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1. Introduction. Compound decision theory and empirical Bayes methodol-
ogy, acclaimed as “two breakthroughs” by Neyman (1962), are the most important
contributions of Herbert Robbins to statistics. The purpose of this paper is to pro-
vide a brief description of his work in these two intimately connected fields, its
impact and a number of important related developments.

Robbins introduced compound decision theory in 1950 at the Second Berkeley
Symposium on Mathematical Statistics and Probability. Compound decision
theory concerns a sequence of independent statistical decision problems of the
same form. Its basic thrust is the possibility of gaining substantial reduction of
total risk by allowing statistical procedures for the individual component problems
to depend on the observations in the entire sequence. It demonstrates, against
naive intuition, that stochastically independent experiments are not necessarily
“noninformative” to each other in statistical decision making.

Five years later, at the Third Berkeley Symposium, Robbins developed
empirical Bayes (EB) theory. EB concerns experiments in which the unknown
parameters are i.i.d. random variables with an unknown common prior distribution.
EB methodologies provide statistical procedures which approximate the ideal
Bayes rule for the true model, so that the goal of the Bayesian inference is
nearly achieved without specifying a prior. EB procedures usually perform well
conditionally on the unknown parameters and thus provide solutions to compound
decision problems. EB methods also find applications in problems with more
complex structures and for inference about multivariate and infinite-dimensional
parameters in a single experiment.

Compound decision theory and EB have had great influence on modern
statistical thinking and practice. Since Robbins’ pioneering papers, EB methods
have been applied in a wide range of paradigms and to numerous real-life
problems; cf. Neyman (1962), Cover (1968), Copas (1972), Carter and Rolph
(1974), Simar (1976), Efron and Morris (1977), Van Ryzin and Susarla (1977),
Susarla and Van Ryzin (1978), Rubin (1980), Hoadley (1981), Morris (1983),
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Cover (1991), Zaslavsky (1993), van Houwelingen and Thorogood (1995), Carlin
and Louis (1996), Efron, Storey and Tibshirani (2001) and Efron, Tibshirani,
Storey and Tusher (2001).

2. Compound decision problems. Let f (x; θ)ν(dx) be a family of probabil-
ity measures with a parameter θ . Consider a sequence of independent experiments
with observations Xi ∼ f (x; θi), i = 1, . . . , n, where θi are deterministic unknown
parameters. Suppose that we are interested in making statistical decisions δi about
θi with a loss function L(a, θ). Robbins (1951) formulated the compound deci-
sion problem, in which δi are allowed to depend on the observations X(n) from all
n experiments, under the compound risk

Rn

(
δ(n), θ(n)

) ≡ 1

n

n∑
i=1

Eθ(n)
L

(
δi(X(n)), θi

)
.(1)

Here and elsewhere, h(n) ≡ (h1, . . . , hn)
tr for all sequences {hi} and the superscript

“tr” indicates transposition. For separable decision rules of the form δi(X(n)) =
t (Xi), that is, the ith decision being a fixed deterministic function of Xi , the
compound risk (1) is equal to the Bayes risk

R(t,G) ≡
∫ [∫

L
(
t (x), θ

)
f (x; θ)ν(dx)

]
G(dθ)(2)

for a single decision problem under the unknown prior G(A) = Gn(A) ≡
n−1 ∑n

i=1 I {θi ∈ A}. Robbins’ proposal is to seek asymptotically optimal proce-
dures satisfying

Rn

(
δ(n), θ(n)

) = R∗(Gn) + o(1) for large n,(3)

where R∗(G) ≡ mint R(t,G) is the minimum Bayes risk given a prior G.
In the simple example of testing θi = 1 against θi = −1 based on Xi ∼ N(θi,1),

with loss L(a, θ) = I {a �= θ}, Robbins constructed decision rules δ(n)(X(n)), based
on suitable estimates of Gn, such that (3) holds uniformly in θ(n). This exhibits the
benefits of utilizing “noninformative” observations {Xj , j �= i} in the ith decision
problem and the possibility of aggressive adaptation in the sense of (3) without
any knowledge of Gn.

The compound decision theory has been further developed by Robbins (1955
with Hannan, 1962, 1962 with Samuel) and others, including many students
of his; cf. Hannan (1957), Samuel (1963a, 1964, 1965), Van Ryzin (1966a, b),
Gilliland (1968) and Vardeman (1978) on sequential compound decision prob-
lems, Gilliland and Hannan (1969), Gilliland, Hannan and Huang (1976) and Datta
(1991) on Bayes methods, Fox (1970) on estimating unknown priors, Oaten (1972)
on problems with compact decision spaces, Hannan and Van Ryzin (1965), Susarla
(1974) and Zhang (1997) on convergence rates and asymptotic minimaxity, and
references in Section 4 for linear/parametric EB methods.
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3. Empirical Bayes methods. Robbins (1956) introduced the EB approach
to statistical decision problems. In the EB setting, the unknown parameters θi are
considered as independent random variables with an unknown common prior G,
and the aim is to find decision rules performing nearly as well as the ideal Bayes
rule. EB procedures can be applied in two different scenarios in practice. The
first one, on which Robbins (1956) focused, is the sequential EB problem, in
which only observations X1, . . . ,Xj are available for the j th decision problem.
The second one is the compound problem of Robbins (1951), in which the whole
vector X(n) can be used in the inference about all θi . The risk for the compound
version is

Rn(δ(n),G) ≡ n−1
n∑

i=1

EGL
(
δi(X(n)), θi

) = EGRn(δ(n), θ(n)).

Here the compound risk Rn(δ(n), θ(n)) in (1) becomes the conditional risk
given θ(n). Furthermore, the asymptotic optimality criterion (3) is naturally
replaced by Rn(δ(n),G) = R∗(G) + o(1). If we are confined to symmetric
procedures under permutations of decision problems in the compound case, the
two versions of the EB decision problems are mathematically equivalent.

Robbins’ (1951, 1956) solutions to the compound and EB decision problems
are essentially the same. Let R(t,G) be the Bayes risk in (2) and let

t∗G(x) ≡ t∗G ≡ arg min
t∈D

R(t,G)(4)

be the ideal Bayes rule, where G is the unknown prior in EB problems and G = Gn

is the empirical distribution of unknown parameters, as in (3), in compound
decision problems. Robbins’ procedures can be written as

δi(X(n)) = t̂n(Xi),(5)

where t̂n(·) ≡ t̂n(·;X(n)) is an estimate of t∗G based on the whole vector X(n). As
a general solution, he suggested using t̂n = t ∗̂

Gn
with a suitable estimate Ĝn of G

and formulated the problem of estimating the prior G based on X(n). Interestingly,
Robbins (1951) described this process as an attempt to “lift ourselves by our own
bootstraps.”

For point estimation of θi with several discrete and Laplace-type [i.e.,
ν(dx) = dx] exponential families f (x; θ), Robbins (1956) proposed simpler
methods. He expressed Bayes estimators t∗G(x) = EG[θi | Xi = x] as functionals
of the mixture density fG(x) ≡ ∫

f (x; θ) dG(θ) of Xi and suggested deriving
t̂n(x) directly from density estimators. For example, if Xi ∼ N(θi, σ

2
0 ) given

θi with a known σ 2
0 > 0, a special case of the Laplace-type kernel, the Bayes

estimator of θi under the squared-error loss is

t∗G(x) = x + σ 2
0 f ′

G(x)/fG(x).(6)
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Since Robbins’ methodologies aim at the ideal Bayes rule (4) with no restriction
on D or G, they are referred to as general EB [Robbins (1980b, 1983)] or
nonparametric EB [Morris (1983)]. Further developments of general EB methods
were undertaken by Robbins’ students Johns (1957, 1961) and Samuel (1963b)
and Robbins (1963, 1964, 1983) himself. Important contributions have been made
by Miyasawa (1961) and Kagan (1962) on estimation problems, Cogburn (1965,
1967) on stringent EB methods, Rutherford and Krutchkoff (1967) on methods
based on estimates of the prior, Meeden (1972) on admissibility, Martz and
Krutchkoff (1969) and Wind (1973) on regression, Johns and Van Ryzin (1971,
1972), Singh (1979) and Zhang (1997) on rates of convergence and asymptotic
minimaxity, O’Bryan (1976) on problems with nonidentical components and
van Houwelingen (1977) on monotone EB estimators. For the closely related
demixing problem, that is, estimation of the unknown prior G in the EB setting,
see Kiefer and Wolfowitz (1956), Dempster, Laird and Rubin (1977) and Lindsay
(1983) for nonparametric maximum likelihood methods, Teicher (1961, 1963)
for identifiability, Deely and Kruse (1968) for a minimum distance method and
Carroll and Hall (1988), Zhang (1990, 1995) and Fan (1991) for optimal rates of
convergence. We further refer to the survey paper by Copas (1969) and the books
by Maritz and Lwin (1989) and Carlin and Louis (1996).

4. Parametric and restricted EB methods. An early development of major
importance was Stein’s (1956) proof of the inadmissibility of the maximum
likelihood (best equivariant) estimator of a multivariate normal mean and the
subsequent, more precise results of James and Stein (1961). These papers led to
the parametric EB approach and a tremendous amount of research in the fields of
multivariate estimation and admissibility.

In the framework of compound decision theory, Stein’s (1956) problem is the
estimation of θi with squared-error loss based on Xi ∼ N(θi, σ

2
0 ). James and Stein

(1961) proposed θ̂i = (1 − Bn)Xi , with Bn = σ 2
0 (n − 2)/

∑n
i=1 X2

i , and proved
Rn(θ̂(n), θ(n)) < Rn(X(n), θ(n)) for all θ(n) ∈ R

n and n ≥ 3, where Rn(δ(n), θ(n)) is
the compound risk in (1). This also demonstrated the advantage of using the whole
sequence X(n) to estimate θi versus using Xi alone. Stein’s inadmissibility result
is of nonasymptotic nature, and (3) holds for the James–Stein estimator if and only
if Gn → N(0, τ 2) or R∗(Gn) → 1.

In a series of seminal papers, Efron and Morris (1972a, b, 1973a, b) provided
an EB interpretation of the James–Stein estimator and proposed a more parsimoni-
ous EB approach. We now describe this development. For G ∼ N(0, τ 2), the
Bayes estimator is t∗G(x) = (1 − B)x with shrinkage factor B = σ 2

0 /(σ 2
0 + τ 2).

Thus, under the working assumption of the normality of the unknown prior G, the
James–Stein estimator is EB in the sense of (5), with t̂n(x) = (1 − Bn)x, since
Bn → B . This is what Morris (1983) called the parametric EB, since the working
assumption is characterized by a regular finite-dimensional model for the unknown
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prior. As in James and Stein (1961), the performance of parametric EB procedures
is often evaluated in the more general compound and nonparametric EB settings.

For related contributions in multivariate influence, we refer to Brown (1966)
on general loss and location parameters, Strawderman (1971) on proper Bayes
minimax shrinkage, Berger (1980) on robust methods, George (1986) on minimax
multiple shrinkage, Efron (1996) on combining likelihoods, George and Foster
(2000) on variable selection and Berger’s (1985) book.

The James–Stein estimator can be also viewed as linear EB [Robbins (1983)],
since the normality assumption on G in (4) could be replaced by the linearity
restriction on D to produce the same type of ideal Bayes rules. EB methods with
restricted D in (4), called restricted EB [Robbins (1980b, 1983, 1985)], could aim
at certain simple non-Bayesian rules, for example, the class of all thresholding
estimators [Donoho and Johnstone (1995)].

5. Applications to high-dimensional problems. EB methodologies apply
naturally to problems with high- and infinite-dimensional data. An important
example, discussed in Efron, Storey and Tibshirani (2001), Efron, Tibshirani,
Storey and Tusher (2001) and Efron (2003), is the analysis of microarrays.
These papers also provided a connection between general EB and Benjamini
and Hochberg’s (1995) method of controlling the false discovery rate in multiple
comparisons. Here we describe how EB estimators work, and in certain senses
work much better than classical smoothing methods, in nonparametric regression.

Suppose we observe (xi, yi) with yi = f (xi) + εi , i = 1, . . . , n, where xi = i/n

and εi are i.i.d. N(0, σ 2
0 ) errors with a known σ0. Consider the estimation of the

unknown f under risk

Rn(f̂n, f ) ≡ 1

n

n∑
i=1

E
(
f̂n(xi) − f (xi)

)2
.(7)

Although (7) is of the same form as (1), smoothness properties of the
unknown f are best exploited under different coordinate systems. Let {ψk,n} be
suitable orthonormal (e.g., discrete Fourier or wavelet) bases in R

n. Define zk,n ≡
ψ tr

k,ny(n) and θk,n ≡ ψ tr
k,nf(n), k = 1, . . . , n, where f(n) ≡ (f (x1), . . . , f (xn))

tr.
Estimation of f(n) based on y(n) is equivalent to estimation of {θk,n} based
on {zk,n}, since Rn(f̂n, f ) = n−1 ∑n

k=1 E(θ̂k,n −θk,n)
2 with f̂(n) = ∑n

k=1 θ̂k,nψk,n.
The advantage of the z–θ representation is that smoothness conditions on f often
imply θk,n ∼ √

nk−(α+1/2) in a certain sense with a smoothness index α. It follows
that Rn(f̂n, f ) = O(1)n−α/(α+1/2) if we essentially estimate n − O(n1/(2α+1)) of
those in {θk,n : |θk,n| ≤ σ0} by zero and estimate the remaining, mostly larger θk,n

by zk,n. The problem is adaptation to different types of smoothness conditions and
smoothness indices α.

Block EB estimators of f are constructed by dividing {1, . . . , n} into a number
of blocks and then applying EB methods in individual blocks. More precisely, let
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k0 < · · · < km = n and let [j ] ≡ (kj−1, kj ] be m blocks. Block EB estimators
are of the form θ̂k,n = t̂[j ](zk,n), where t̂[j ](x) are estimates of certain ideal
Bayes rules t∗[j ](x) for the j th block. Direct application of the James–Stein (JS)
estimator yields block JS estimators θ̂k,n = (1−B[j ])zk,n for k ∈ [j ], where B[j ] =
σ 2

0 (#[j ]−2)/
∑

k∈[j ] z2
k,n. For block general EB estimators, t̂[j ](x) approximate (6)

with G(A) = ∑
k∈[j ] I {θk,n ∈ A}/(#[j ]), since zk,n ∼ N(θk,n, σ

2
0 ). From this

point of view, Efromovich and Pinsker’s (1984) estimators are block linear EB,
and Donoho and Johnstone’s (1995) are block threshold EB. Block general
EB methods were developed in Zhang (2000).

Let us describe the adaptive minimaxity and superefficiency of block EB
estimators. Consider linear EB methods for simplicity. Let {ψk,n} be the discrete
Fourier bases and let the block sizes satisfy max2≤j≤m kj/kj−1 → 1 and
m/nε → 0 for all ε > 0. The block JS estimators are exactly adaptive minimax
in the sense that

sup{Rn(f̂n, f ) :f ∈ Fα,c}
inf

f̃n
sup{Rn(f̃n, f ) :f ∈ Fα,c}

= 1 + o(1)(8)

simultaneously for all Sobolev balls Fα,c ≡ {f :‖f ‖(α) ≤ c}, α > 0, c > 0, where

‖f ‖(α) ≡ lim supn

√∑n
k=1 k2α|θk,n|2/n. This is the main result of Efromovich and

Pinsker (1984). In fact, they considered modified JS estimators to cover non-
Gaussian zk,n. For positive integers α, ‖f ‖2

(α) = ∫ 1
0 |(d/dx)αf |2 dx for functions

with period 1. Compared to the minimax rate inf
f̃n

sup{Rn(f̃n, f ) :f ∈ Fα,c} ∼
nα/(α+1/2), the block JS estimators are also superefficient in the sense that

lim
n→∞nα/(α+1/2) sup

{
Rn(f̂n, f ) :f ∈ C

} = 0(9)

for all compact sets C under the ‖f ‖(α) norm. These properties are much stronger
than the standard results, with O(1) on the right-hand side of (8) and M(C) > 0 on
the right-hand side of (9), for classical smoothing methods with optimal bandwidth
and penalty parameters.

The literature in nonparametric estimation is one of the richest in statistics; cf.
Ibragimov and Khasminskii (1981), Breiman, Friedman, Olshen and Stone (1984),
Wahba (1990), Friedman (1991), Stone (1994), Donoho, Johnstone, Kerkyacharian
and Picard (1995), Fan and Gijbels (1996), Barron, Birgé and Massart (1999),
Efromovich (1999), Hastie, Tibshirani and Friedman (2001) and the references
therein.

6. Prediction and related problems. Robbins (1977, 1980a, b) extended the
EB methodology to the prediction of sums of the form Sn ≡ ∑n

i=1 Yiu(Xi) based
on {Xi} and statistical inference based on biased allocation schemes.
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For example, given a pool of motorists, how do we predict the total number
of traffic accidents next year for those in the pool with a prespecified number of
accidents this year, for example, those with clean records? If the overall traffic
condition is unchanged, it is appropriate to assume that, for the ith individual
in the pool, the number of accidents Xi for the current year and Yi for the next
are independent Poisson variables with a common mean θi . The problem is the
prediction of Sn with u(x) = I {x = a} for a prespecified integer a ≥ 0.

In the EB setting, the θi are assumed to be independent with an unknown
distribution G and the ideal Bayes predictor under squared-error loss is T ∗

n =∑n
i=1 t∗G(Xi)u(Xi), where t∗G(x) = EG[θi |Xi = x]. General and restricted EB

predictors of the form Tn = ∑n
i=1 t̂n(Xi)u(Xi) were considered by Robbins

(1980a, b). In the above example, the general EB estimator t̂n(x) = (x + 1) ×
fn(x + 1)/fn(x) of Robbins (1956) provides the predictor Tn = ∑n

i=1 v(Xi) with
v(x) = xu(x − 1), where fn(x) is the observed frequency of {Xi} at x. The
predictor Tn is unbiased for deterministic θi and asymptotically efficient for i.i.d. θi

[Robbins and Zhang (2000)]. The variance E(Tn − Sn)
2 can be estimated by EB

methods to produce prediction intervals for Sn [Robbins (1977)].
In related biased-allocation problems, treatment groups are assigned according

to the pre-treatment Xi , and the distributions of post-treatment Yi , given (Xi, θi),
depend on both the treatment and θi . For example, if only those motorists
with a accidents are treated, for example, with a reduction in insurance premium
for a = 0, and the treatment effect is a multiplicative factor λ in the Poisson model,
that is, E[Yi|Xi = a, θi] = λθi , the general EB method gives λ̂ = Sn/Tn, based
only on those Yi in the treatment group. Methodologies for problems related to this
type of biased allocation have been further developed by Robbins (1982, 1988),
Robbins and Zhang (1988, 1989, 1991), Finkelstein, Levin and Robbins (1996a, b)
and Levin, Robbins and Zhang (2002).

The above Poisson prediction problem is also related to the estimation of the
total probability of unobserved outcomes, for example, fish in a lake, bugs in
a piece of software, in multinomial models. Let {Xj } be a multinomial vector
with parameters m and {pj }. The total probability of unobserved outcomes is
η ≡ ∑

j pj I {Xj = 0}. If {Xj } is viewed as a vector of independent Poisson
variables conditionally on

∑
j Xj = m, then the general EB solution Tn for the

Poisson prediction problem above leads to η̂ = ∑
j I {Xj = 1}/m. See Good

(1953) and Robbins (1968).

7. Final remark. Herbert Robbins’ legendary career was characterized by his
great originality and power, the elegance of his ideas and his way of communicat-
ing them through surprising but simple examples. His work in compound decision
theory and empirical Bayes was no exception. His contributions, spirit and wis-
dom have benefited many tremendously, including myself, and will undoubtedly
continue to do so for generations to come.
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