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Abstract

We consider a doubly semi-parametric model for normally distributed random variables which
arises in experiments with an assured allocation design. In settling a curious question about
estimation of the model’s variance parameter, a certain inequality arises that involves the normal
probability density function and its 4rst two integrals. The inequality is of mathematical interest
in its own right, and is given a rigorous proof.
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1. Introduction

The assured allocation design has been proposed for controlled clinical trials in sit-
uations where a randomized design is impossible to implement because patients are
unwilling to enroll or where clinicians refuse to randomize patients out of ethical con-
cerns. Finkelstein et al. (1996a, b) demonstrate the feasibility of this non-randomized
design in such situations, and discuss some speci4c examples. The appropriate statistical
analysis for an assured allocation design rests on the speci4cation of a semi-parametric
model whose parameters are estimated by general empirical Bayes methods, as
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developed in earlier writings by Robbins and Zhang (1988, 1989, 1991) and Robbins
(1993). The reader is referred to the above papers for fuller discussion of the issues
involved in the design and analysis of an assured allocation trial. In this paper we
consider a particular doubly semi-parametric model for normally distributed random
variables. Instead of elaborating on practical details of application of the model in a
controlled clinical trial setting, however, we focus here on two interesting mathematical
questions that arise from the model.

Let X be a quantitative variable which we observe pre-treatment. For simplicity,
we may think of X as a baseline value for a similar measurement, denoted by Y , to
be observed post-treatment. (More generally, we may think of X as a pre-treatment
quantitative risk assessment, and Y as a quantitative endpoint of interest associated
with X .) In the assured allocation design, treatment is assigned on the basis of X :
all those patients whose X lies at or below a certain pre-speci4ed threshold are given
treatment 1 (e.g., a standard treatment), while all those patients whose X lies above
the threshold are assured treatment 2 (e.g., an experimental treatment).

The variables X and Y are related through an unobservable, patient-speci4c, random
variable �, such that given �; X has a normal distribution with mean � and variance �2.
We make no parametric assumption concerning the distribution of � in the population
of patients; we denote the arbitrary and unknown cumulative distribution function of �
by G. Because the distribution of � is entirely arbitrary, without loss of generality we
may assume the allocation threshold to be pre-speci4ed at 0 (possibly after subtraction
of a constant from X ). The treatments are assumed to a%ect each patient’s � additively,
such that the distribution of Y is normally distributed with a shifted mean � + c1 for
patients given treatment 1 (those with X 6 0), or � + c2 for patients given treatment
2 (those with X ¿ 0). We also explicitly assume that the treatment does not a%ect the
variance of the response. In symbols, then, our model is given by the following three
assumptions:

A1: � ∼ G,
A2: X |� ∼ N (�; �2),
A3: Y |�; X ∼ N (�+ c!; �2),

where !=!(X ) = 1 + I [X ¿ 0], so that index ! equals 1 or 2, depending on the sign
of X .

The statistical problem is to estimate the treatment e%ects c1 and c2 and the
variance �2.

2. Solution via the u–v method

Let u1 and u2 be absolutely continuous functions of bounded variation, where u1

vanishes outside the interval x6 0 and u2 vanishes outside the interval x¿ 0. An
integration by parts produces the well-known result (Stein’s lemma) for j = 1; 2

E[uj(X )(X − �)|�] = �2E[u′j(X )|�];
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so that after taking expectations with respect to G and rearranging terms, we have the
fundamental general empirical Bayes identity for normal random variables

E[�uj(X )] = E[Xuj(X )] − �2E[u′j(X )]:

Now from A3

E[uj(X )(Y − X )|X; �] = uj(X )(�+ cj − X )

and therefore, unconditionally,

E[uj(X )(Y − X )] = cjE[uj(X )] − �2E[u′j(X )]:

Solving the pair of equations for cj for given �2, we 4nd

cj =
{
E[uj(X )(Y − X )]

E[uj(X )]

}
+
{
E[u′j(X )]

E[uj(X )]

}
�2 = aj + bj�2 (say) (1,2)

and

2�2 = E[(Y − X − c!)2]: (3)

Eq. (3) holds because

E[(Y − X − c!)2]

=E[E{I [X 6 0](Y − X − c1)2|X; �}] + E[E{I [X ¿ 0](Y − X − c2)2|X; �}]

=E[I [X 6 0]{�2 + (X − �)2} + I [X ¿ 0]{�2 + (X − �)2}] = 2�2:

For convenience, let I1=I1(X )=I [X 6 0] and I2=I2(X )=I [X ¿ 0]. We now specialize
u1 and u2 to the functions u1(X )=XI1 =XI [X ¡ 0]; u2(X )=XI2 =XI [X ¿ 0], in which
case the coeIcients aj and bj are given by

aj =
E[uj(X )(Y − X )]

E[uj(X )]
=
E[(Y − X )XIj]

E[XIj]
(4)

and

bj =
E[u′j(X )]

E[uj(X )]
=
E[Ij]
E[XIj]

: (5)

Substituting (1) and (2) for cj in (3) yields a quadratic equation for �2 of the form
Q(�2) = 0, where

Q(t) = E[(Y − X − a! − b!t)2] − 2t = A− 2Bt + Ct2 (6)

with

A= E[(Y − X − a!)2]; B= 1 + E[(Y − X − a!)b!] and C = E[b2
!]: (7)

In practice the quantities in Eqs. (4), (5) and (7) can be estimated with strong con-
sistency by sample averages based on n pairs of observations (Xi; Yi) for i = 1; : : : ; n,
e.g.,

âj =
∑
i (Yi − Xi)XiIj(Xi)∑

i XiIj(Xi)
; etc:
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3. A curious question

The roots of the equation Q(t) = 0 are {B ± √
B2 − AC}=C. The discriminant of

Q(t); B2 −AC, is always non-negative, because �2 is one of the roots. However, both
roots of the quadratic equation are positive, and therefore feasible solutions for �2.
Which root should one choose? Obviously, the answer is whichever root corresponds
to �2 in Q(t) = 0, but which root is that, the smaller or larger root? And which root
should one choose when using the sample version, in which expectations are replaced
by sample averages?

Consider the special case �2 = 0, in which case the variables X and � are the same,
and Y − X = c!. Then from (4) we have a! = c!, so that from (7), A= 0 and B= 1.
Thus, the two roots are 0 and 2=C ¿ 0. Since C is a quantity that depends only on
the distribution of �, we deduce that the smaller root is the correct solution for �2 in
this case.

It is not obvious how to extend this conclusion for �2¿ 0 with a simple yet rigorous
argument; however, the following theorem does con4rm the identi4cation of �2 with
the smaller root generally. In what follows, in order to abstract from 4nite sample
concerns, we continue the discussion in terms of mathematical expectations.

Theorem. The quadratic equation Q(t) = 0 has distinct positive roots; unless G is
degenerate at �= 0. The parameter �2 corresponds to the smaller of the two roots.

We prove the theorem by establishing three lemmas. The 4rst states that �2 is the
smaller root if and only if an interesting inequality holds. It involves three functions
of � related to the normal distribution, for which we introduce the following notation:

Let ’(z) be the standard normal probability density function

’(z) =
1√
2�

e−z
2=2

and let �(z) be the standard normal cumulative distribution function,

�(z) =
∫ z

−∞
’(u) du:

Let  (z) be the integral of �(z)

 (z) =
∫ z

−∞
�(u) du= ’(z) + z�(z):

Properties of  (z) include:

(i)  ′(z) = �(z)¿ 0 and  ′′(z) = ’(z)¿ 0;
(ii) limz→−∞ (z) = 0;

(iii) limz→−∞ (z)=z = 0 (Mills’ ratio);
(iv) limz→+∞ (z)=z = 1; and
(v)  (−z) = (z) − z.

Thus  (z) is a positive, increasing, convex function with  (z)¿z for all z.
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Lemma 1. A necessary and su<cient condition for �2 to be the smaller root of the
equation Q(t) = 0 is the inequality

E[�(�)] · E[��(�)]
E[ (�)]

+
E[�(−�)] · E[ − ��(−�)]

E[ (−�)] ¿ 0 (9)

or equivalently

E[’(�)] · E[�(�)]
E[ (�)]

+
E[’(−�)] · E[�(−�)]

E[ (−�)] 6 1: (10)

Proof of Lemma 1. The smaller root of Q(t) = 0 is �2 if and only if Q′(�2)6 0.
Evaluating the derivative; 1

2Q
′(t) = −E[b!(Y − X − a! − b!t)] − 1; so the necessary

and suIcient condition is

E[b!(Y − X − a! − b!�2)] + 1¿ 0:

But E[Y |�; X ] = �+ a! + b!�2; so the condition reduces to E[b!(�−X )] + 1¿ 0; and
E[b!X ] = 1; because Xb! = X (b1I1 + b2I2) = u1(X )b1 + u2(X )b2; and from (5) this is

u1(X )
P[X 6 0]
E[u1(X )]

+ u2(X )
P[X ¿ 0]
E[u2(X )]

with unit expectation. Thus the necessary and suIcient condition reduces simply to
E[�b!]¿ 0.

Under assumptions A1–A3, b1 and b2 can be evaluated explicitly in terms of expec-
tations of functions of � alone, as follows. Because the distribution of � is arbitrary,
without loss of generality we may assume that �2 = 1 (possibly after division of X by
a constant), and we do so henceforth. Now P[X ¿ 0] = EP[X ¿ 0|�] = E[�(�)] and
P[X 6 0] = E[�(−�)]. Thus

E[u2(X )] = E[XI2(X )] = E{E[(X − �)I2(X )|�] + E[�I2(X )|�]}

= E
[∫

I2(x)(x − �)’(x − �) dx + ��(�)
]

= E[’(�) + ��(�)]

= E[ (�)]

and then

E[u1(X )] = E[X ] − E[u2(X )] = E[�] − E[ (�)] = −E[ (−�)]:
Therefore,

b2 =
P[X ¿ 0]
E[u2(X )]

=
E[�(�)]
E[ (�)]

and similarly,

b1 =
P[X 6 0]
E[u1(X )]

= −E[�(−�)]
E[ (−�)] :
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Consequently,

E[�b!|�] = E[b1�I1 + b2�I2|�] = b1��(−�) + b2��(�)

from which (9) follows by taking expectations with respect to �. The equivalent form
(10) follows from (9) by adding and subtracting ’(�) from terms containing ��(�),
using  (�) = ’(�) + ��(�) to simplify, and rearranging terms.

4. Proof of inequality (10)

Lemma 2. For any distribution G satisfying A1

E
[
’(�) · �(�)
 (�)

]
¿
E[’(�)] · E[�(�)]

E[ (�)]
:

Lemma 3. Inequalities (9) and (10) are true for all degenerate distributions; i.e.; for
any �

’(�) · �(�)
 (�)

+
’(−�) · �(−�)

 (−�) 6 1

with equality if and only if � is degenerate at 0.

Lemmas 2 and 3 imply that the necessary and suIcient condition of Lemma 1 holds,
and thus the Theorem, because

E[’(�)] · E[�(�)]
E[ (�)]

+
E[’(−�)] · E[�(−�)]

E[ (−�)]

6E
[
’(�) · �(�)
 (�)

+
’(−�) · �(−�)

 (−�)
]
6 1;

where the 4rst inequality follows from an application of Lemma 2 to the distribution
of � and to that of −�, and where the second inequality follows from Lemma 3 with
equality if and only if �= 0 almost everywhere. The rest of the paper is devoted to a
proof of Lemmas 2 and 3.

Proof of Lemma 2. After a change of measure to

dG∗(�) =
�(�) dG(�)∫
�(�) dG(�)

;

we are to show that E∗[’= ]¿E∗[’=�] ÷ E∗[ =�]; i.e.; that Cov∗( =�; ’= )6 0.
For this it suIces to show that the function  (�)=�(�) is increasing in � while

’(�)= (�) is decreasing in �. The justi4cation of this assertion is as follows. If g(u)
is a non-increasing function with 4nite expectation with respect to a random variable
U , then there exists a u∗ such that g(u)¿E[g(U )] for u¡u∗ and g(u)6E[g(U )]
for u¿u∗. Then if f(u) is non-decreasing, Cov(f(U ); g(U )) = E[{f(U ) − f(u∗)} ·
{g(U ) − E[g(U )]}], which is the expectation of the product of two expressions either



B. Levin et al. / Journal of Statistical Planning and Inference 108 (2002) 255–262 261

zero or of opposite signs. An alternative justi4cation, pointed out by a referee, follows
from the relation

2 Cov(f(U ); g(U )) = E[{f(U ) − f(U ′)} · {g(U ) − g(U ′)}];

where U and U ′ are independent and identically distributed.
For the assertion that  (�)=�(�) is increasing

d
d�

(
 (�)
�(�)

)
=
�(�)2 − (�)’(�)

�(�)2 ;

so letting f1(�) =�(�)2 − (�)’(�), we are to show f1(�)¿ 0 for all �. Each of the
functions ’; �, and  approaches 0 as �→ −∞, so lim�→−∞ f1(�) = 0, and thus it
suIces to show f′

1(�)¿ 0. Now f′
1(�)=2’�−{’�−�’ }=’{�+� }. So letting

f2(�)=�(�)+� (�), it suIces to show f2(�)¿ 0 for all �. Again, lim�→−∞ f2(�)=
0 + lim�→−∞ �{’(�) + ��(�)} = 0, because lim�→−∞ � 2�(�) = lim�→−∞ �’(�) = 0,
and f′

2(�) = ’(�) + ��(�) + (�) = 2 (�)¿ 0.
Hence f2(�)¿ 0 for all �, hence f′

1(�)¿ 0 for all �, and thus f1(�)¿ 0 for all �.
For the assertion that ’(�)= (�) is decreasing, it suIces to show that f3(�) =

 (�)=’(�) increases in �. But, as just shown, f2(�)¿ 0, so that f′
3(�) = {’(�)}−1

{�(�) + � (�)} = {’(�)}−1f2(�)¿ 0. This concludes the proof of Lemma 2.

Proof of Lemma 3. For degenerate G; inequality (9) takes the form ��(�)2= (�)¿
�O(−�)2= (−�). Equality is obvious for �= 0; so we assume �¿ 0; and show that

�(�)2

 (�)
¿
�(−�)2

 (−�)
(the opposite inequality holds for �¡ 0). This is equivalent to showing the positivity
of the function

f4(�) =�(�)2 (−�) − �(−�)2 (�)

=�(�)2{’(�) − ��(−�)} − �(−�)2{’(�) + ��(�)}
=’(�){�(�)2 − �(−�)2} − ��(−�)�(�){�(�) + �(−�)}
=’(�){2�(�) − 1} − ��(�){1 − �(�)}
=’(�)�(�) − (�){1 − �(�)}:

Di%erentiating the 4nal expression; we have

f′
4(�) =’(�)2 − �’(�)�(�) + (�)’(�) − �(�){1 − �(�)}

= 2’(�)2 − �(�){1 − �(�)}:
Note that f′

4(0) = (1=�) − 1=4¿ 0. Since f4 → 0 as � → ∞; it suIces to show that
f′

4(�) has at most one zero for �¿ 0. In fact; we prove that f′′
4 has at most one

positive zero; which implies that f′
4 does too. Now

f′′
4 (�) = −4�’(�)2 − ’(�) + 2�(�)’(�) = ’(�){2�(�) − 1 − 4�’(�)};
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so it suIces to show that

f5(�) = 2�(�) − 1 − 4�’(�)

has at most one positive root. But

f′
5(�) = 2’(�) − 4’(�) + 4� 2’(�) = 2’(�){2� 2 − 1}

has exactly one zero for �¿ 0. Therefore; f5(�) can have at most one positive root
(it has exactly one; since f′

5(0)¡ 0; and lim�→∞ f5(�) = 1); and this concludes the
proof of Lemma 3.

5. Remark

It might appear that an argument from continuity would allow generalization from
the special case �2 = 0 considered above to show that �2 is always the smaller root
of Q(t) = 0. It is unclear how to make this argument rigorous, however, because after
rescaling, the case of any non-zero �2 is essentially the same as the case �2=1, whereas
the case �2 = 0 cannot be rescaled, a rather discontinuous state of a%airs. In addition,
one would have to show that the two roots of the quadratic remained separated and
did not “trade places” as �2 increased from zero to an arbitrary positive value. The
analytic approach used in this paper does provide a rigorous proof, and reveals an
inequality of some independent aesthetic appeal, although we would be delighted to
learn if a simple yet rigorous continuity argument exists.
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