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Our objective is to improve théme-resolutiorof functional magnetic resonance
imaging by sampling only a small fraction of the Fourier transform of the spin
density and using prolate wavelet (P-wavelet) filtep approximately obtain not
the usual susceptibility map, but instead theegral, 7(¢), of the difference in
susceptibility between task and pretask, over a prespecified region of interest in
the brain at successive time-points,This space—time trade-off thus allows us to
obtain, at high time-resolution, thetal activity, 7 (¢), in a specified regior, of the
brain which processes the specific stimulus or task to learn or verify where the brain
function takes place. We find that for a typical regin of the brain, say describing
the hippocampus, believed to be involved in memory, consisting of say 100 points in
a 64x 64 brain image space, that our optimal choice of Fourier sampling region,
hasa = 400 points, which then gives a 10-fold speed-up compared to the usual
method of sampling, since the usual sampling needs fints which exceeds
10 times 400. Of course we get this speed-up at the price of spatial resolution.
Even faster sampling of the integral of the susceptibility difference ought to be
possible for a seB of 100 points in this level of pixelization. Onceis fixed, the
mathematical problem of choosing the optimal P-wavelet filter can be viewed as
a natural generalization to 2 and 3 dimensions of the theory of prolate spheroidal
wave functions, due to Landau, Pollak, and Slepian. The first prolate spheroidal
wave function for fixedA, B is that functiong which is maximally concentrated
on B and whose Fourier transform vanishes exceptioihe problem of choosing
the sampling regiom, for fixed sizea = |A|, to maximize the concentration on
the given B remains open and is probably NP-complete, i.e., probably involves
exponential search. However, we give a very simperistic for choosing a set
A, which seems to give excellent results in the examples we have studied, and we
give the optimal P-wavelet filteg, = ¢ g, for the choice ofd, based on our heuristic.

The heuristic is to take as. it thescaled polar sebf B, i.e.,

A={k:xtr;2>l<3(k,x—y)<c'}, @D

1 A prolate wavelet may also be called a prolate-spheroidal wave function. See Acknowledgments.
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wherec is chosen so that the size df is a, as desired to achieve a given time-
resolution forl (). We give evidence to support our claim thagives good results.
[J 2000 Academic Press

1. TIME RESOLUTION IN fMRI

Ogawa [12-14] showed, in celebrated work, that cerebral blood flow, refreshing areas
of the brain which are active during the execution of a mental task with oxygenated
blood, changes the local magnetic susceptibility which can be measured with a magnetic
resonance (MR) scanner. More particularly, hemoglobin exists in two different states,
oxyfied and deoxyfied, and deoxyfied hemoglobin produces a different local magnetic field
than does oxyfied hemoglobin, because of the presence of iron in hemoglobin and because
of the fact that the magnetic field of iron is stronger in local combination without oxygen
than it is with oxygen. Measuring susceptibility then indicates the flow of blood to those
areas of the brain being utilized to perform the task.

A serious problem with Ogawa'’s widely used technique, and later related techniques,
is slowness. Ogawa’s method is usually implemented to go@napletamage every 10 s
(often even slower), while many mental processes, for example image recognition, take
place on anuch fastetime scale.

PET (positron emission tomography) is even slower, and PET requires several subjects
for a single experiment and consequent appropriate rescaling and renormalization in order
to be used in physiology (function studies). Even so, it is still competitive with fMRI,
despite the fact that it involves ionizing radio-activity. But maybe this will change with an
improvement in the time-resolution of fMRI.

In all the standard methods, the Fourier transform of the spin density is sampled
completely and repeatedly as time progresses. We propose speeding up the method by
sampling onlya small fractionof Fourier space when the physiologist wants to determine
how much activity there is in aspecific regionof the brain. This allows the speed-
up because we avoidompletesampling, even though the Fourier transform is actually
changing everywhere.

Our method is based on some old and mostly overlooked wonrolate spheroidal
wave functionsvhich later came to be called wavelets.

Sampling only a small region of Fourier transfork) Epace cannot allow an inverse
Fourier transform with resolution equivalent to sampling alkagpace, needless to say.

But for the purposes of physiology, or functional understanding, high spatial resolution
is not so important, since areas of the brain are not eamned or evenrecognizablén
anatomy books, to high spatial resolution. So, it seems, a trade-off between spatial and
temporal resolution is what is needed and this is what we are proposing.

If the Fourier transformf (k, 1), of the spin densityf (x, ), at timer is sampled fok in
a setA, and it is desired to learn how much activity there is in aB@t Xx-space at time,
then, as we show, this can be done much more quickly Usigiger dimensionaprolate-
spheroidal wave functions. In one dimension, the elegant theory of these functions is due
to Landau, Pollak, and Slepian [7, 8, 19, 20]. These functions are now more commonly
known as wavelets. If the set has Lebesgue measusge and if a is decreased by a

2\We use the termactivity because of emission tomography [17].
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factor of 2, then we obtain twice the time resolution, for example. We expect to speed
up the procedure by a factor of 10 or more. Instead of trying to reconshreientirespin
density at each we only reconstruct thehangein a specified regionB, say the visual
cortex or some different area where physiologists believe that the “rolodex” of images is
located.

This leads to the following mathematics problem, of interest in itself in wavelet theory.
Given a seB, a positive numbet, and a sef, contained irk space and having measure
there is a functiong(k), which vanishes offt and whose Fourier transform has a maximal
fraction of its energy irB. Call this maximal fractionF' (A, B), and then choosa so that
this maximum is as large as possible. Then sampjfingnly for k € A will give a fast
method (ifa is small) for obtaining how much activity there is B Indeed, if¢ is the
function having maximal concentration B, for a bestA, then by Parseval’s theorem,
with z* denoting the complex conjugate gf

/f(X)¢(X)*dx=/f(k)qS(k)*dk.

The right side is known becauéek) =0 wheref(k) is not measured, and the left side is
(approximately) the integral of (x) overx € B, if the right normalizing constant is used
for £. Which setA would be optimal, for giver? We offer some heuristics and some
evidence that ifB is convex, themnA ought to be taken as a scaled version of the dual
convex setA = cB+, where

Bt ={k:(k,x—y) <1, forallx,ye B}

and where is chosen so that = ¢ B+ has measure. Of course the same would hold for
the discrete Fourier transform setting, except that @oand B become discrete sets, and
the polar sefd can be also defined as

A= {k:minkepmaxes |k, x —y)| <c}.

The two definitions coincide in the continuous case. It is amazing to us that in the examples
we have tried, it seems that the optimalas defined by maximizing the maximum
eigenvalue, or concentration, i is nearlythe same as thieeuristically obtained setA
defined above in terms of the polar dualBo Finding the true optimah, i.e., theA of
sizea which maximizes the concentration B of the most concentrated function ®
whose Fourier transform is supposedAyseems difficult and we expect it will be shown
to be NP-complete, that is a computationally difficult problem involving an exponentially
growth in N computer search. As in the traveling salesman problem, the true optimum is
hard to find, but there is also a simleuristicto find a route for a salesman’s tour on an
arbitrary graph that iprobablyvery close to having minimal length. In our case, we have
no such proof.

Of course, itis the uncertainty principle that keeps the maximum eigenvalue from being
unity: a function and its Fourier transform cannot both have compact support.

Another way to argue that the choice #fand# (k) should be that prolate function, or
wavelet, which is the main one in the Landau—Slepian—Pollak sense, rather than any old
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wavelet concentrated in bothandk space, is that we nee&tk) =0, off of A, since we
do not measuré (k) there.

It might be argued that it would be more reasonable to sarfigke for k in a very
diversely distributed set, i.e., that the depught to be a fractal, rather than a scaled version,
of the dual convex set t8, which is a convex set rather than a fractal. The reason we do
not think that this will be the case is rather involved. Indeed, one could argue that one
should merely take a lower sampling rate of the discrete Fourier transfofmand if ¢ (x)
is an approximate indicator of a sBt then we can reconstruct the integral ofover B
approximately, by using the Poisson summation formula @#a2 ord = 3 dimensions),

K\ A /K\*
Y ramedn =307 (5 )o(5 )

It might similarly be argued that it would be simpler to use the best approximation
(in L?) of the indicator functiory by a functionp whose Fourier transform has support
of the Lebesgue measure This problem is indeed simple to solve. The answer is to
use the functiony whose Fourier transform has support of measurand which best
approximateg; g, the Fourier transform of the indicator df. ¢ is easily seen to be simply
the function whose Fourier transform coincides wijth on the set of measure and of
the form{k:|xp (k)| > c}. However, we think choosing will not work out as well as
the proposed method of using the prolate function which goes with a scaled version of
B as described above, because theBsét not so precisely known and specifiable and
because the second formulation is too rigid and nonrobust in that a pombtout near
the boundary ofB is given much more weight than a nearby point on the outsidg.of
The set{k : | xp (k)| > c} is not even connected unless its size a is small enough. The use
of the prolate spheroidal function which goes withand the best will approximate the
indicator, in a rough sense, and should provide a more robust estimate of the intefjral of
over B, deemphasizing the boundary Bfin a reasonable way.

The intuition fornotusing a fractal as in the Poisson sum formula is slightly different,
but again heuristic and nonrigorous. If we knew nothing abpuhen the approximate
integral overB would probably be best taken by the Poisson sum formula method above. So
if f did notremain positive (or negative) withi, but instead couldhange signvithin B,
then we would probably not want to use the prolate method. But we are assuming that the
mental process taking place inside®vill cause f (x, r) — f(x, 0) to be of the same sign,
becauseB is the area of increased deoxyhemoglobin. If our assumption is wrong, and in
some parts o3 there is less deoxyhemoglobin, then some other region should have been
designated a®, perhaps a subregion of th should have been chosen instead. We are
not so much interested in getting the total integrafodver some translatef B (though
we can obtain this as a control and at no additional sampling cost merely by using, instead
of ¢5(j), a phase shify", ., ¢! TXpp(k), which then corresponds to a translateRof
to B + ). Of course one should try all the above methods to verify the above reasoning
in practice; we are not fully convinced ourselves by our intuitive reasoning. In principle
one could study the choice daf and¢ via the method of simulations, so effective in CT
scanning, but simulations in MRI, not to mention fMRI, are not easily carried out due to
the increased number of free variables present in MRI compared to CT.
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For the background of the MRI and related fields, we refer to Moebal [11],
Ogaweet al. [12—-14], Buonocoret al. [1], and Chcet al. [2]. For more engineering details,
see [18].

Prolate-spheroidal wave functions were considered by Slepian and Pollak [20], Landau
and Pollak [7, 8], and Slepian [19]. Donoho and Stark [5, 6] considered applications of
the prolate-spheroidal wave functions in a different context and proved that, in the one-
dimensional case, for intervalsandu (A)w(B) < 0.8, whereu is the Lebesgue measure,

F (A, B) is maximized by an interval. Wavelets are discussed in Chu [3], Daubechie [4],
Meyer [9], and Meyer and Coifman [10].

2. CHOOSING A P-WAVELET

Because we are usingquadratic criterion for optimization, we have to make some
assumptions orf to make the present approach sensible. Thyq¥hich is the difference
between the after-stimulus and the before-stimulus spin density signal in BOLD, which
includes the effect of susceptibility) is as likely to be negative as positive inside thien
there is not much sense in trying to find its integral oBerlnd there is no reason to want
the filter¢ (x) to be of one sign omB. But we believé that £ (x) is of one sign (positive or
negative) throughout the active regiBrand we expect that mostly vanishes of3. Here
we are relying on the physiologist to tell us that the stimulus is handled by the regjion,
of the brain.

Now we want to argue thaf, f&f [ #1/+1 is areasonable proxy gf, f, wheregy is
the main prolate-spheroidal wave function for B anda is the main eigenvalue. What is
the reason for this?

Let us review the theory of prolate-spheroidal wave functions as wavelets. For a given
set B in real space, and, in Fourier transform space, consider the set of all functions,
#(x), for which the Fourier transform(k) = 0 for k outsideA. Let ¢1 be that function
which maximizesf, |12/ Jra |$|2. Letgo be defined similarly as the function maximizing
the last ratio and also orthogonal . We continue, in the same way, and define
¢;, j=1,2,3,.... This is exactly what was done in one dimension in [20], except we
are dealing with general setsandB in R?. In fact, for our purposes, space is discrete and
we are using the discrete Fourier transform instead of the continuous Fourier transform. But
this makes little difference. As in the one-dimensional case, the fundfiprte Fourier
transformation of;, are eigenfunctions of the prolate spheroidal operator (whence the
unwieldy name), which in the discrete case is simply|thex |A| matriX,

Kapk K)=>Yexd@ri/N)(.k—K)/N?, kK eAa.

jeB

This matrix can be written aka. 3 = xaFxzF*xa, where F is the N x N?
discrete Fourier transformation matrix with elements[éxpi/N)(k,j)]/N?/? and F*
its inversion. The eigenvalues,;, j > 1, will all be nonnegative since&, 5 is a
positive-definite matrix, as is easy to see. We will have Ay > Ap > --- > X418 > 0,
since ||F|| = |[F*|| = 1 and the rank ofK4 p is |A| A |B|. Let ¢; = xpy; be the

3 This is because we expect that there is a dip in oxyhemoglobin in the active ediecause the need for
oxygen is supplied initially by the local blood pool.
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orthonormal eigenvectors oKp 4 = xpF*xaF xp. Then xaFy; = xaF xpy; are
orthogonal eigenvectors af 4 5 and ||XAF¢,~||2 = (Y, Kp av¥j) =1}, SO thathj =
XAFY;/Jhj, ¢ = F*¢; = F*xaFy;//A;, and xp¢; = /A;v;. We will always
chooseA to be symmetrical abowt = 0, which meansA = —A (modN), and then the
eigenvectorg; can always be taken to be real and orthonormal in the entire space, as the
symmetry ofA guarantees that both matric€s 4 and F* x4 F are real and nonnegative
definite. In additionyr; (= Xquj/\/k_j for A; > 0) form a real orthonormal and complete
base in the space of all functions @ Note that the polar oB is always symmetrical
aboutk = 0.

We are ready to provide justifications for the usefgffgfblfB ¢1/A1 as a proxy
of [ f. Sincey; form an orthonormal and complete base for functionsBon/, f =
Zj S5 f¥; [z ¥j. We would like to replace the above sum by its first element, arguing
that either/(,, fv; or [, v; are likely to be relatively small in absolute value for 2 and
that there is likely to be a lot of cancellationsii;., [ f¥; [ ¥;- This is a weak point
in our theory, but it seems reasonable in view of the fact that we are assumingithat
one sign overB. Here we are certainly being led by the extreme elegance of the prolate
spheroidal wavelet theory [20, 19, 7, 8]. Singgis essentially zero outsidB (A1 ~ 1)
andfle is zero outsided, [ f ~ [ [ [p¥1 =[5 fo1 [pd1/l1~ [ fo1[pd1/h1 =
[a f [5¥1/*1. The analogous formula in the discrete case is

STEADFEED ¢1/na
B A B

Now B is fixed by the physiologist, but how do we choasethe region ofk-space
where the Fourier transform of is measured? If one wants to reconstryfcwith a
certain spatial resolution, one measuy&k), for k in a raster grid ofv¢ points, where
N is the linear discrimination distance in each direction/espace. Hered = 2,3. If A
contains|A| <« N? points, then time resolution is improved by a factéf /|A|, since
each measured value gff(k) costs a fixed amount of time. It is a slight advantage if the
setA consists ofhearby pointssince the gradients do not have to be adjusted so much in
this case to get each consecutive measurement. Connédtepreferred, and convex
is even more preferred. Fortunately, the proposed choicg, tifie polar sets, are convex
ones. We argue that it is roughly thatwhich maximizes the value of;, the maximal
eigenvalue oK 4 g, i.e., which maximizes the maximum ratio

> |¢|Z/Z 612

among allg for which the size of the support gf is a. Since the seB is most probably
only approximately known to the physiologist, an approximately optima as good as
an optimalA.

For convex sets, the bestA in the above criterion seems to be close to the scaled
dual convex set of3. This heuristic is supported by our numerical results below in the
two-dimensional case and Donoho and Stark [6] in the one-dimensional case. Actually, it
is very easy to prove that the optimdlis a block of consecutive integers whsns such,
for smalla in the one-dimensional discrete case. Boe {1, ...,b} and A’ containing
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The B set: N=63, IBl=104 Greedy Initial A: [Al=441, lambda =0.999828907
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FIG.1. MM-iterations witha = 441 and greedy set as initialization. We see that this greedy set in the upper
right is stable.

k1< <kg,

sin(brrk/N)

F(A', B) = sup ZK(kz —ke)vevy, K (k) = Nsin(zk/N)

lvll=1 0.0

For smalla, |K (k)| is decreasing itk for 0 < |k| <a and|K (k)| < |K(a)| for |k| > a.
Thus,

F(A',B) < sup ZK(E — ) |vevpr| = F(A, B),
=1y

whereA = {1, ..., a}. We do not have a proof in the higher-dimensional case or for large
in the one-dimensional case. The optimization problem of findiig maximizeF (A, B)
for a givena can be solved by exhaustive search in the discrete case.

Suppose we have fixed and B, and we compute the eigenvaluesif 5, and we
find thati, = A2. This is an indication that we have chosen- |A| too large and that a
smallera would suffice and would enable better time resolution. Indeed, in this case one
could useeither ¢ or ¢, so one could use a combinationswbdivideB. The physiologist
believes and tells us that the activity is happening itf it is happening almost everywhere
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The B set: N=63, |BI=104 Polar-1 Initial A: |Al=441, lambda =0.999768798
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FIG. 2. MM-iterations witha = 441 and Polar-I as initialization. We see that this set in the upper right is
unstable, but is stable after two iterations of MM.

in B, the optimala should provider, « A1 &~ 1. If it is not knownwherein B it is
happening, we may choose a such that; <« A, ~ 1 for some suitablez > 1, and
partially reconstrucy on B by the formula

Z " 5, 1
xef ~ YLy~ Y = .
J

j=1 j=1

How large should: = |A| be to assure., <« A1~ 1? Sincezj Aj =tracgK, p) =
|A||B|/N?, »1~ 1 requires A||B|/N? > 1. Some indication thgtd||B|/N¢ should not
be too large for the optimad is thati; = 1 and, = 0 for |A||B| = N¢ exactly when
|B| =1, whenceA| = N4, and also whenB| = N4, whenced = {0} and|A| = 1. We
have conducted experiments described next to see how good this relation is.

3. MATHEMATICAL EXPERIMENTATION

We chose foB several discrete subsets of &nx N, N =63, grid. We then considered
the problem of optimally choosing a sdt in discrete, Fourier space to maximize the
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Polar-1l Initial A: 1Al=441, lambda =0.999803397

20 30

10
1

-10

-20
L

-30

0 10 20 30 40 50 60 -30 -20 -10 0 10 20 30

lteration 1 (final): lambda=0.999820432

20 30

10
L

-10

-20

-30

FIG.3. MM-iterations witha = 441 and Polar-1l as initialization. We see that this set is unstable, but is stable

after one iteration of MM.

maximum eigenvalue of the kernel

KpaG1j2) = ) expl—2ri(k,j1—j2)/N}/N?,
{keA}

or at least this is what we would like to do.
Four methods are considered to select a (nearly) optimal :set

(i) Polar-l,A = {k:minkep maxep [(K, X —Y)| < ¢} with |[A| =a;
(i) Polar-1l, A = {k:max yep(K,X —y) < c} with |A| = a;

(iii) Greedy searclo be described below;

(iv) MM-algorithmto be described below.

The greedy search begins with the single point 4et= {0} and at each step adds
only two symmetric points to the previously optimal i.e., it sequentially searches
for Ay ¢ A3 C As C --- such thatA,, is the optimal symmetrid > A, with |[A| =
a+2,a=135,.... Theresult of the greedy search will be calledgineedy setClearly,
the greedy sets are optimal fer=1,...,2m + 1 iff A1 C--- C Agy+1, WhereA, is the
optimal symmetricA of sizea. The MM-algorithm exploits the fact that our objective is
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The B set: N=63, IBI=104 Initial A: 1Al=441, lambda =0.995153976

30

50
L

40
10
1

o8] g oA
3
e
g o "
(=3 8, 7
°
o~ (? T
T T T T T T T T T T T T T T
4] 10 20 30 40 50 60 -30 -20 -10 [ 10 20 30
i ki
Iteration 3: lambda=0.99952393224005 lteration 6: lambda=0.999738185217651
$ 1 8
] &
e 2
¥ o Y o A
2 4 e |
] A Q4
8 4 2
' T T T T T T T ' T T T T T T T
-30 20 10 o 10 20 30 30 20 10 0 10 20 30
K K1
Iteration 9: lambda=0.999818610708856 Iteration 10 (final): lambda=0.999820768
3 3
& 1 &
2 - 2 -
Y oA ¥ o4
2 4 2
S - & 1
30 20 10 [} 10 20 30 30 20 10 [} 10 20 30
k1 k1

FIG. 4. MM-iterations witha = 441 and 21x 21 square as initialization. We see that this set is unstable and
needs 10 iterations of MM to become stable (at a different stable point than Fig. 3).

actually to find anA of sizea at which

max max (¥, Kp a¥) = max max
|[Al=a |ly|l=1 |[Al=a |lyll=1

1 - i
o > exd(2ri)/N (. K1)

jeB

keA
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The B set: N=63, [Bl=104 Initial A: |1Al=441, lambda =0.111111111
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FIG. 5. MM-iterations witha = 441 and uniformA as initialization. We see that this set is unstable and
needs 12 iterations of MM to become stable.

is reached, so that it alternately maximizes the sum above wye@nd A; for a given
initialization A©, it generates iteratively

AUTD {k :

Y _exr(@ri)/NG. k1w ™ ()| > cn}, 4" =a.
B
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The B set: N=63, |IBI=104 Greedy Initial A: |Al=1201, lambda =0.999999931
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FIG. 6. MM-iterations witha = 1201 and greedy set as initialization. This greedy set is again stable.

wherey ™ is the first eigenvector ok 4. For a givenB, a setA = A™ is stable if
the first eigenvalue oK'z 4 is the same as that & 40+1, and it is strongly stable if
AM = A0+D _Clearly, the optimaH is a stable set.

What we have found strongly indicates that the polar sets are nearly optimal; we find:

(1) the bestA at each step of the greedy search always remains very close to the polars
of B, i.e., to Polar-1 and Polar-II, with the same number of points;

(2) the polar sets and the greedy setsaiten(strongly) stable;

(3) when they are not strongly stable the MM-algorithm does not provide much
improvement in terms of the first eigenvalue;

Remark It may seem that this is scanty evidence because of the fact that this is a greedy
search, but we find it very surprising that the greedy search consistently nearly produced
the polar set for the examples Bfwe used, as described below.

(4) in most cases withA| < N¢/5 the greedy sets are strongly stable and have larger
first eigenvalue than the polars;
(5) for largea, polars have a larger first eigenvalue than the greedy sets.



MRI VIA PROLATE WAVELETS 111

The B set: N=63, IBI=104 Polar-i Initial A: [Al=1201, lambda =0.999999892
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FIG. 7. MM-iterations witha = 1201 and Polar-I as initialization.

Remark Since the greedy search is not always optimal, the optimal sets for different
sizes a are not completely nested, but at least for smathe greedy search seems to
produce the optima.

The greedy sets are nearly convex in a discrete sense, but sometimes, they may have
some holes. Of course, in the practical measurement situation the set of values\iere
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The B set: N=63, IBi=104 Polar-1l Initial A: |Al=1201, lambda =0.999999961
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FIG. 8. MM-iterations witha = 1201 and Polar-Il as initialization. In comparing Figs. 6-8, note that 1201
is too large for practice and the eigenvalues are nearly equal, but Polar-1I does best.

is measured would certainly be taken to be convex, and the recommended choice of the
scaled polar set should work well.

Figures 1-13 describe our experiments with a phantom compatible with one frequently
used in CT scanning, in a 63 63 grid. Fora = 441 (~ N¢/10), Figs. 1-5 show the
MM-algorithm with the initialization being the greedy set, Polar-1, Polar-Il, square of
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The B Set: N=63, |BlI=104 Greedy Search: up to 1220 pairs
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FIG. 9. The growth of greedy sets and the first 20 eigenvalues. Note the holes in the greedy sets for large
Earlier pairs are lighter in gray level.

21 x 21, and the uniformly distributed, respectively; the greedy set is the only stable
one and provides the largest first eigenvalue.d=er1201, Polar-Il is the best as shown in
Figs. 6-8. Figure 9 shows the growth of greedy sets\eries and the first 20 eigenvalues
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Polar-I: up to 1220 pairs
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FIG. 10. The growth of Polar-I.

for the greedy sets asvaries; it can be seen that traeg A||B|/N? ~ 3 (1/ tracex 1/3)
providesiy <« A1~ 1. Figures 10 and 11 show the growth of polar sets. Figure 12 shows
the optimal filtersp, for the greedy sets with various they are positive on the sét.
Figure 13 shows the first six eigenvectors for the greedy set with225; for j > 2,

¢; takes different signs o®. The greedy searches with two othBrsets are described
respectively in Figs. 14 and 15, which are self-explanatory.

Polar-1l: up to 1220 pairs
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FIG.11. The growth of Polar-Il. We see that Polar-1 and Polar-1l are quite similar, but Polar-I has holes.



MRI VIA PROLATE WAVELETS 115

First Eigenfunction

First Eigenfunction
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a =39, trace = 1,01, eigenvalue = 0.6354 a =79, frace = 2.04, eigenvalue = 0.8657
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a =195, trace = 5.05, eigenvalue = 0.9898

a =401, trace = 10.38, eigenvalue = 0.9997

FIG. 12. Optimal filters for the greedy sets. One is getting a good integral of the activity even with 155 points
(lower right).

4. CONCLUSIONS

We have specified a method to obtain a new measurement of the total mental
activity in a specified region of the brain at an instant of time, which can be repeated



116 SHEPP AND ZHANG

First Eigenfunction Second Eigenfunction
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a =225, frace = 5.82, eigenvalue = 0.994

a =225, trace = 5.82, eigenvalue = 0.9295

Third Eigenfunction

Fourth Eigenfunction
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01005 0 005 01

a =225, frace = 5.82, eigenvalue = 0.6398

a =225, trace = 5.82, eigenvalue = 0.5221

FIG. 13. First six eigenvectors for the greedy set. Some finer decomposition of the activitymiay be
possible ifa = 225.

at high time resolution. We hope our method will enable locating the place in the
brain where more rapid mental processes and subprocesses take place. Our method
poses an optimization problem in the theory of prolate-spheroidal functions, and we
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The B Set: N=64, |BI=106 Greedy Search: up to 200 pairs
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FIG. 14. The growth of greedy sets and the second eigenvalues for the second B. The upper right gives the
time of entry (mod 100).

provide a heuristic approximate solution. Our computational experiments indicate that the
optimization problem is likely to require exponential search in the discrete case, but the
heuristic solutions are nearly optimal.
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The B Set: N=64, iBI=100 Greedy Search: up to 876 pairs
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