourier inversion formula provides

C(aj)p(aj) =
δ

2π

∫ π/δ

−π/δ

e−itaj h∗C(t)dt, . . . (7)
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where h∗C is as in (3). Thus, if K∗
C(x, t) satisfies (5) for |t| ≤ π/δ,

p̂n(aj) =
n∑

k=1

K(Xk, aj)
n

, K(x, a) =
δ

2πC(a)

∫ π/δ

−π/δ

e−itaK∗
C(x, t)dt, . . . (8)

is an unbiased estimator for p(aj). It follows from (6) that

nE
(
p̂n(aj)− p(aj)

)2

=
(

δ

2πC(aj)

)2 ∫ π/δ

−π/δ

∫ π/δ

−π/δ

e−i(s−t)aj VC(s, t)dsdt− p2(aj).
. . . (9)

Note that K(x, a) is real by K∗
C(x, t) = K∗

C(x,−t). Furthermore, since C(aj){
K(Xk, aj)− p(aj)

}
are the Fourier coefficients of

√
δ/2π {K∗

C(Xj , t)− h∗C(t)}
with the orthonormal basis {

√
δ/2πe−itaj} in L2(−π/δ, π/δ), the Parseval iden-

tity provides, with the VC(s, t) in (6),

n

∞∑

j=−∞
C2(aj)E

(
p̂n(aj)− p(aj)

)2

=
δ

2π

∫ π/δ

−π/δ

E |K∗
C(X, t)− h∗C(t)|2 dt

=
δ

π

∫ π/δ

0

VC(t, t)dt− δ

π

∫ π/δ

0

|h∗C(X, t)|2 dt.

. . . (10)

In the following four subsections, we consider the four types of mixture mod-
els described in the introduction. We provide unbiased kernels and upper bounds
for their variances. In models (A), (B) and (C), our kernels for (3) are derived
from unbiased estimates of the moments E{θkC(θ)}, since

h∗C(t) =
∫

eitθC(θ)dG(θ) =
∞∑

k=0

(it)k

k!
E{θkC(θ)} . . . (11)

when the infinite series converges under the expectation. This is related to the
moment problem (Feller, 1971, pages 227-228 and 514-515). Upper bounds for
the covariance kernel (6) will be provided. In this paper, V1(s, t) ≤ V2(s, t) if
V2(s, t)− V1(s, t) is nonnegative definite.

We shall use the following notation: β! = Γ(β + 1), β[k] = β(β − 1) · · · (β −
k + 1) with β[0] = 1, and (β)k = β(β + 1) · · · (β + k − 1) with (β)0 = 1. Note
that β[k] = (−1)k(−β)k for k ≤ β + 1 and

(
n
k

)
= (−1)k(−n)k/k!. Also, let

x+ = max(x, 0).
A. Gamma-type models. Consider the gamma-type mixture model with

f(x|θ) = C(θ)q(x)fα(x|θ), fα(x|θ) =
xαe−x/θ

θα+1Γ(α + 1)
I{x>0}, . . . (12)
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and dµ = dx in (1) and (2), where q(x) > 0, C(·) and α > −1 are known, and
θ > 0.

Let Eα,θ be the expectation with respect to the density fα(x|θ). Since
E(Xk/q(X)|θ) = C(θ)Eα,θX

k = C(θ)θk(1 + α)k, by (11) an unbiased kernel
for h∗C(t) is

K∗
C(x, t) = K̃α(x, t)/q(x), K̃α(x, t) =

∞∑

k=0

(it)kxk

k!(1 + α)k
. . . . (13)

Let ψα(λ, p) = Eλ{(N1 + 1 + α)/(1 + α)}pI{N1 = N2}, where N1 and N2

are independent Poisson variables with EλN1 = EλN2 = λ. Let F (a, b, c; z) =∑∞
m=0{(a)m(b)m/(c)m}zm/m! be the hypergeometric function (Abramowitz and

Stegun, 1964, 15.1.1), and set

Vα,r(s, t|θ) =
∞∑

`=0

(isθ)`(1 + α + r)`

`!(1 + α)`
F (−`,−`− α, 1 + α;−t/s).

Theorem 1. Let K∗
C(x, t) be given by (13) and p̂n(aj) by (8).

(i) If EC(θ)e|t|θ < ∞, then (5) holds. If EC(θ)eπθ/δ < ∞, then Ep̂n(aj) =
p(aj), ∀j.

(ii) If 1/q(x) ≤ ∫
xrα!

(α+r)!Q(dr) for some measure Q on (−1−α,∞), then (6)
holds with

VC(s, t) = EK∗
C(X, s)K∗

C(X, t) ≤
∫

EC(θ)θrVα,r(s, t|θ)Q(dr). . . . (14)

Moreover, with cα(p) = max{1,
∏∞

j=1[{1 + p/(j + α)}/{1 + 1/(j + α)}p]},

Vα,r(t, t|θ) =
∞∑

`=0

(tθ)2`(1 + α + r)2`

`!(1 + α)2`(1 + α)`

≤ cα(−α)cα(r)2r+
ψα(|t|θ, r − α)e2|t|θ.

. . . (15)

Consequently, (10) holds with

δ

π

∫ π/δ

0

VC(t, t)dt

≤
∫

cα(−α)cα(r)2r+

min{1, 2(1 + α)}EC(θ)θrψα(πθ/δ, r − α− 1)e2πθ/δQ(dr).
. . . (16)

Remark 1. For the gamma mixture q(x) ≡ C(θ) ≡ 1, (14) becomes equal-
ity with r = 0, VC(s, t) = EVα,0(s, t|θ), and {(−itθ)α/Γ(α + 1)}Vα,0(t, t|θ) =
Jα(−2itθ), where Jα is the Bessel function. The kernel K̃α(x, t) is related to Jα

in a similar manner.
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Remark 2. It will be shown in the proof that Vα,r(s, t|θ) = Eα+r,θ

K̃α(X, s)K̃α(X, t) with the K̃α(x, t) in (13). For fixed α > −1 and p, ψα(λ, p)
is of the order λp−1/2 for large λ. For p 6∈ (0, 1), cα(p) = 1.

Remark 3. If 1/q(x) ≤ ∑k
j=0 cjx

j for some cj ≥ 0, we may take Q(j) −
Q(j−) = cj . For example, α = 1, q(x) = (1+x)/x and 1/q(x) ≤ (1+x)/4 when
X = (Y − 1) conditionally on Y > 1 with Y |θ ∼ f1(x|θ).

Proof. Let Ṽα,r(s, t|θ) = Eα+r,θK̃α(X, s)K̃α(X, t). It follows from (12) and
(13) that

VC(s, t) = E

∫
K̃α(x, s)K̃α(x, t)

f(x|θ)
q2(x)

dx ≤ E

∫
C(θ)θrṼα,r(s, t|θ)Q(dr),

as f(x|θ)/q2(x) ≤ ∫
C(θ)θrfα+r(x|θ)Q(dr) by the upper bound on 1/q(x). Let

z = −t/s. Since Eα+r,θ(X`|θ) = θ`(1 + α + r)`, we have, with ` = k + m,

Ṽα,r(s, t|θ) =
∞∑

k=0

∞∑
m=0

Eα+r,θ

{
(isX)k

k!(1 + α)k

}{
(−itX)m

m!(1 + α)m

}

=
∞∑

`=0

(isθ)`(1 + α + r)`

`!(1 + α)`

∑̀
m=0

zm

(
`

m

)
(1 + α)`

(1 + α)m(1 + α)`−m

= Vα,r(s, t|θ),
due to (1 + c)`/(1 + c)`−m = (−1)m(−`− c)m for c = 0 and c = α. This proves
(14).

Since
√

π/Γ(1/2− `) = (−1/2)`(2`− 1)!! = (−1/4)`(2`)!/`!,

F (−2`,−2`− α, 1 + α;−1) =
22`
√

πΓ(1 + α)
Γ(1 + α + `)Γ(1/2− `)

=
(−1)`(2`)!
`!(1 + α)`

by Abramowitz and Stegun (1964, 15.1.21). Since Vα,r(t, t|θ) is real, the identity
in (15) is obtained by summing over the even ` in its infinite series representation
and using the above formula. The inequality in (15) follows from

(1 + α + r)2`

(1 + α)2`
· `!
(1 + α)`

=
2∏̀

j=1

(
1 +

r

α + j

) ∏̀

j=1

(
1 +

−α

α + j

)

≤ cα(−α)cα(r)
2∏̀

j=`+1

(
1 +

1
α + j

)r ∏̀

j=1

(
1 +

1
α + j

)r−α

≤ cα(−α)cα(r)2r+
(

` + α + 1
1 + α

)r−α

.

Inequality (16) follows from (14) and (15), as

δ

π

∫ π/δ

0

t2`dt

(
` + α + 1

1 + α

)
=

(π/δ)2`

2` + 1

(
` + α + 1

1 + α

)
≤ (π/δ)2`

min{1, 2(1 + α)} .
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B. Poisson-type models. Consider the Poisson-type model

f(x|θ) = C(θ)q(x)p(x|θ), p(x|θ) = e−θθx/x!, q(x) > 0, . . . (17)

with µ being the counting measure on {0, 1, 2, . . .} and known q(x) > 0 and
C(·). Let Eθ be the expectation with respect to the Poisson density p(x|θ).
Since E(X [k]/q(X)|θ) = C(θ)EθX

[k] = C(θ)θk, by (11) an unbiased kernel for
h∗C(t) =

∫
eitθC(θ)dG(θ) is

K∗
C(x, t) = K̃(x, t)/q(x), K̃(x, t) =

∞∑

k=0

(it)kx[k]/k!. . . . (18)

Theorem 2. Let K∗
C be given by (18) and p̂n(aj) by (8).

(i) If EC(θ)e|t|θ < ∞, then (5) holds. If EC(θ)eπθ/δ < ∞, then Ep̂n(aj) =
p(aj), ∀j.

(ii) If 1/q(x) ≤ ∫
x[r]Q(dr), x ≥ 0, for some measure Q on the set of non-

negative integers {r = 0, 1, 2, . . .}, then (6) holds with

VC(s, t) ≤
∫

EC(θ)estθeiθ(s−t)θr(1 + is)r(1− it)rQ(dr). . . . (19)

Consequently, (10) holds with

δ

π

∫ π/δ

0

VC(t, t)dt ≤
∫

EC(θ)θr

{
δ

π

∫ π/δ

0

et2θ(1 + t2)rdt

}
Q(dr). . . . (20)

Remark 1. For the Poisson mixture q(x) ≡ C(θ) ≡ 1, (19) and (20) become
equality with r = 0; VC(s, t) = Eestθ+i(s−t)θ.

Remark 2. For any complex measure ξ with bounded support

E

∣∣∣∣
∫

K∗
C(X, t)dξ(t)

∣∣∣∣
2

≤ E

∫
e−θ

∞∑

k=0

θk+r

k!

∣∣∣∣
∫

(1 + it)k+rdξ(t)
∣∣∣∣
2

dQ(r).

This applies to (9) with dξ(t) = I{|t| ≤ π/δ}(2πC(aj))−1δe−itaj dt.

Remark 3. For example, the upper bound on 1/q(x) holds for suitable Q
when 1/q(x) = (1+c)x =

∑∞
j=0 x[j]cj/j!, or 1/q(x) ≤ (x!)β ≤ ∑∞

j=0 x[j]/(j!)1−β ,
0 < β < 1.

Proof. With the upper bound on 1/q(x), (17) and (18) imply

VC(s, t) = EC(θ)Eθ
K̃(X, s)K̃(X, t)

q(X)
≤

∫
EC(θ)EθX

[r]K̃(X, s)K̃(X, t)dQ(r).
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Thus, (19) is a consequence of

EθX
[r]K̃(X, s)K̃(X,−t) = {θ(1 + is)(1− it)}r exp

{
stθ + i(s− t)θ

}
. . . . (21)

Let us prove (21). By the mathematical induction for k = 0, . . . , m we obtain

β[k]β[m] =
min(k,m)∑

j=0

β[k+m−j]j!
(

k

j

)(
m

j

)
=

k∑

j=0

β[k+m−j]m[j]

(
k

j

)
,

as it holds for k = 0 and implies for k < m

β[k+1]β[m] =
k∑

j=0

{
β[k+1+m−j] + (m− j)β[k+m−j]

}
m[j]

(
k

j

)

=
k∑

j=0

β[k+1+m−j]m[j]

(
k

j

)
+

k+1∑

j=1

β[k+1+m−j]m[j]

(
k

j − 1

)

=
k+1∑

j=0

β[k+1+m−j]m[j]

(
k + 1

j

)
.

Two applications of this identity provide that for all integers r ≥ 0,

β[r]β[k]β[m] =
min(k,m)∑

j=0

j!
(

k

j

)(
m

j

) r∑
u=0

β[r+k+m−j−u](k+m−j)[u]

(
r

u

)
. . . . (22)

Since EθX
[`] = θ`, we obtain with v = k − j, w = m − j and ` = v + w + j =

k + m− j,

EθX
[r]K̃(X, s)K̃(X,−t)

=
∞∑

k=0

∞∑
m=0

{
(is)k/k!

} {(−it)m/m!}EθX
[r]X [k]X [m]

=
∞∑

k=0

∞∑
m=0

min(k,m)∑

j=0

r∑
u=0

(is)k(−it)mθr+k+m−j−u(k + m− j)[u]

j!(k − j)!(m− j)!

(
r

u

)
, by (22)

=
r∑

u=0

(
r

u

)
θr−u

∞∑

`=0

`[u]θ`
∑

v+w+j=`

(st)j(is)v(−it)w

v!w!j!
I{v≥0,w≥0,j≥0}

=
r∑

u=0

(
r

u

)
θr−u

∞∑

`=0

`[u]θ` (st + is− it)`

`!

=
r∑

u=0

(
r

u

)
θr−uestθ+iθ(s−t){stθ + iθ(s− t)}u

= estθ+iθ(s−t){θ + stθ + iθ(s− t)}r.
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This proves (21) and completes the proof.
C. Exponential families for nonnegative integer-valued variables. Let

f(x|θ) = C(θ)q(x)θx, x = 0, 1, 2, . . . , . . . (23)

with known q(x) > 0 and C(·). This is the model considered in Zhang (1995).
It is identical to (17) but with a different formulation. For example, if f(x|θ)
is the Poisson distribution, then C(θ) ≡ q(x) ≡ 1 in (17) but C(θ) = e−θ and
q(x) = 1/x! in (23). Since P (X = k|θ) = C(θ)θk/q(x), by (11) we define

K∗
C(x, t) = (it)x/{x!q(x)}. . . . (24)

Theorem 3. Let K∗
C be given by (24) and p̂n(aj) by (8).

(i) If EC(θ)e|t|θ < ∞, then (5) holds. If EC(θ)eπθ/δ < ∞, then Ep̂n(aj) =
p(aj), ∀j.

(ii) If 1/q(x) ≤ x!
∫

x[r]Q(dr), x ≥ 0, for some measure Q on {r = 0, 1, . . .},
then (6) holds with VC(s, t) ≤ ∫

EC(θ)estθ(stθ)rQ(dr). Consequently, (10) holds
with

δ

π

∫ π/δ

0

VC(t, t)dt ≤
∫

EC(θ)θr

{
δ

π

∫ π/δ

0

et2θt2rdt

}
Q(dr).

Proof. The proof is simpler than that of Theorem 2;

VC(s, t) = EC(θ)
∞∑

m=0

(st)mθmq(m)
{q(m)m!}2 ≤

∫
EC(θ)

∞∑
m=0

m[r] (stθ)
m

m!
Q(dr).

Example 1. (Geometric distribution). For this case, q(x) ≡ 1 and C(θ) ≡
1− θ, (6) holds with VC(s, t) = E(1− θ)estθ, and (10) holds with

δ

π

∫ π/δ

0

VC(t, t)dt = E(1− θ)
δ

π

∫ π/δ

0

et2θdt.

D. Location-type models. Consider the case where

f(x|θ) = C(θ)q(x)f0(x− θ), µ(dx) = dx, θ ∈ (−∞,∞), . . . (25)

with known f0(·), q(x) > 0 and C(·). This is a location family when q(x) ≡
C(θ) ≡ 1. The general q(x) is useful in applications such as biased sampling.
Let f∗0 (z) =

∫
eizxf0(x)dx. Since the Fourier transformation of f0(x− θ) is the

product eitθf∗0 (t), we define

K∗
C(x, t) = eitx/{f∗0 (t)q(x)}. . . . (26)
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Theorem 4. Let K∗
C be given by (26) and p̂n(aj) by (8).

(i) If |f∗0 (t)| > 0, then (5) holds. If
∫
|t|≤π/δ

|f∗0 (t)|−1dt < ∞, then Ep̂n(aj) =
p(aj).

(ii) If 1/q(x) ≤ ∫
erxdQ(r) for some measure Q, then (6) holds with

VC(s, t) ≤
∫

EC(θ)erθ f∗0 (s− t− ir)
f∗0 (s)f∗0 (−t)

Q(dr).

Consequently, (10) holds with

δ

π

∫ π/δ

0

VC(t, t)dt ≤
∫

EC(θ)erθ

{
δ

π

∫ π/δ

0

f∗0 (−ir)
|f∗0 (t)|2 dt

}
Q(dr).

The proof is straightforward and omitted.
Example 2. Normal case: f0(x) = (2π)−1/2 exp[−x2/2]. Since f∗0 (z)

= e−z2/2,

K(x, a) =
δ

πC(a)q(x)

∫ π/δ

0

cos(t(x− a))et2/2dt

in (8), and

δ

π

∫ π/δ

0

VC(t, t)dt ≤
∫

EC(θ)erθ+r2/2

{
δ

π

∫ π/δ

0

et2dt

}
Q(dr).

3. Remarks

Suppose (4) does not hold and G is smooth. With the K(x, a) in (8) define

K(x, a; δ) = K(x, a)/δ =
1

2πC(a)

∫ π/δ

−π/δ

e−itaK∗
C(x, t)dt.

If (5) holds, EK(X, a; δ) → g(a) = G′(a) as δ → 0+, so that K(x, a; δn),
δn → 0+, can be used as kernels for the estimation of the mixing density. These
kernels can be further improved through truncation and smoothing methods.
For these estimators, upper bounds for VC(s, t) and its integrations in Theorems
1-4 can be translated into upper bounds for rates of convergence over classes of
smooth mixing densities. See Stefanski and Carroll (1990) and Zhang (1990) for
location models and Zhang (1995) for model (C).

Due to the completeness of the exponential families, the kernels in (13), (18)
and (24) are the unique unbiased ones.
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