
A Probability Model for Combining Ranks

Ofer Melnik, Yehuda Vardi, and Cun-Hui Zhang

Rutgers University, Piscataway NJ, USA
melnik@dimacs.rutgers.edu, {vardi, czhang}@stat.rutgers.edu

Abstract. Mixed Group Ranks is a parametric method for combining
rank based classi�ers that is e�ective for many-class problems. Its para-
metric structure combines qualities of voting methods with best rank
approaches. In [1] the parameters of MGR were estimated using a logis-
tic loss function. In this paper we describe how MGR can be cast as a
probability model. In particular we show that using an exponential prob-
ability model, an algorithm for e�cient maximum likelihood estimation
of its parameters can be devised. While casting MGR as an exponential
probability model o�ers provable asymptotic properties (consistency),
the interpretability of probabilities allows for �exiblity and natural inte-
gration of MGR mixture models.

1 MGR as a Score Function
Many rank combination approaches can be cast as the problem of assigning scores
to classes based on the ranks they receive from multiple consituent classi�ers.
Once assigned, then classes can be ordered based on their scores, generating a
combined ranking.

We use the following notation. There are K target classes t1, . . . , tK and a
collection of J component classi�er algorithms a1, . . . , aJ . For any particular
query, the output of algorithm aj is r(j) ≡ (

r(j)(1), . . . , r(j)(K)
)
, with r(j)(k)

being the rank assigned by algorithm aj to class tk. A score function, for each
class maps the rankings to a scalar

S (θ) ≡ fθ

(
r(1), . . . , r(J)

)

where θ is a class in t1, . . . , tK . As score functions are ultimately used to generate
new rankings, they have the important property of being invarient to monotonic
transformations.

R∗(k) ≤ R∗(k′) ⇔ S(k) ≥ S(k′) ⇔ g(S(k)) ≥ g(S(k′)) (1)

where g is monotonically increasing, and R∗ denotes the combined ranking de-
rived from the class scores.

Some example score functions are the Borda count, Linear Score and the
Best Rank [2]. The Borda count is a voting method, which assigns the (neg-
ative) sum of ranks as a score, SBorda(θ) = −∑J

j=1 r(j)(θ). The Linear Score

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 64�73, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

A Probability Model for Combining Ranks 65

generalizes the Borda count by assigning a weight to each classi�er,SLinear(θ) =
−∑J

j=1 wjr
(j)(θ). The Best Rank score selects the best rank a class receives as

its score, SBest(θ) = −minj∈1...J r(j)(θ).
In [1] we proposed the Mixed Group Ranks (MGR) score function which

generalizes the Best Rank and Linear scores. It is a weighted linear sum of the
minimum rank of all subsets of classi�ers

SMGR(θ) = −
∑

A⊆{1...J}
wA min

j∈A
r(j)(θ)

The MGR score function combines the democratic voting aspect of the Linear
and Borda Scores with the emphasis on con�dent rankings of the Best Rank
score. In [1] we describe the general category of score functions that embody
these characteristics; Score functions that are both monotonic and quasiconvex
(in the ranks assigned to a class) prefer lower ranks to bigger ranks and assign
greater in�uence to smaller ranks. With non-negative weights,wA ≥ 0, ∀A, MGR
is both monotonic and quasiconvex, embodying these score properties.

2 Probabilistic Framework for Rank Combination
In this section we reformulate combination of rank classi�ers as a problem of
estimating maximum likelihood (ML) and Bayes rules.

Unlike a black-box score function approach which does not model the process
used to generate the constituent rankings, in the probabilistic setting we consider
the rankings generated by the constituent classi�ers as coming from a stochastic
process, where

pθ

(
r(1), . . . , r(J)

)
≡ p

(
r(1), . . . , r(J) |θ

)
(2)

is the conditional joint distribution of R(j) ≡ (
R(j)(1), . . . , R(j)(K)

)
, j ≤ J ,

as J random vectors, with R(j)(k) being the rank assigned by algorithm aj to
class tk, when the actual class is tθ, θ ∈ 1 . . .K. This formulation is the key to
a probabilistic combination approach, considering each combination of ranks as
having a distinct conditional probability that implicitly captures the biases and
interactions in the rank combinations.

The likelihood function of the probability, L(θ) ≡ pθ

(
R(1), . . . , R(J)

)
, can

form the basis for statistical combination procedures. In particular, the ideal
Maximum Likelihood combination method would assign combined ranks,R∗(k),
to each class tk that satisfy

R∗(k) ≤ R∗(k′) ⇔ L(k) ≥ L(k′) (3)

according to the likelihood functionL(·). This rule estimates θ, the index of the
true class by θ̂ ≡ arg max1≤θ≤K L(θ). It is an idealized algorithm in the sense
that it requires full knowledge of the probability densities in (2), which are never
available in practice.

66 O. Melnik, Y. Vardi, and C.-H. Zhang

The ideal ML rule becomes the Bayes rule when q is a random query with
the uniform distribution P {q ∼ tk} = 1/K. In general, if the class has a prior
distribution g(k) = P {q ∼ tk}, then the ideal Bayes algorithm would rank the
classes according to the posterior distribution p

(
θ|R(1), . . . , R(J)

) ∝ g(θ)L(θ).
We observe that the ideal Bayes rule, R∗, generates optimal rankings for all
monotone loss functions in terms of the rank of the true identity. In other words,
if Pg {q ∼ tk} = g(k) and ξ(k) is any rank combination function of the outputs
of the component classi�ers, thenEgh(R∗(θ)) ≤ Egh(ξ(θ)) for all nondecreasing
loss functions h, where Eg is the expectation under Pg and θ is the index of the
true identity of the random query q, i.e. q ∼ tθ.

3 MGR as an Exponential Probability Model
Implementing the ideal Bayes rules requires full knowledge of the probability
vectors pθ in (2) and the prior probabilities for all possible values of θ, the
classes. In reality pθ is unkown and has to be estimated. This poses a serious
dimensionality problem as the estimation (training) data is usually of smaller
order than the KJ dimensionality of the domain of pθ. This suggests that di-
rectly applying non-parametric frequency estimation for the probability vectors
pθ might be ine�ective, (we will return to this question in a later section on
mixture models), whereas a parametric model would not su�er from this dimen-
sionality curse. In this paper we develop a parametric probability model based
on the MGR structure.

Remember that score functions are invarient to monotonic transformations
(see equation (1)). In particular, applying a montonically increasing function to
the output of MGR does not change how it ranks. The problem is to �nd a
monotonic transformation of MGR functions which form a mathematically and
computationally tractable family of parameteric distributions. A solution we
develop is the following exponential family with MGR scores as basis functions:

pθ(x) = h(s(x)) =
exp (s(x))

C
=

1
C

exp

−

∑

A⊆{1...J}
wAmin {xj : j ∈ A}

 (4)

where C is an appropriate normalization constant.
The advantage of using an exponential family are the well behaved properties

of such distributions. The likelihood of a distribution function in the exponential
family is convex and therefore has the property of having at most one maxima,
where this maxima is the unique MLE [3]. Moreover estimates of the MLE have
the property of being typically asymptotically e�cient w.r.t the quantity of
estimation data.

3.1 Calculating the Normalization Factor
In the case of combining 2 classi�ers, surprisingly there is an analytical solution
for the model parameters (which is beyond the scope of this paper). In the

A Probability Model for Combining Ranks 67

general case estimation of the parameters of (4) requires a way of computing the
constant,C. HavingC gives an explicit formula for (4) and allows the parameters
to be estimated using convex programming techniques [4] (cite). We provide here
a derivation and procedure for calculatingC.

Let AJ = {A |A ⊆ {1, . . . J} , A 6= ∅} be the set of non-empty subsets, and
let −→β = {β1, β2, β12, β3, β13, . . .} = {βA |∀A ∈ AJ } be the set of all coe�cients.
The probability distribution (4) can be written as

f(x1, . . . , xJ) =
exp

(−∑
A∈AJ

βA minj∈A xj

)

TJ

(−→
β

) (5)

where

TJ

(−→
β

)
=

∞∑
y1=1

∞∑
y2=1

· · ·
∞∑

yJ=1

exp

(
−

∑

A∈AJ

βA min
j∈A

yj

)
(6)

If we write y∗ = min (y1 . . . yJ) then we can rewrite (6) as

TJ

(−→
β

)
=

∑

B∈AJ

∑

y1 · · · yJ

B = {j |yj = y∗ }

exp

(
−

∑

A∈AJ

βA min
j∈A

yj

)
, (7)

where the inner sum runs over all vectors of (y1 · · · yJ) where the yj , j ∈ B, are
the minimal elements, i.e. yj = y∗. Thus, the outer sum picks which y′s will be
the minimal elements, and the inner sum goes over all values of they′s where
that holds.

De�ning β∗ =
∑

A∈AJ
βA = 1T−→β and using the notation −→β C as the restric-

tion of −→β on the subset C, the inner sum of (7) can be rewritten as

∑

y1 · · · yJ

B = {j |yj = y∗ }

exp

(
−

∑

A∈AJ

βA min
j∈A

yj

)

=
∑

y1 · · · yJ

B = {j |yj = y∗ }

exp

(
−β∗y∗ −

∑

A∈AJ

βA min
j∈A

(yj − y∗)

)

=
∞∑

y∗=1

∑

yj > y∗
j ∈ Bc

exp (−β∗y∗) exp

−

∑

A ∈ AJ

A ⊂ Bc

βA min
j∈A

(yj − y∗)

68 O. Melnik, Y. Vardi, and C.-H. Zhang

Algorithm 1 A Dynamic-Programming algorithm for computingTj

(−→
β

)

T (B) corresponds to T|B|
(−→

β
B
)

for i = 1 . . . J do
for all
B ∈ AJ , |B| = i do

T (B) ← 1
for all
C ⊂ B, C 6= ∅ do

(∗) T (B) ← T (B) + T (C)
end for
T (B) ← e−

−→
β

B

∗

1−e−
−→
β

B

∗
T (B) + T (C)

end for
end for

=
∞∑

y∗=1

exp (−β∗y∗)
∞∑

yj − y∗ = 1
j ∈ Bc

exp

−

∑

A ∈ AJ

A ⊂ Bc

βA min
j∈A

(yj − y∗)

=
∞∑

y∗=1

exp (−β∗y∗) T|Bc|
(−→

β
Bc)

(8)

Thus equation (7) can be written using the recursive relationship

TJ

(−→
β

)
=

∞∑
y∗=1

exp (−β∗y∗)
∑

B∈AJ

T|Bc|
(−→

β
Bc)

=
e−β∗

1− e−β∗

∑

B∈AJ

T|Bc|
(−→

β
Bc)

with T0

(−→
β
∅)

= 1. This relationship says that Tj

(−→
β

)
can be calculated by

recursively summing over all subsets. This type of structure lends itself to a dy-
namic programming type algorithm [5] that caches values of smaller subgroups.

The complexity of Algorithm 1 is dependent on the number of times that
statement (∗) is executed. There are

(
J
i

)
subsets of size i, each of which has

2i − 2 relevant subsets (not including itself and the empty set). Thus summing
over subsets of di�erent sizes we get

J∑

i=2

(
J
i

) (
2i − 2

)
< (2 + 1)J = 3J

A Probability Model for Combining Ranks 69

executions of statement (∗). Therefore calculating Tj

(−→
β

)
of the probability

distribution (4) with n coe�cients is O
(
n1.59

)
, where n = 2J and 1.59 >

log(3)/ log(2).

3.2 Parameter Estimation
Given an e�cient algorithm for calculating the MGR probability distribution
function (5), the parameters of this function can be estimated using a maximum
likelihood approach. The MLE solution is the set of parameters that maximize
the log likelihood,

log
n∏

i=1

exp
(−∑

A∈AJ
βA minj∈A xji

)

TJ

(−→
β

) (9)

where the product is over all sample data and subject toβA ≥ 0 for the monot-
nicity and quasiconvexity of the MGR function and βA > 0 for |A| = 1 to
maintain the feasibility of TJ

(−→
β

)
.

This is a convex optimization problem, as the maximization criteria (9) is
concave being the likelihood of an exponential family, and the constraints are
linear. There are standard algorithms for optimizing nonlinear programming
problems of this sort (e.g., primal-dual interior point algorithms [4]). In the ex-
periments we present in this paper we used the MATLAB optimization tool-
box for simplicity. Note that there are many alternative packages avaialble,
see http://www.ece.northwestern.edu/OTC/ for more information.

4 Mixture Models
A probability model for ranks o�ers a consistent mechanism for integration with
other probability models. The advantage of using a parametric probability model,
such as the probabilistic MGR is its ability to handle and generalize from rel-
atively sparse data. However, it seems that data in combination datasets are
typically not uniformally sparse. Since the classi�ers that are combined already
posses signi�cant accuracy, we expect that many of the rank vectors for the cor-
rect class will contain ranks of 1. In e�ect, what we see in many datasets is that
a small minority of rank vectors repeat while the majority do not. In table1
we see this for the combination dataset generated by two di�erent face recog-
nition algorithms run on a face recognition dataset. This table shows for each
rank vector (that appears more than once) the number of times it appears as
the correct class in the combination training set. For the remaining rank vectors
(not shown), 98 appear only once and the rest never appear as the correct class
in the training set.

In presenting the MGR model we stated that the purpose of using a para-
metric model was to handle the datas' sparseness. While this is true in general, a

70 O. Melnik, Y. Vardi, and C.-H. Zhang

Table 1. The frequency of rank vectors in a combination training dataset that was
generated applying the UMD and USC classi�ers on the dup I dataset, shows a non-
uniform distribution. The remaining 98 unlisted rank vectors appear only once in the
dataset

Rank Vector (1,1) (1,2) (2,1) (3,1) (1,3) (2,2) (1,6)
appearances 252 12 9 5 5 4 4
Rank Vector (1,4) (4,1) (1,5) (17,1) (33,1) (1,14) (1,18)
appearances 3 3 3 2 2 2 2

small subset of rank vectors have denser coverage. This suggests that the proba-
bility of the rank vectors can be estimated more accurately by a nonparametric
method, cell frequency estimation. Having the �exibility of a probabilistic inter-
pretation of rank generation, allows us to combine these two di�erent approaches.
In particular, we can construct a mixture model that uses cell frequency estima-
tion for the dense rank vectors while using an exponential MGR model for other
rank vectors.

Let χ be the set of dense rank vectors. We de�ne the mixture model as

p(x) =

Pχ(x) x ∈ χ

(
1−∑

x∈χ Pχ(x)
) exp

(
−

∑
A∈AJ

βA minj∈A xj

)

TJ

(−→
β

)
−D

x /∈ χ
(10)

where D =
∑

x∈χ exp
(−∑

A∈AJ
βA minj∈A xj

)
. This model is estimated as

p̂(x) =

#{x∈I}
|I| x ∈ χ

λ
exp

(
−

∑
A∈AJ

βA minj∈A xj

)

TJ

(−→
β

)
−D

x /∈ χ

where λ = 1 − |I|−1 ∑
x∈χ # {x ∈ I}, # {x ∈ I} indicates the number of times

that rank vector x appeared as the correct class in a combination training setI
and |I| is the number of correct class rank vectors in the combination training
set. The βA parameters are estimated as before, except that we have a di�erent
denominator term and we only estimate the parametric model using the rank
vectors that are not in χ.

4.1 Mixing Frequencies
The mixture model (10) requires the preselection of the rank vectors that will
be estimated using cell frequencies. A natural question is which vectors to use.
A heuristic criteria is to select those rank vectors that have su�cient data to
warrant direct estimation. It is bene�cial to examine this question empirically.
Figure 1 shows how a variation in the composition of the χ set a�ects test

A Probability Model for Combining Ranks 71

0 908 967 1001 1030 1045 1057 1073 1078 1086 1101 1129 1181
2.5

3

3.5

4

Cell dataset size

A
v
g
 r

a
n
k
 o

f
c
o
rr

e
c
t
c
la

s
s

Train fafb - Test fafc

0 908 967 1001 1030 1045 1057 1073 1078 1086 1101 1129 1181
6.5

7

7.5

8

8.5

9

Cell dataset size

A
v
g

 r
a

n
k
 o

f
c
o

rr
e

c
t

c
la

s
s

Train fafb - Test dup I

Fig. 1. These graphs show how varying the size of Cell datasets and thus controlling
the proportions in the mixture model a�ects performance as emasured by the average
rank of the correct class. They represent combination datasets generated using the
ANM and USC classi�ers on the the fafb dataset (described in section 5). The x-axis
shows the number of rank vectors used in the cell frequency estimation. The �rst tick
represents including the most frequent rank vectors for frequency estimation (1,1), the
second tick represents including the �rst and second most frequent rank vectors and
so on until all rank vectors are used for cell frequency estimation

performance. These graphs are typical of our experimental results. The x-axis
represents di�erent sizes of χ, the leftmost is a pure MGR exponential model,
the rightmost represents a pure cell frequency model, while the intermediate
positions are mixture models. For each mixture the average rank of the correct
class (w.r.t. the test dataset) is shown, where ranks greater than 50 are trun-
cated to diminish the noise e�ects of high ranks. As can be seen, estimating the
denser rank vectors with cell frequencies improves performance almost consisi-
tently. This implies that in selelcting the cuto� point for inclusion inχ we can
allow sparse vectors to be included as long as the truely sparse rank vectors are
estimated by probabilistic MGR.

5 Experimental Results
FERET [6] was a government sponsored program for the evaluation of face
recognition algorithms. In this program commercial and academic algorithms
were evaluated on their ability to di�erentiate between 1,196 individuals. The
test consisted of di�erent datasets of varying di�culty, for a total of 3,816 di�er-
ent images. The datasets in order of perceived di�culty are: thefafb dataset of
1,195 images which consists of pictures taken the same day with di�erent facial
expressions; the fafc dataset of 194 images that contains pictures taken with dif-
ferent cameras and lighting conditions; thedup I dataset of 488 images that has
duplicate pictures taken within a year of the initial photo; and the most di�cult,
the dup II dataset of 234 images which contains duplicate pictures taken more
than a year later. Note that in our experiments we separate the images of dup II

72 O. Melnik, Y. Vardi, and C.-H. Zhang

Table 2. Average rank in combining the USC, UMD and ANM face recognition algo-
rithms with a cuto� at rank 50

test train Mix Log test train Mix Log
set set Model MGR set set Model MGR

dup i dup ii 8.58 9.08 fafb dup i 1.21 1.23
dup i fafb 8.90 8.44 fafb dup ii 1.22 1.26
dup i fafc 9.35 9.37 fafb fafc 1.18 1.15
dup ii dup i 10.59 11.11 fafc dup i 2.31 2.43
dup ii fafb 10.47 10.92 fafc dup ii 1.86 2.06
dup ii fafc 10.08 10.68 fafc fafb 2.12 1.92

from the dup I dataset, unlike the FERET study where dup II was also a subset
of dup I.

The FERET study evaluated 10 baseline and proprietary face recognition al-
gorithms. The baseline algorithms consisted of a correlation based method and a
number of eigenfaces (Principle Components) methods that di�er in the internal
metric they use. Of the 10 algorithms we selected three dominant algorithms.
From the baseline algorithms we choose to use theANM algorithm which uses
a Mahalanobis distance variation on angular distances for eigenfaces [7]. Within
the class of baseline algorithms this algorithm was strong. Moreover, in accuracy
w.r.t. average rank of the correct class on the dup I dataset it demonstrated supe-
rior performance to all other algorithms. The other two algorithms we used were
the University of Maryland's 1997 test submission (UMD) and the University
of Southern California's 1997 test submission (USC). These algorithms clearly
outperformed the other algorithms. UMD is based on a discriminant analysis of
eigenfaces [8], and USC is an elastic bunch graph matching approach [9].

The outputs of these 3 face recognizers on the four FERET datasets, fafb,
fafc, dup I and dup II were the data for the experiments. Thus, we never had
access to the actual classi�ers, only to data on how they ranked the di�erent faces
in these datasets. In each experiment one of the FERET datasets was selected
as a training set and another dataset was selected for testing. This gave 12
experiments (not including training and testing on the same dataset) per group
of face recognizers, where we get combinations of training on easy datasets and
testing on hard datasets, training on hard and testing on easy datasets, and
training and testing on hard datasets.

We compare the mixture model with the original MGR, estimated using a
logistic error function. In [1], we already demonstrated that the original MGR
is superior to traditional score function approaches in overall performance. In
this mixture model rank vectors with more than 2% of the training data were
estimated by cell frequency, while the sparser rank vectors were captured by the
MGR probability model. For each combiner the average rank of the correct class
(across the test dataset) is shown, where ranks greater than 50 are truncated to
diminish the noise e�ects of high ranks. As these results show the mixture model
is comparable and at times superior to the logistic estimation of MGR.

A Probability Model for Combining Ranks 73

6 Conclusion
We present a new probabilistic framework for for the combination of rank gener-
ating classi�ers. In this framework rank vectors are interpreted as coming from
a conditional probability distribution given the correct class. The MGR model is
translated into this framework by casting it as an exponential distribution. We
give an algorithm for e�ciently calculating probabilities from this distribution
and use it to calculate maximum likelihood estimates of its parameters. One ad-
vantage of having a probability model is that we can naturally combine it with
a direct cell frequency estimation model. Thus, we form a mixture combina-
tion model where denser vectors are estimated using cell frequencies and sparser
ones with the MGR model. While, we would not expect the MLE method to
outperform the logistic estimation the MGR model in all instances, we do see
that the mixture model o�ers comparable and at times superior performance on
combination of FERET algorithms.

In conclusion, in this paper we show how a probability approach to rank com-
bination, o�ers the advantages of interpretability, asymptotic estimation consis-
tency of parameters and �exibility in how it is applied.

References
1. Melnik, O., Vardi, Y., Zhang, C.H.: Mixed group ranks: Preference and con�dence

in classi�er combination. IEEE Pattern Analysis and Machine Intelligence26 (2004)
973�981

2. Ho, T.K., Hull, J.J., Srihari, S.N.: Combination of decisions by multiple classi�ers.
In Baird, H.S., Bunke, H., (Eds.), K.Y., eds.: Structured Document Image Analysis.
Springer-Verlag, Heidelberg (1992) 188�202

3. Bickel, P., Doksum, K.: Mathematical Statistics: Basic Ideas and Selected Topics.
Prentice Hall, Englewood Cli�s, NJ (1977)

4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

5. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ
(1957)

6. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for
face-recognition algorithms. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence 22 (2000)

7. Moon, H., Phillips, P.: Computational and performance aspects of pca-based face-
recognition algorithms. Perception 30 (2001) 303�321

8. Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D., Weng, J.: Discriminant
Analysis of Principal Components. In: Face Recognition: From Theory to Applica-
tions. Springer-Verlag, Berling (1998) 73�86

9. Wiskott, L., Fellous, J.M., Kruger, N., von der Masburg, C.: Face recognition by
elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17 (1997) 775�779

	MGR as a Score Function
	Probabilistic Framework for Rank Combination
	MGR as an Exponential Probability Model
	Calculating the Normalization Factor
	Parameter Estimation

	Mixture Models
	Mixing Frequencies

	Experimental Results
	Conclusion
	References

