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Our objective is to improve thetime-resolutionof functional magnetic resonance
imaging by sampling only a small fraction of the Fourier transform of the spin
density and using aprolate wavelet (P-wavelet) filterto approximately obtain not
the usual susceptibility map, but instead theintegral, I (t), of the difference in
susceptibility between task and pretask, over a prespecified region of interest in
the brain at successive time-points,t . This space–time trade-off thus allows us to
obtain, at high time-resolution, thetotal activity, I (t), in a specified region,B, of the
brain which processes the specific stimulus or task to learn or verify where the brain
function takes place. We find that for a typical region,B, of the brain, say describing
the hippocampus, believed to be involved in memory, consisting of say 100 points in
a 64×64 brain image space, that our optimal choice of Fourier sampling region,A,
hasa = 400 points, which then gives a 10-fold speed-up compared to the usual
method of sampling, since the usual sampling needs 642 points which exceeds
10 times 400. Of course we get this speed-up at the price of spatial resolution.
Even faster sampling of the integral of the susceptibility difference ought to be
possible for a setB of 100 points in this level of pixelization. OnceA is fixed, the
mathematical problem of choosing the optimal P-wavelet filter can be viewed as
a natural generalization to 2 and 3 dimensions of the theory of prolate spheroidal
wave functions, due to Landau, Pollak, and Slepian. The first prolate spheroidal
wave function for fixedA, B is that functionφ which is maximally concentrated
onB and whose Fourier transform vanishes except onA. The problem of choosing
the sampling regionA, for fixed sizea = |A|, to maximize the concentration on
the givenB remains open and is probably NP-complete, i.e., probably involves
exponential search. However, we give a very simpleheuristic for choosing a set
A, which seems to give excellent results in the examples we have studied, and we
give the optimal P-wavelet filter,φ = φB , for the choice ofA, based on our heuristic.

The heuristic is to take as itA thescaled polar setof B, i.e.,

A= {k : max
x,y∈B(k,x− y) < c

}
, (1)

1 A prolate wavelet may also be called a prolate-spheroidal wave function. See Acknowledgments.
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wherec is chosen so that the size ofA is a, as desired to achieve a given time-
resolution forI (t). We give evidence to support our claim thatA gives good results.
 2000 Academic Press

1. TIME RESOLUTION IN fMRI

Ogawa [12–14] showed, in celebrated work, that cerebral blood flow, refreshing areas
of the brain which are active during the execution of a mental task with oxygenated
blood, changes the local magnetic susceptibility which can be measured with a magnetic
resonance (MR) scanner. More particularly, hemoglobin exists in two different states,
oxyfied and deoxyfied, and deoxyfied hemoglobin produces a different local magnetic field
than does oxyfied hemoglobin, because of the presence of iron in hemoglobin and because
of the fact that the magnetic field of iron is stronger in local combination without oxygen
than it is with oxygen. Measuring susceptibility then indicates the flow of blood to those
areas of the brain being utilized to perform the task.

A serious problem with Ogawa’s widely used technique, and later related techniques,
is slowness. Ogawa’s method is usually implemented to give acompleteimage every 10 s
(often even slower), while many mental processes, for example image recognition, take
place on amuch fastertime scale.

PET (positron emission tomography) is even slower, and PET requires several subjects
for a single experiment and consequent appropriate rescaling and renormalization in order
to be used in physiology (function studies). Even so, it is still competitive with fMRI,
despite the fact that it involves ionizing radio-activity. But maybe this will change with an
improvement in the time-resolution of fMRI.

In all the standard methods, the Fourier transform of the spin density is sampled
completely and repeatedly as time progresses. We propose speeding up the method by
sampling onlya small fractionof Fourier space when the physiologist wants to determine
how much activity2 there is in aspecific regionof the brain. This allows the speed-
up because we avoidcompletesampling, even though the Fourier transform is actually
changing everywhere.

Our method is based on some old and mostly overlooked work onprolate spheroidal
wave functionswhich later came to be called wavelets.

Sampling only a small region of Fourier transform (k) space cannot allow an inverse
Fourier transform with resolution equivalent to sampling all ofk space, needless to say.
But for the purposes of physiology, or functional understanding, high spatial resolution
is not so important, since areas of the brain are not evennamed, or evenrecognizablein
anatomy books, to high spatial resolution. So, it seems, a trade-off between spatial and
temporal resolution is what is needed and this is what we are proposing.

If the Fourier transform,̂f (k, t), of the spin density,f (x, t), at timet is sampled fork in
a setA, and it is desired to learn how much activity there is in a setB in x-space at timet ,
then, as we show, this can be done much more quickly usinghigher dimensionalprolate-
spheroidal wave functions. In one dimension, the elegant theory of these functions is due
to Landau, Pollak, and Slepian [7, 8, 19, 20]. These functions are now more commonly
known as wavelets. If the setA has Lebesgue measurea, and if a is decreased by a

2 We use the termactivity because of emission tomography [17].
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factor of 2, then we obtain twice the time resolution, for example. We expect to speed
up the procedure by a factor of 10 or more. Instead of trying to reconstructthe entirespin
density at eacht we only reconstruct thechangein a specified region,B, say the visual
cortex or some different area where physiologists believe that the “rolodex” of images is
located.

This leads to the following mathematics problem, of interest in itself in wavelet theory.
Given a setB, a positive numbera, and a setA, contained ink space and having measurea,
there is a function,̂φ(k), which vanishes offA and whose Fourier transform has a maximal
fraction of its energy inB. Call this maximal fraction,F(A,B), and then chooseA so that
this maximum is as large as possible. Then samplingf̂ only for k ∈ A will give a fast
method (ifa is small) for obtaining how much activity there is inB. Indeed, ifφ̂ is the
function having maximal concentration inB, for a bestA, then by Parseval’s theorem,
with z∗ denoting the complex conjugate ofz,∫

f (x)φ(x)∗ dx=
∫
f̂ (k)φ̂(k)∗ dk.

The right side is known becauseφ̂(k)= 0 wheref̂ (k) is not measured, and the left side is
(approximately) the integral off (x) overx ∈ B, if the right normalizing constant is used
for f̂ . Which setA would be optimal, for givena? We offer some heuristics and some
evidence that ifB is convex, thenA ought to be taken as a scaled version of the dual
convex set,A= cB⊥, where

B⊥ = {k : (k,x− y)≤ 1, for all x, y ∈ B}
and wherec is chosen so thatA= cB⊥ has measurea. Of course the same would hold for
the discrete Fourier transform setting, except that nowA andB become discrete sets, and
the polar setA can be also defined as

A= {k : minx∈B maxy∈B |(k,x− y)|< c}.
The two definitions coincide in the continuous case. It is amazing to us that in the examples
we have tried, it seems that the optimalA as defined by maximizing the maximum
eigenvalue, or concentration, inB is nearly the same as theheuristicallyobtained setA
defined above in terms of the polar dual toB. Finding the true optimalA, i.e., theA of
sizea which maximizes the concentration inB of the most concentrated function inB
whose Fourier transform is supposed byA, seems difficult and we expect it will be shown
to be NP-complete, that is a computationally difficult problem involving an exponentially
growth inN computer search. As in the traveling salesman problem, the true optimum is
hard to find, but there is also a simpleheuristicto find a route for a salesman’s tour on an
arbitrary graph that isprobablyvery close to having minimal length. In our case, we have
no such proof.

Of course, it is the uncertainty principle that keeps the maximum eigenvalue from being
unity: a function and its Fourier transform cannot both have compact support.

Another way to argue that the choice ofA andφ̂(k) should be that prolate function, or
wavelet, which is the main one in the Landau–Slepian–Pollak sense, rather than any old
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wavelet concentrated in bothx andk space, is that we need̂φ(k)≡ 0, off of A, since we
do not measurêf (k) there.

It might be argued that it would be more reasonable to samplef̂ (k) for k in a very
diversely distributed set, i.e., that the setA ought to be a fractal, rather than a scaled version,
of the dual convex set toB, which is a convex set rather than a fractal. The reason we do
not think that this will be the case is rather involved. Indeed, one could argue that one
should merely take a lower sampling rate of the discrete Fourier transform off and ifφ(x)
is an approximate indicator of a setB, then we can reconstruct the integral off overB
approximately, by using the Poisson summation formula (ind = 2 ord = 3 dimensions),

hd
∑

f (jh)φ(jh)∗ =
∑

f̂

(
k
h

)
φ̂

(
k
h

)∗
.

It might similarly be argued that it would be simpler to use the best approximation
(in L2) of the indicator functionχB by a functionφ whose Fourier transform has support
of the Lebesgue measurea. This problem is indeed simple to solve. The answer is to
use the functionψ whose Fourier transform has support of measurea, and which best
approximateŝχB , the Fourier transform of the indicator ofB.ψ is easily seen to be simply
the function whose Fourier transform coincides withχ̂B on the set of measurea and of
the form {k : |χ̂B(k)| > c}. However, we think choosingψ will not work out as well as
the proposed method of using the prolate function which goes with a scaled version of
B⊥ as described above, because the setB is not so precisely known and specifiable and
because the second formulation is too rigid and nonrobust in that a point inB but near
the boundary ofB is given much more weight than a nearby point on the outside ofB.
The set{k : |χ̂B(k)|> c} is not even connected unless its size a is small enough. The use
of the prolate spheroidal function which goes withB and the bestA will approximate the
indicator, in a rough sense, and should provide a more robust estimate of the integral off

overB, deemphasizing the boundary ofB in a reasonable way.
The intuition fornotusing a fractalA as in the Poisson sum formula is slightly different,

but again heuristic and nonrigorous. If we knew nothing aboutf then the approximate
integral overB would probably be best taken by the Poisson sum formula method above. So
if f did not remain positive (or negative) withinB, but instead couldchange signwithin B,
then we would probably not want to use the prolate method. But we are assuming that the
mental process taking place inside ofB will causef (x, t)−f (x,0) to be of the same sign,
becauseB is the area of increased deoxyhemoglobin. If our assumption is wrong, and in
some parts ofB there is less deoxyhemoglobin, then some other region should have been
designated asB, perhaps a subregion of theB should have been chosen instead. We are
not so much interested in getting the total integral off oversome translateof B (though
we can obtain this as a control and at no additional sampling cost merely by using, instead
of φB(j ), a phase shift

∑
k∈A ei(s−j ,k)φ̂B(k), which then corresponds to a translate ofB

to B + s). Of course one should try all the above methods to verify the above reasoning
in practice; we are not fully convinced ourselves by our intuitive reasoning. In principle
one could study the choice ofA andφ via the method of simulations, so effective in CT
scanning, but simulations in MRI, not to mention fMRI, are not easily carried out due to
the increased number of free variables present in MRI compared to CT.
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For the background of the MRI and related fields, we refer to Mononet al. [11],
Ogawaet al. [12–14], Buonocoreet al. [1], and Choet al. [2]. For more engineering details,
see [18].

Prolate-spheroidal wave functions were considered by Slepian and Pollak [20], Landau
and Pollak [7, 8], and Slepian [19]. Donoho and Stark [5, 6] considered applications of
the prolate-spheroidal wave functions in a different context and proved that, in the one-
dimensional case, for intervalsB andµ(A)µ(B)≤ 0.8, whereµ is the Lebesgue measure,
F(A,B) is maximized by an intervalA. Wavelets are discussed in Chu [3], Daubechie [4],
Meyer [9], and Meyer and Coifman [10].

2. CHOOSING A P-WAVELET

Because we are using aquadraticcriterion for optimization, we have to make some
assumptions onf to make the present approach sensible. Thus iff (which is the difference
between the after-stimulus and the before-stimulus spin density signal in BOLD, which
includes the effect of susceptibility) is as likely to be negative as positive inside ofB, then
there is not much sense in trying to find its integral overB, and there is no reason to want
the filterφ(x) to be of one sign onB. But we believe3 thatf (x) is of one sign (positive or
negative) throughout the active regionB and we expect thatf mostly vanishes offB. Here
we are relying on the physiologist to tell us that the stimulus is handled by the region,B,
of the brain.

Now we want to argue that
∫
A f̂ φ̂

∗
1

∫
B φ1/λ1 is a reasonable proxy of

∫
B f , whereφ1 is

the main prolate-spheroidal wave function forA,B andλ1 is the main eigenvalue. What is
the reason for this?

Let us review the theory of prolate-spheroidal wave functions as wavelets. For a given
setB in real space, andA, in Fourier transform space, consider the set of all functions,
φ(x), for which the Fourier transform̂φ(k) = 0 for k outsideA. Let φ1 be that function
which maximizes

∫
B |φ|2/

∫
Rd |φ|2. Letφ2 be defined similarly as the function maximizing

the last ratio and also orthogonal toφ1. We continue, in the same way, and define
φj , j = 1,2,3, . . . . This is exactly what was done in one dimension in [20], except we
are dealing with general setsA andB in Rd . In fact, for our purposes, space is discrete and
we are using the discrete Fourier transform instead of the continuous Fourier transform. But
this makes little difference. As in the one-dimensional case, the functionsφ̂j , the Fourier
transformation ofφj , are eigenfunctions of the prolate spheroidal operator (whence the
unwieldy name), which in the discrete case is simply the|A| × |A| matrix,

KA,B(k,k′)=
∑
j∈B

exp[(2πi/N)(j ,k − k′)]/Nd, k,k′ ∈A.

This matrix can be written asKA,B = χAFχBF
∗χA, where F is the Nd × Nd

discrete Fourier transformation matrix with elements exp[(2πi/N)(k, j )]/Nd/2 andF ∗
its inversion. The eigenvalues,λj , j ≥ 1, will all be nonnegative sinceKA,B is a
positive-definite matrix, as is easy to see. We will have 1≥ λ1≥ λ2 ≥ · · · ≥ λ|A|∧|B| > 0,
since ‖F‖ = ‖F ∗‖ = 1 and the rank ofKA,B is |A| ∧ |B|. Let ψj = χBψj be the

3 This is because we expect that there is a dip in oxyhemoglobin in the active regionB because the need for
oxygen is supplied initially by the local blood pool.
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orthonormal eigenvectors ofKB,A = χBF
∗χAFχB . Then χAFψj = χAFχBψj are

orthogonal eigenvectors ofKA,B and ‖χAFψj‖2 = (ψj ,KB,Aψj ) = λj , so thatφ̂j =
χAFψj/

√
λj , φj = F ∗φ̂j = F ∗χAFψj/

√
λj , and χBφj =

√
λjψj . We will always

chooseA to be symmetrical aboutk = 0, which meansA = −A (modN), and then the
eigenvectorsφj can always be taken to be real and orthonormal in the entire space, as the
symmetry ofA guarantees that both matricesKB,A andF ∗χAF are real and nonnegative
definite. In addition,ψj (= χBφj/

√
λj for λj > 0) form a real orthonormal and complete

base in the space of all functions onB. Note that the polar ofB is always symmetrical
aboutk = 0.

We are ready to provide justifications for the use of
∫
A
f̂ φ̂1

∫
B
φ1/λ1 as a proxy

of
∫
B
f . Sinceψj form an orthonormal and complete base for functions onB,

∫
B
f =∑

j

∫
B
fψj

∫
B
ψj . We would like to replace the above sum by its first element, arguing

that either
∫
B fψj or

∫
B ψj are likely to be relatively small in absolute value forj ≥ 2 and

that there is likely to be a lot of cancellations in
∑
j≥2

∫
B fψj

∫
B ψj . This is a weak point

in our theory, but it seems reasonable in view of the fact that we are assuming thatf is of
one sign overB. Here we are certainly being led by the extreme elegance of the prolate
spheroidal wavelet theory [20, 19, 7, 8]. Sinceφ1 is essentially zero outsideB (λ1 ≈ 1)
and φ̂1 is zero outsideA,

∫
B
f ∼ ∫

B
fψ1

∫
B
ψ1 =

∫
B
fφ1

∫
B
φ1/λ1 ≈

∫
f φ1

∫
B
φ1/λ1 =∫

A
f̂ φ̂∗1

∫
B
φ1/λ1. The analogous formula in the discrete case is

∑
B

f ∼
∑
A

f̂ φ̂∗1
∑
B

φ1/λ1.

Now B is fixed by the physiologist, but how do we chooseA, the region ofk-space
where the Fourier transform off is measured? If one wants to reconstructf with a
certain spatial resolution, one measuresf̂ (k), for k in a raster grid ofNd points, where
N is the linear discrimination distance in each direction ofd-space. Here,d = 2,3. If A
contains|A| � Nd points, then time resolution is improved by a factorNd/|A|, since
each measured value of̂f (k) costs a fixed amount of time. It is a slight advantage if the
setA consists ofnearby pointssince the gradients do not have to be adjusted so much in
this case to get each consecutive measurement. ConnectedA is preferred, and convexA
is even more preferred. Fortunately, the proposed choice ofA, the polar sets, are convex
ones. We argue that it is roughly thatA which maximizes the value ofλ1, the maximal
eigenvalue ofKA,B , i.e., which maximizes the maximum ratio

∑
B

|φ|2
/∑

|φ|2

among allφ for which the size of the support of̂φ is a. Since the setB is most probably
only approximately known to the physiologist, an approximately optimalA is as good as
an optimalA.

For convex setsB, the bestA in the above criterion seems to be close to the scaled
dual convex set ofB. This heuristic is supported by our numerical results below in the
two-dimensional case and Donoho and Stark [6] in the one-dimensional case. Actually, it
is very easy to prove that the optimalA is a block of consecutive integers whenB is such,
for small a in the one-dimensional discrete case. ForB = {1, . . . , b} andA′ containing
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FIG. 1. MM-iterations witha = 441 and greedy set as initialization. We see that this greedy set in the upper
right is stable.

k1< · · ·< ka ,

F(A′,B)= sup
‖v‖=1

∑
`,`′

K(k` − k`′)v`v∗`′ , K(k)= sin(bπk/N)

N sin(πk/N)
.

For smalla, |K(k)| is decreasing ink for 0≤ |k| ≤ a and |K(k)| ≤ |K(a)| for |k| > a.
Thus,

F(A′,B)≤ sup
‖v‖=1

∑
`,`′

K(`− `′)|v`v`′ | = F(A,B),

whereA= {1, . . . , a}. We do not have a proof in the higher-dimensional case or for largea

in the one-dimensional case. The optimization problem of findingA to maximizeF(A,B)
for a givena can be solved by exhaustive search in the discrete case.

Suppose we have fixedA andB, and we compute the eigenvalues ofKA,B , and we
find thatλ1 = λ2. This is an indication that we have chosena = |A| too large and that a
smallera would suffice and would enable better time resolution. Indeed, in this case one
could useeitherφ1 or φ2 so one could use a combination tosubdivideB. The physiologist
believes and tells us that the activity is happening inB. If it is happening almost everywhere
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FIG. 2. MM-iterations witha = 441 and Polar-I as initialization. We see that this set in the upper right is
unstable, but is stable after two iterations of MM.

in B, the optimala should provideλ2 � λ1 ≈ 1. If it is not knownwhere in B it is
happening, we may choose a such thatλm+1 � λm ≈ 1 for some suitablem > 1, and
partially reconstructf onB by the formula

χBf ∼
m∑
j=1

(f,ψj )ψj ≈
m∑
j=1

∑
A f̂ ψ̂

∗
j

λj
χBψj .

How large shoulda = |A| be to assureλ2� λ1 ≈ 1? Since
∑
j λj = trace(KA,B) =

|A||B|/Nd , λ1 ≈ 1 requires|A||B|/Nd ≥ 1. Some indication that|A||B|/Nd should not
be too large for the optimalA is thatλ1 = 1 andλ2 = 0 for |A||B| = Nd exactly when
|B| = 1, whence|A| = Nd , and also when|B| = Nd , whenceA = {0} and |A| = 1. We
have conducted experiments described next to see how good this relation is.

3. MATHEMATICAL EXPERIMENTATION

We chose forB several discrete subsets of anN ×N, N = 63, grid. We then considered
the problem of optimally choosing a setA in discrete, Fourier space to maximize the
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FIG. 3. MM-iterations witha = 441 and Polar-II as initialization. We see that this set is unstable, but is stable
after one iteration of MM.

maximum eigenvalue of the kernel

KB,A(j1, j2)=
∑
{k∈A}

exp{−2πi(k, j1− j2)/N}/Nd,

or at least this is what we would like to do.
Four methods are considered to select a (nearly) optimal setA:

(i) Polar-I,A= {k : minx∈B maxy∈B |(k,x− y)|< c} with |A| = a;
(ii) Polar-II,A= {k : maxx,y∈B(k,x− y) < c} with |A| = a;
(iii) Greedy searchto be described below;
(iv) MM- algorithmto be described below.

The greedy search begins with the single point setÃ1 = {0} and at each step adds
only two symmetric points to the previously optimalA; i.e., it sequentially searches
for Ã1 ⊂ Ã3 ⊂ Ã5 ⊂ · · · such thatÃa+2 is the optimal symmetricA ⊃ Ãa with |A| =
a+2, a = 1,3,5, . . . . The result of the greedy search will be called thegreedy set. Clearly,
the greedy sets are optimal fora = 1, . . . ,2m+ 1 iff A1⊂ · · · ⊂ A2m+1, whereAa is the
optimal symmetricA of sizea. The MM-algorithm exploits the fact that our objective is
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FIG. 4. MM-iterations witha = 441 and 21× 21 square as initialization. We see that this set is unstable and
needs 10 iterations of MM to become stable (at a different stable point than Fig. 3).

actually to find anA of sizea at which

max
|A|=a

max
‖ψ‖=1

(ψ,KB,Aψ)= max
|A|=a

max
‖ψ‖=1

∑
k∈A

∣∣∣∣ 1

Nd

∑
j∈B

exp[(2πi)/N(j ,k)]ψ(j )
∣∣∣∣
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FIG. 5. MM-iterations witha = 441 and uniformA as initialization. We see that this set is unstable and
needs 12 iterations of MM to become stable.

is reached, so that it alternately maximizes the sum above overψ , andA; for a given
initializationA(0), it generates iteratively

A(n+1) =
{

k :

∣∣∣∣∑
B

exp[(2πi)/N(j ,k)]ψ(n)(j )
∣∣∣∣> cn}, ∣∣A(n+1)

∣∣= a,
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FIG. 6. MM-iterations witha = 1201 and greedy set as initialization. This greedy set is again stable.

whereψ(n) is the first eigenvector ofKB,A(n) . For a givenB, a setA = A(n) is stable if
the first eigenvalue ofKB,A(n) is the same as that ofKB,A(n+1) , and it is strongly stable if
A(n) =A(n+1). Clearly, the optimalA is a stable set.

What we have found strongly indicates that the polar sets are nearly optimal; we find:

(1) the bestA at each step of the greedy search always remains very close to the polars
of B, i.e., to Polar-I and Polar-II, with the same number of points;

(2) the polar sets and the greedy sets areoften(strongly) stable;
(3) when they are not strongly stable the MM-algorithm does not provide much

improvement in terms of the first eigenvalue;

Remark. It may seem that this is scanty evidence because of the fact that this is a greedy
search, but we find it very surprising that the greedy search consistently nearly produced
the polar set for the examples ofB we used, as described below.

(4) in most cases with|A| ≤Nd/5 the greedy sets are strongly stable and have larger
first eigenvalue than the polars;

(5) for largea, polars have a larger first eigenvalue than the greedy sets.
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FIG. 7. MM-iterations witha = 1201 and Polar-I as initialization.

Remark. Since the greedy search is not always optimal, the optimal sets for different
sizes a are not completely nested, but at least for smalla, the greedy search seems to
produce the optimalA.

The greedy sets are nearly convex in a discrete sense, but sometimes, they may have
some holes. Of course, in the practical measurement situation the set of values wheref̂ (k)



112 SHEPP AND ZHANG

FIG. 8. MM-iterations witha = 1201 and Polar-II as initialization. In comparing Figs. 6–8, note that 1201
is too large for practice and the eigenvalues are nearly equal, but Polar-II does best.

is measured would certainly be taken to be convex, and the recommended choice of the
scaled polar set should work well.

Figures 1–13 describe our experiments with a phantom compatible with one frequently
used in CT scanning, in a 63× 63 grid. Fora = 441 (≈ Nd/10), Figs. 1–5 show the
MM-algorithm with the initialization being the greedy set, Polar-I, Polar-II, square of
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FIG. 9. The growth of greedy sets and the first 20 eigenvalues. Note the holes in the greedy sets for largea.
Earlier pairs are lighter in gray level.

21× 21, and the uniformly distributedA, respectively; the greedy set is the only stable
one and provides the largest first eigenvalue. Fora = 1201, Polar-II is the best as shown in
Figs. 6–8. Figure 9 shows the growth of greedy sets asa varies and the first 20 eigenvalues
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FIG. 10. The growth of Polar-I.

for the greedy sets asa varies; it can be seen that trace= |A||B|/N2≈ 3 (1/ trace≈ 1/3)
providesλ2� λ1 ≈ 1. Figures 10 and 11 show the growth of polar sets. Figure 12 shows
the optimal filtersφ1 for the greedy sets with variousa; they are positive on the setB.
Figure 13 shows the first six eigenvectors for the greedy set witha = 225; for j ≥ 2,
φj takes different signs onB. The greedy searches with two otherB sets are described
respectively in Figs. 14 and 15, which are self-explanatory.

FIG. 11. The growth of Polar-II. We see that Polar-I and Polar-II are quite similar, but Polar-I has holes.
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FIG. 12. Optimal filters for the greedy sets. One is getting a good integral of the activity even with 155 points
(lower right).

4. CONCLUSIONS

We have specified a method to obtain a new measurement of the total mental
activity in a specified region of the brain at an instant of time, which can be repeated
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FIG. 13. First six eigenvectors for the greedy set. Some finer decomposition of the activity inB may be
possible ifa = 225.

at high time resolution. We hope our method will enable locating the place in the
brain where more rapid mental processes and subprocesses take place. Our method
poses an optimization problem in the theory of prolate-spheroidal functions, and we
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FIG. 14. The growth of greedy sets and the second eigenvalues for the second B. The upper right gives the
time of entry (mod100).

provide a heuristic approximate solution. Our computational experiments indicate that the
optimization problem is likely to require exponential search in the discrete case, but the
heuristic solutions are nearly optimal.
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