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Abstract

We investigate the problem of quantifying the inflation in the uncertainty associated with

a forecast made from a possibly misspecified ARIMA model with respect to the uncertainty

associated with a forecast made from the true model. We also decompose this inflation into two

components associated with model misspecification and uncertainty of parameter estimation.

The decomposition is based on a definition of “optimal” parameters of a misspecified model.

We provide a simulation algorithm that would allow a researcher or practitioner to assess the

consequences of using an incorrect ARIMA model with respect to an assumed true model in

terms of the inflation in forecast error. We apply the algorithm to study the consequences of (i)

using an autoregressive model of high order to approximate an ARMA model and (ii) making

traffic volume forecasts on the basis of misspecified seasonal ARIMA models.

1 Introduction

In the age of data science, as time series forecasting finds an increasing number of widespread

applications across various disciplines ranging from engineering to social sciences, interest in un-
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derstanding and quantifying the uncertainty associated with such forecasts is also on the rise. Most

applications of time series analysis consist of the following steps: (i) model specification or identifi-

cation, (ii) model fitting, (iii) model checking or validation and (iv) using the fitted model to make

an h-step ahead forecast, and estimate the associated forecast error.

One of the sources of forecast error is model misspecification (Chatfield, 1996). For example,

suppose the data are actually generated by an auto regressive integrated moving average (ARIMA)

model of the order (p, d, q), and is misspecified as an ARIMA(p∗, d∗, q∗) model. Although there are

various tools available for model specification or identification that identify the true model almost

surely from an asymptotic perspective, it is not uncommon for an analyst to identify an incorrect

model from a sample of small size. Pukkila et al. (1990) suggested a method for determining the

order of an ARIMA(p, 0, q) or ARMA(p, q) model, that was shown to perform well with samples of

size 100 or more for p+ q ≤ 3. However, for samples of size 50, the performance wasn’t as good -

e.g., an ARMA(1,2) model with the AR parameter φ1 = 0.60 and the MA parameters θ1 = −0.50

and θ2 = −0.90 was correctly identified only 34% of the time from samples of size 50. On the

remaining occasions, the model was incorrectly identified as ARMA(2,0), ARMA(0,2), ARMA(1,0)

and ARMA(3,0). An interesting question that immediately arises is, how much does the prediction

suffer if one of these incorrect models is used.

It has sometimes been argued that incorrect model specification is sometimes a consequence of

a nearly equivalent mathematical representation of the true model. For example, Kendall (1971)

had argued that the time and effort spent in identifying the correct order of ARMA models can

be saved by fitting moderately long autoregressive models. However, many authors, including Box

and Jenkins (1973) have provided a counter-argument that such non-parsimonious models result in

noisy forecasts due to uncertainty involved in estimation of a large number of model parameters.

Thus, even if two models have almost similar mathematical representations, resulting in nearly

equal forecast error, if the misspecified model is less parsimonious, the forecast error is likely to

be inflated due to the uncertainty associated with estimation of model parameters. This aspect is

often ignored in modern data science, where overfitting is considered benign by many.
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This brings us to the question we want to investigate in this paper: if one makes a forecast

using a time series model M , assumed different from the true data generating model, what are the

sources of the forecast error and how is the forecast error distributed among these sources? Chatfield

(1996) points out that in time series analysis, “there are primarily three sources of uncertainty:

(1) Uncertainty about the structure of the model, (2) Uncertainty about estimates of the model

parameters, assuming the model structure is known, and (3) Uncertainty about the data even when

the model structure and the values of the model parameters are known.” Therefore a more careful

formulation of the above question is: can the forecast error associated with a possibly misspecified

model be decomposed into the above three sources of uncertainty? If so, how?

Such a decomposition is useful in many real-life scenarios. One of the motivating examples we

consider comes from traffic engineering. Traffic flow or traffic volume is referred to as the total

number of vehicles crossing a point on a road-section over unit time (essentially, it is the traffic flow

rate). Traffic engineers have extensively studied and modeled traffic data using simple ARIMA

(Hamed et al., 1995) and seasonal ARIMA (SARIMA) models. However, the proposed models

typically differ with respect to their autoregressive and moving average orders. Assuming that one

of these models is true and the inherent error is the same, it is of practical interest to see how

much the forecast error will be inflated if other models are chosen, and to which sources (model

uncertainty and parameter estimation uncertainty) these errors will be attributed. This insight can

be of relevance for other fields such as ecology (Mac Nally et al., 2018) or dynamical systems in

general (Mangan et al., 2017), where there is an aim to understand how to better select models.

The goal of this paper is to propose a framework that would (a) allow decomposition of forecast

error (measured by the mean squared error or MSE) from an arbitrary time series model into three

components, and (b) outline a simulation procedure that would enable a researcher to decompose

the forecast error of a proposed model, and compare it with that of a benchmark model. Surpris-

ingly, in spite of the existence of a fairly large literature on time series model misspecification, a

decomposition of forecast error like the one described above appears to have been scantily addressed

and discussed. Our proposed framework is based on ideas similar to that developed by Davies and
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Newbold (1980), who studied how forecast errors are inflated if misspecified ARIMA models are

used in lieu of true data generating models. Our main contributions include: (i) providing a decom-

position formula that helps to quantify the percentage contributions of the three aforementioned

sources of forecast error, (ii) providing a new definition of “optimal parameters of a misspecified

model” used in (i), and (iii) developing a simulation algorithm that can be used to estimate the

percentage contributions of each source in the decomposition. We also discuss two applications of

our proposed approach - one pertaining to a historical debate in statistics and the one from traffic

engineering, briefly introduced in the previous paragraph. We restrict the discussion to the class

of ARIMA and SARIMA models.

In the following section we introduce some notation, briefly describe the basics of forecasting

with ARMA models and introduce the notion of parameter uncertainty as a component of forecast

error. In Section 3, we explore the effect of model misspecification on forecast error, introduce

the notion of “optimal misspecified model”, and propose measures of inflation of the forecast error

arising from parameter and model uncertainty. In Section 4, we lay out a comprehensive simulation

framework to assess the source-wise inflation of error of forecast made from a misspecified model.

In Section 5, we describe two applications of the proposed simulation framework. Some concluding

remarks are presented in 6.

2 Notation, forecasting with ARMA models and contribution of

parameter uncertainty in forecast error

We introduce some notation that can be found in most common and well-known time series text-

books like Box and Jenkins (1970) and Brockwell and Davis (2002). Suppose we have observed

Y1, . . . , Yn, i.e., n data points from a time series generated from a “true” model M. Under a

specified model M , the best or minimum mean squared error (MMSE) h-steps ahead forecast, i.e.,
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forecast of Yn+h from n data points under model M is given by

Ŷ
(M)
n+h|n = EM (Yn+h|Y1, . . . , Yn), (1)

where EM (·) denotes expectation under model M , assuming the true model parameters are known.

The forecast error is e
(M)
n+h|n = Ŷ

(M)
n+h|n − Yn+h, and the MSE of this forecast is

MSE
(M)
h|n = EM

[
e
(M)
n+h|n

]2
, (2)

where the expectation is taken over the true model M.

Suppose M represents a stationary ARMA(p,q) model with zero mean,

Yt − φ1Yt−1 − . . .− φpYt−p = εt + θ1εt−1 + . . .+ θqεt−q,

where {εt} are assumed to be white noise (mutually independent) with zero mean and common

variance σ2ε .

Let B denote the backward shift operator B such that BhYt = Yt−h. Then the above model

can be written in the polynomial form

φ(B)Yt = θ(B)εt,

where φ(B) = (1−φ1B− . . .−φpBp) and θ(B) = (1 + θ1B+ . . .+ θqB
q) respectively represent the

pth order AR and qth order MA polynomials. We assume that both φ(z) = 0 and θ(z) = 0 have no

roots on or inside the unit circle, so that {Yt} is causal and strictly invertible, and has an infinite

moving average representation:

Yt = ψ0εt + ψ1εt−1 + . . . , (3)

where for j = 0, 1, 2, . . ., ψj is the coefficient of Bj in the infinite expansion φ−1(B)θ(B) =∑
j=0 ψjB

j .
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We have started with the general MMSE forecasting problem (1). From now on, we will focus

on the Gaussian ARMA model, because the motivating traffic models and experiments we carry

out will all be Gaussian. Under normality the MMSE predictor and the best linear predictor (BLP)

coincide. Therefore, even without the normality assumption, the following discussion and results

will remain the same if we consider the BLP instead of the MMSE predictor, which has been the

convention of the forecasting based on ARMA models.

For a causal and invertible ARMA model, the temporal dependence decays geometrically fast,

so the MMSE predictor based on {Y1, . . . , Yn} and on the infinite past {. . . , Y0, . . . , Yn} are very

close as long as n is reasonably large. As a result, we redefine the notation Ŷ
(M)
n+h|n as

Ŷ
(M)
n+h|n = EM (Yn+h| . . . , Y0, . . . , Yn). (4)

Using representation (3), one can write Yn+h as:

Yn+h = ψ0εn+h + ψ1εn+h−1 + . . .+ ψh−1εn+1 + ψhεn + ψh+1εn−1 + . . . , (5)

Then the MMSE predictor of Yn+h is:

Ŷ
(M)
n+h|n = EM (Yn+h|Y1, . . . , Yn) = EM (Yn+h|ε1, . . . , εn) = ψhεn + ψh+1εn−1 + . . . .

Now, let Ŷ
(M̂)
n+h|n denote the minimum mean squared error (MMSE) predictor of Yn+h when the

parameters of model M are unknown and are estimated from observations Y1, . . . , Yn. Then, this

MMSE predictor is given by

Ŷ
(M̂)
n+h|n = ψ̂hεn + ψ̂h+1εn−1 + . . . ,

where ψ̂j ’s are estimated from the data Y1, . . . , Yn. The corresponding forecast error and MSE are
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respectively given by

e
(M̂)
n+h|n = Ŷ

(M̂)
n+h − Yn+h, MSE

(M̂)
h |n = EM

[
e
(M̂)
n+h|n

]2
, (6)

2.1 Forecast errors from true model with known and unknown parameters

If the assumed model M is the true modelM with known parameters, then the representation (5)

is the correct expansion of Yn+h, and consequently the forecast error

e
(M)
n+h|n = Ŷ

(M)
n+h|n − Yn+h = ψ0εn+h + ψ1εn+h−1 + . . .+ ψh−1εn+1, (7)

yields the MSE

MSE
(M)
h|n =

(
ψ2
0 + . . .+ ψ2

h−1
)
σ2ε , (8)

where, as assumed earlier, σ2ε is the common variance of the residuals ε. This quantity MSE
(M)
h|n

can be referred to as the “inherent model error of forecast”. It is a measure of forecast error in the

best possible scenario where the true model specification (including the parameters) is known, and

thus can be interpreted as the unavoidable error.

Now consider the situation where the parameters of the true model are unknown. Then the

forecast error is given by e
(M̂)
n+h|n = Ŷ

(M̂)
n+h|n − Yn+h. Thus the MSE can be decomposed as

MSE
(M̂)
h|n = EM

[
e
(M̂)
n+h|n

]2
= E

[
Ŷ

(M̂)
n+h|n − Yn+h

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n + Ŷ

(M)
n+h|n − Yn+h

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n + ε

(M)
n+h

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n

]2
+ EM

[
ε
(M)
n+h

]2
.

The last step follows from the following facts: (i) The difference Ŷ
(M̂)
n+h|n− Ŷ

(M)
n+h|n (i.e, the difference

between the predictor with the true model parameters and that with estimated model parameters)
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depends on the past residuals εn, εn−1, . . . , . . . whereas, (ii) from (7) it is clear that e
(M)
n+h|n depends

only on the future residuals εn+1, . . . , εn+h. Consequently, by mutual independence of residuals,

Ŷ
(M̂)
n+h|n − Ŷ

(M)
n+h|n is independent of ε

(M)
n+h|n and the expectation of the product term vanishes. We

thus have the following well-known (e.g. Mazzeu et al., 2018) result:

Proposition 1. The MSE of forecast under the true model M with unknown coefficients, where

the model parameters are estimated from observed data, can be decomposed as

MSE
(M̂)
h|n = δ

(M̂,M)
h|n +MSE

(M)
h|n , (9)

where MSE
(M)
h|n is the inherent model error given by (8), and

δ
(M̂,M)
h|n = EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n

]2
(10)

represents the contribution of “parameter uncertainty” to the overall forecast error.

Note that the quantity δ
(M̂,M)
h|n defined in Proposition 1 depends on the sample size n and the

forecast horizon h, and loosely speaking, is expected to converge to zero for fixed h as n goes to

infinity, under fairly mild conditions related to the convergence of the parameter estimators to

the true model parameters (see Fuller (1996)). Proposition 1 also suggests that if it is possible to

estimate MSE
(M̂)
h|n and MSE

(M)
h|n , then their difference will provide an estimate of δ

(M̂,M)
h|n .

3 Forecast errors from misspecified models

Now assume that M is a misspecified model with parameter θM (typically a vector), which is

different from the true model M with parameter θM. To forecast Yn+h from n data points using

M , one has to estimate the parameters θM from observations Y1, . . . , Yn and follow the procedure

described earlier to obtain the predictor Ŷ
(M̂)
n+h . The associated error will be denoted by e

(M̂)
n+h and

the MSE by MSE
(M̂)
h|n .
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To decompose MSE
(M̂)
h|n , we visualize a population version of the misspecified model with some

“true value” of θM , and define the MMSE predictor Ŷ
(M)
n+h assuming that true value is known. While

such a “true value” from a misspecified model does not make much sense, we can consider it to

be the “best value” or “optimal value” (in some sense) that generates observations from the time

series from the misspecified model similar to those generated by the true model. We will provide a

more precise definition of such a best value in the context of ARMA models later. Now MSE
(M̂)
h|n

can be decomposed as follows:

MSE
(M̂)
h|n = EM

[
Ŷ

(M̂)
n+h|n − Yn+h

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n + Ŷ

(M)
n+h|n − Yn+h

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n + e

(M)
n+h|n

]2
= EM

[
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n

]2
+ 2EM

[(
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n

)
e
(M)
n+h|n

]
+ EM

[
e
(M)
n+h|n

]2
= δ

(M̂,M)
n|h + 2EM

[(
Ŷ

(M̂)
n+h|n − Ŷ

(M)
n+h|n

)
e
(M)
n+h|n

]
+MSE

(M)
h|n , (11)

which takes a form similar to (9) except for the fact that the product term does not vanish in this

case. However, for a large sample size, both δ
(M̂,M)
n|h and the product term should be small. The

last term can again be decomposed as

MSE
(M)
h|n = EM

[
Ŷ

(M̂)
n+h − Yn+h

]2
= EM

[
Ŷ

(M)
n+h − Ŷ

(M)
n+h + Ŷ

(M)
n+h − Yn+h

]2
= δ

(M,M)
h|n +MSE

(M)
h|n , (12)

where

δ
(M1,M2)
h|n = EM

[
Ŷ

(M1)
n+h − Ŷ

(M2)
n+h

]2
, (13)

is a measure of the impact of model uncertainty on the forecast made from two models M1 and M2.
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Remark 1. We note here that δ
(M,M)
h|n ≥ 0 for all h and n, with equality holding if and only if M

is the true model M. Consequently,

MSE
(M)
h|n ≥MSE

(M)
h|n , (14)

with equality holding if and only if M is the true model M.

Remark 2. Note that δ
(M1,M2)
h|n can be called the Expected squared discrepancy between forecasts

of Yn+h made from two models M1 and M2, that may or may not be completely specified (in terms

of parameter values). Thus, δ
(M,M)
h|n in the RHS of (12), δ

(M̂,M)
h|n in the RHS of (11) and δ(M̂,M) in

(10) are all special cases of this discrepancy.

Davies and Newbold (1980) derived a closed form expression for δ
(M,M)
h|n when the true model

M and the misspecified model M are respectively ARMA(pM, qM) and ARMA(pM , qM ). We state

the main result of Davies and Newbold (1980) below:

Proposition 2 (Davies and Newbold (1980)). Let the true modelM be an ARMA(pM, qM) model

represented by φM(B)Yt = θM(B)εt where φM(B) and θM(B) are polynomials of order pM and

qM respectively and let the misspecified model M be an ARMA(pM , qM ) model represented by

φM (B)Yt = θM (B)εt where φM (B) and θM (B) are polynomials of order pM and qM respectively.

Also, let φM(B)θ−1M (B)εt =
∑∞

j=0 ψM,jεt−j and φM (B)θ−1M (B)εt =
∑∞

j=0 ψM,jεt−j be the infinite

moving average representations ofM andM respectively. Finally, let φM (B)θ−1M (B)φ−1M(B)θM(B) =∑∞
j=0 ψ̃jB

j . Then the contribution of the model uncertainty δ
(M,M)
h|n associated with the h-steps

ahead forecast made from models M and M is given by

δ
(M,M)
h|n =

∞∑
j=0

{ψM,j+h − aj(h)}2, (15)

where

aj(h) =

j∑
k=0

ψM,h+kψ̃j−k.
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Proposition 2 assumes that the misspecified model is completely specified and the coefficients

ψM,j ’s are known. This is obviously not the case in practice. In the process of forecasting with a

misspecified model, one would estimate the parameters of such a model from the data generated

by the true model. We need to establish a connection of such an estimate with the specified value

of the parameter in model M . We will revisit this topic in Section 3.1.

Finally, substituting (13) in (11) we arrive at the following proposition:

Proposition 3 (Decomposition of forecast MSE). The MSE of prediction under the misspecified

model M with unknown coefficients, where the model parameters are estimated from observed

data, can be decomposed as

MSE
(M̂)
h|n = δ

(M̂,M)
h|n + 2EM

[(
Ŷ

(M̂)
n+h − Ŷ

(M)
n+h

)
ε
(M)
n+h

]
+ δ

(M,M)
h|n +MSE

(M)
h|n , (16)

where MSE
(M)
h|n is the inherent model error given by (8), δ

(M,M)
h|n is given by (13) and δ

(M̂,M)
h|n is

given by (10).

Now, for any model M , we can write Ŷ
(M̂)
n+h = gn(θ̂M,n) and Ŷ

(M)
n+h = gn(θM ), where θM denotes

the model parameter, θ̂M,n its estimator based on observations Y1, . . . , Yn, and gn(·) is a continuous

function which is finite for all n. If θ̂n is a consistent estimator of θ, as is the case for maximum

likelihood estimators of ARMA model parameters, assuming normality of innovations. Then by

the continuous mapping theorem, gn(θ̂M,n) − gn(θM ) converges to zero in probability as n → ∞.

Consequently, the first two terms on the RHS of (16) δ
(M̂,M)
h|n and 2EM

[(
Ŷ

(M̂)
n+h − Ŷ

(M)
n+h

)]
both

converge to zero. Thus we arrive at the following corollary.

Corollary 1. For large n, the MSE of prediction under the misspecified model M with unknown

coefficients, where the model parameters are consistently estimated from observed data, can be

approximated as

MSE
(M̂)
h|n ≈MSE

(M)
h|n = δ

(M̂,M)
h|n +MSE

(M)
h|n .
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3.1 “Optimal” parameters of a misspecified model

The foregoing discussion suggests the need to visualize and define “true” parameters of the mis-

specified model in terms of their estimated version. Davies and Newbold (1980) provided such a

connection by assuming that the misspecified model ARMA(pM , qM ) has an AR representation of

order pM , and estimated the parameters using least square estimation. The true parameters were

then taken as the probability limits of the least square estimator. However, whereas this definition

seems reasonable if the misspecified model is AR(pM ), it does not seem to incorporate additional

model uncertainty if the misspecified model if ARMA(pM , qM ) with qM ≥ 1, and consequently does

not provide a way to define “true” parameters of the true misspecified model.

We now provide a more formal definition of an “optimal value of the parameter of a misspecified

model” in the context of forecasting from ARMA models.

Definition 1 (Optimal value of misspecified model parameter). Let M be any arbitrary ARMA

model with parameter θM . The optimal value of θM is defined as the value θ∗M that minimizes the

MMSE of prediction of Yn+1 based on observations {. . . , Y−1, Y0, Y1, . . . , Yn}. Formally,

θ∗M = arg min
θM

EM

[
Ŷ θM
n+1 − Yn+1

]2
,

where Ŷ θM
n+1 denotes the predictor of Yn+1 based on model M and parameter value θM .

Remark 3. If we require in addition that the ARMA model M is Gaussian, then this best mis-

specified model is equivalent to the one that minimizes the Kullback-Leibler divergence from θM

to M:

θ∗M = arg min
θM

KL(M||θM ),

where KL(·||·) denotes the Kullback-Leibler divergence. We explain this equivalence in the Ap-

pendix.

Remark 4. Definition 1 is equivalent to the notion of the “true” misspecified model by Davies and

Newbold (1980) if the misspecified model M is purely autoregressive. In fact, if the misspecified

12



model is an autoregressive process, then according to Definition 1, θ∗M is the Yule-Walker estimator

based on the autocovariances of {Yt}. Davies and Newbold (1980) suggest using the limit of the

least squares estimators, which is exactly the Yule-Walker estimator. Therefore, the two definitions

are equivalent when the misspecified model is autoregressive.

Remark 5. Definition 1 also provides us with a specific algorithm to obtain the value of θM using

available data Y1, . . . , Yn. Adopting the notations of Proposition 2, suppose the true model is a

causal and invertible ARMA(pM, qM): φM(B)Yt = θM(B)εt, and the misspecified model M is a

causal and invertible ARMA(pM , qM ): φM (B)Yt = θM (B)εt. Here without loss of generality we

assume there is no intercept in both models, and Var(εt) = 1. We describe how to find the “optimal”

parameters under the misspecified model. Instead of using AR and MA coefficients, the misspecified

model can be equivalently parametrized by the factorizations φM (z) = (1−w1z) · · · (1−wpM z) and

θ∗(z) = (1−v1z) · · · (1−vqM z). The one-step ahead prediction error (using the infinite past) under

the model M is given by

φM (B)

θM (B)
Yt =

φM (B)

θM (B)
× θM(B)

φM(B)
εt.

Let

φM (z)

θM (z)
× θM(z)

φM(z)
=

∞∑
k=0

ψ̃kz
k.

Note that each ψ̃ in the preceding equation depends on {w1, . . . , wpM , v1, . . . , vqM } implicitly. Ac-

cording to Definition 1, the optimal values of the parameters {w∗1, . . . , w∗pM , v
∗
1, . . . , v

∗
qM
} are given

by

arg min
{wi,vj}

n∑
k=0

ψ̃2
k. (17)

The optimization problem (17) is related to the maximum likelihood estimation (MLE) of the

ARMA model. It will be convenient in practice to find θ∗M through simulation: (i) simulate a long

series (e.g. of length 100,000) from the true model, and (ii) find the MLE under the misspecified

model. This MLE serves as an estimate of θ∗M , whose accuracy can be controlled by the length of

the simulated series.
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Example 1. SupposeM is AR(1): Yt = φYt−1 + εt, and let M : MA(1) be the misspecified model:

Yt = εt + θεt−1. Assume |φ| < 1 so that the true model is invertible. It holds that

n∑
k=0

ψ̃kz
k :=

1

(1− φz)(1 + θz)
=

1

φ+ θ

[
φ

1− φz
+

θ

1 + θz

]

and
n∑
k=1

ψ̃2
k =

1

(φ+ θ)2

∞∑
k=0

[
φk+1 + (−1)kθk+1

]2
.

Therefore, the optimal θ∗ is the θ that minimizes the preceding infinite sum. We give the optimal

θ∗ corresponding to φ ∈ {.1, .2, . . . , .9} in Table 1. The estimated θ̂∗ obtained from a simulated

series of length 100,000 is also reported in the third row of the table.

φ .1 .2 .3 .4 .5 .6 .7 .8 .9

θ∗ .099 .193 .279 .356 .428 .496 .565 .640 .735

θ̂∗ .098 .192 .280 .360 .429 .497 .562 .642 .735

Table 1: Optimal θ∗ for the MA(1), when the true model is AR(1).

3.2 Inflation of prediction error by model misspecification and paramater un-

certainty and its decomposition

Based on the definitions and results of the previous section, we now define measures of inflation

of forecast MSE due to model misspecification and parameter uncertainty. First, note that in

the problem of obtaining an h-step ahead forecast Yn+h from observations Y1, . . . , Yn generated

by a true ARMA model M, the unavoidable or intrinsic uncertainty is MSE
(M)
h|n given by (8).

When an arbitrary model M is used to make the forecast, model parameters are estimated from

the data and subsequently plugged into the forecast. This process inflates the forecast error by

MSE
(M̂)
h|n − MSE

(M)
h|n , where MSE

(M̂)
h|n is given by Proposition 3. We now formally define this

measure of inflation and its components, relative to the intrinsic uncertainty MSEMh|n.

Definition 2 (Total Percentage Inflation or TPI). In the problem of obtaining an h-step ahead

forecast Yn+h from observations Y1, . . . , Yn generated by a true ARMA model M, assuming model
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M and estimating its parameters, the total percentage inflation (TPI) is given by

TPI
(M)
h|n =

MSE
(M̂)
h|n −MSE

(M)
h|n

MSE
(M)
h|n

× 100

=



δ
(M̂,M)
h|n

MSE(M) × 100, if M ≡M,

δ
(M̂,M)
h|n +2EM

[(
Ŷ

(M̂)
n+h−Ŷ

(M)
n+h

)
ε
(M)
n+h

]
+δ

(M,M)
h|n

MSE(M) × 100, otherwise

Definition 3 (Percentage Estimation Inflation or PEI). In the problem of obtaining an h-step

ahead forecast Yn+h from observations Y1, . . . , Yn generated by a true ARMA model M, assuming

model M and estimating its parameters, the percentage estimation inflation (PEI) is given by

PEI
(M)
h|n =

MSE
(M̂)
h|n −MSE

(M)
h|n

MSE
(M)
h|n

× 100 (18)

=



δ
(M̂,M)
h|n

MSE
(M)
h|n
× 100, if M ≡M,

δ
(M̂,M)
h|n +2EM

[(
Ŷ

(M̂)
n+h−Ŷ

(M)
n+h

)
ε
(M)
n+h

]
MSE

(M)
h|n

× 100, otherwise

where M represents the completely specified model with some underlying “best” parameter value

s per Definition 1.

Definition 4 (Percentage Misspecification Inflation or PMI). In the problem of obtaining an h-step

ahead forecast Yn+h from observations Y1, . . . , Yn generated by a true ARMA model M, assuming

model M and estimating its parameters, the percentage misspecification inflation (PMI) is given

15



by

PMIMh|n =
MSE

(M)
h|n −MSE

(M)
h|n

MSE
(M)
h|n

× 100 (19)

=


0, M ≡M

δ
(M,M)
h|n

MSE
(M)
h|n
× 100, otherwise

where M represents the completely specified model with some underlying “best” parameter value

as per Definition 1.

3.3 Extension to Seasonal ARMA (SARMA) models, ARIMA and SARIMA

models

SARMA models allow users to incorporate seasonal effects into the ARMA framework. A typical

multiplicative SARMA (p, q)× (P,Q)s model (Brockwell and Davis, 2002) is of the form:

φp(B)ΦP (Bs)Yt = θq(B)ΘQ(Bs)εt, (20)

where as before, Bh denotes the h-step backshift operator for h ≥ 1, φp(·), ΦP (· · · ), θq(·) and ΘQ(·)

are polynomials of orders p, P , q and Q respectively, and {εt} is a white noise term. Such models

can include more than two seasonal polynomials and consequently allow for multiple sources of

seasonality (e.g., daily, weekly etc.) to be incorporated into the model. Because model (20) can

easily be expressed in the form (3), all the concepts, definitions and results discussed so far this

section can be extended in a straightforward manner to SARMA models.

Similar decomposition of the mean squared prediction error can be given for the ARIMA process.

For simplicity, we only consider the ARIMA models with integration order 1. Suppose the true
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model of {Xt} is an ARIMA(pM, 1, qM)

φ(B)∆Xt = θ(B)εt.

Assume the (possibly) misspecified model M is ARIMA(pM , 1, qM ), i.e. it is still an ARIMA with

integrated order 1, but with (possibly) misspecified pM and qM . Let Yt = ∆Xt, then {Yt} ∼

ARMA(pM, 0, qM), and the decomposition discussed earlier holds for {Yt}. We now describe how

these results can be adapted for the process {Xt}. First of all, note that

X̂
(M)
h|n = Xn +

h∑
k=1

Ŷ
(M)
k|n , and e

(M)
h|n (X) = Xn+h − X̂

(M)
h|n =

h∑
k=1

e
(M)
k|n (Y ).

for any model M , whether it is true or misspecified. Here we use (X) and (Y ) to specify the

prediction errors for {Xt} or {Yt} respectively. Proposition 1 leads to

MSE
(M̂)
h|n (X) = δ

(M̂,M)
h|n (X) +MSE

(M)
h|n (X),

where the inherent MSE
(M)
h|n (X) is (comparing (8)):

MSE
(M)
h|n (X) = σ2ε ·

h∑
k=1

(ψ0 + . . .+ ψk−1)
2 .

Note that the inherent prediction MSE of {Xt} goes to infinity as the forecast horizon h increases.

Proposition 3 translates into

MSE
(M̂)
h|n (X) = δ

(M̂,M)
h|n (X) + 2EM

[(
X̂

(M̂)
n+h − X̂

(M)
n+h

)
e
(M)
n+h(X)

]
+ δ

(M,M)
h|n (X) +MSE

(M)
h|n (X).

The Inflation measures TPI, PEI and PMI can then be defined similarly for the ARIMA pro-

cess {Xt}. However, it is important to note that the above procedure can be generalized to any

integration order only when it is the same for the ARIMA processes under comparison. Thus,

our framework will allow us to compare an ARIMA(p1,d1, q1) process with an ARIMA(p2,d2, q2)
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process if and only if d1 = d2.

4 Simulation algorithm and examples

We now present a simulation process that will help researchers estimate the different components

of forecast inflation in a setting where model M is mistakenly used instead of a true model M.

It will also help compare different models by assessing their roles in inflating the inherent forecast

error.

The input to the simulation code is (i) an ARIMA (p, d, q) model with specified values of known

parameter θM (assumed to be the true modelM), (ii) the order (pM , dM , qM ) of an ARIMA model

which is the misspecified model M . A very long time series consisting of Nmax observations from the

known true modelM is generated, and parameters θ∗M of the misspecified model M are estimated

from these data. Thus an ARIMA(pM , dM , qM ) model with parameters θ∗M is assumed to be the

optimal misspecified model M . The number of observations to estimate the parameters depends

on the complexity of the true model M, as a larger number of observations will be necessary for

more complex processes.

Next, a sample size n and a forecast horizon h is fixed. For each iteration i = 1, . . . , I,

1. A total of n+ h observations are generated from the true model M. Let Yt,i denote the tth

observation, t = 1, . . . , n+ h, i = 1, . . . , I.

2. The true model M and misspecified model M are now fitted to the first n observations,

yielding estimated parameter θ̂M,i and θ̂∗M,i respectively.

3. Four forecasts: Ŷ
(M̂)
n+h|n,i, Ŷ

(M)
n+h|n,i, Ŷ

(M̂)
n+h|n,i and Ŷ

(M)
n+h|n,i of Yn+h,i are now obtained from the

respective models using estimated parameter θ̂∗, optimal parameter θ∗ of misspecified model

M , estimated parameter θ̂ of the true model and known parameter θ of true model M. The

forecasts of any true model are estimated with the equations obtained using the backshift

notation.
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4. The corresponding forecast errors are estimated as:

e
(M̂)
n+h|n,i = Ŷ

(M̂)
n+h|n,i − Yn+h,i, e

(M)
n+h|n,i = Ŷ

(M)
n+h|n,i − Yn+h,i

e
(M̂)
n+h|n,i = Ŷ

(M̂)
n+h|n,i − Yn+h,i, e

(M)
n+h|n,i = Ŷ

(M)
n+h|n,i − Yn+h,i

5. The mean squared errors of forecast MSE
(M̂)
n+h|n, MSE

(M)
n+h|n, MSE

(M̂)
n+h|n and MSEMn+h|n are

estimated by squaring and averaging the forecast errors eM̂n+h|n,i, e
M
n+h|n,i, e

(M̂)
n+h|n,i and eMn+h|n,i

over i = 1, . . . , I respectively.

6. Estimation of inflation ratios:

(i) PEI
(M)
h|n for the true model M is estimated by substituting the estimated mean squared

errors in (18) for M ≡M. Recall that PMI
(M)
h|n for the true model is zero.

(ii) PEI
(M)
h|n for the misspecified model M is estimated by substituting the estimated mean

squared errors in (18).

(iii) PMI
(M)
h|n for the misspecified model M is estimated by substituting the estimated mean

squared errors in (19).

We now present an example of this simulation algorithm and presentation of the results.

Example: Misspecifying ARMA(1,1) as AR(1) or MA(1):

Assume that the true data generating process is ARMA(1,1) with parameters φ = 0.8 and

θ = −0.3, and consider forecasting from such a process using two incorrect models: an AR(1)

and an MA(1) process. The simulation was conducted using the process described above with

Nmax = 106 data points used to estimate optimal parameters of the misspecified models. Various

sample sizes n ranging from 50 to 500 in steps of 50 and forecast horizons h = 1, 2, 3 are considered

for the simulations. For each (n, h) combination, the mean squared errors and inflation indices PEI

and PMI were estimated from I = 5000 data sets.
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Figure 1: Decomposition of percentage inflation in forecast errors for a true ARMA(1,1) process
with parameters φ = 0.8, θ = −0.3, and σ2 = 100 under misspecified models AR(1) and MA(1).
One-step ahead forecasting with n = 100 (left) and n = 1000 (right) is considered.

Figure 1 shows the break up of the inflation of forecast error associated with two sample sizes

of n = 100 and n = 1000 under the three models. For n = 100, the contribution of the parameter

uncertainty, i.e., PEI100|1 is 1.74 for the true model ARMA(1,1), and smaller (1.07 for AR(1) and

1.03 for MA(1)) for the two misspecified models. This is expected, because the number of param-

eters estimated under the true model is larger than that estimated under each of the misspecified

models. On the contrary, there is no contribution of model uncertainty in the true model, whereas

we have PMI100|1 as 3.06 and 25.38 for the AR(1) and the MA(1) models respectively. This is also

expected, as MA(1) is a much poorer replacement of ARMA(1,1) than AR(1). For n = 1000, as

expected, the PEI almost vanishes for all three models, but the PMI remains almost the same for

all models.

Figure 2 presents a more comprehensive picture of this misspecification, in which indices PEI

and PMI are plotted against the sample size n and represented by areas. Three different forecast

horizons h = 1, 2, 3 are considered. Figure 2 shows that when the correct model is fitted, the

inflation of forecast error is only affected by the estimation of parameters, which decreases as the

sample size increases. Otherwise, when fitting misspecified models, the inflation is larger and comes
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mostly from the incorrect choice of model. The PEI becomes negligible as the sample size increases,

but the PMI remains more or less unchanged. The PMI is much larger for MA(1), as compared

to that of AR(1), and attains its maximum for h = 2. This behavior, of course, may change if the

parameters of the true model change.
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Figure 2: Decomposition of percentage inflation in forecast errors for a true ARMA(1,1) process
with parameters φ = 0.8, θ = −0.3, and σ2 = 100 under misspecified models AR(1) and MA(1).

Example: SARIMA models

We consider daily data produced by a seasonal ARMA (2, 2) × (2, 2)7 process with a weekly

seasonal component, and consider forecasting using the following sequence of models, each of which

is “weaker” (in terms of departure from the true model) than the preceding one, in the sense that:

• ARMA(2,2)(1,2)7, where one autoregressive term of the season component is dropped.
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• ARMA(2,2)(1,1)7, where both the AR and MA orders of the seasonal component are one less

than that of the true model.

• ARMA(2,2)(1,0)7, where the moving average term of the weekly seasonal component is omit-

ted.

• ARMA(2,2), completely dropping the seasonal component.

• ARMA(1,2), incorrectly modeling the main ARMA process.

• ARMA(1,1), the weakest model in the sequence.

Two additional models, an ARMA(2,2)(2,3)7 and an ARMA(2,2)(3,3)7, are also considered,

with the aim of analyzing how the forecast is inflated for overfitted models.
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Figure 3: Decomposition of percentage inflation in forecast errors for a true SARMA(2,2)(2,2)7
process for 1-step ahead predictions. 5000 simulations have been run for every scenario.
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Figure 3 shows the decomposition of percentage inflation under each model for one-step ahead

forecasts. The consequences of forecasting from misspecified models and how the inflation of fore-

cast MSE increases as one drops components of the true model is consistent with the expectations.

Additional simulations with 7 and 14-step ahead forecasts (not shown here) reveal that the conse-

quences of misspecifying models becomes less severe as the forecast horizon increases.

5 Two Applications

In this Section, we demonstrate the proposed approach for assessment and decomposition of infla-

tion of forecast error under possibly misspecified models with two examples.

5.1 Application 1: Re-visiting Kendall’s suggested fitting of ARMA models

We now re-visit an interesting topic in time series that was first discussed by Kendall (1971),

and subsequently debated (Box and Jenkins, 1973) and studied by researchers (e.g., Davies and

Newbold, 1980). Kendall (1971) had suggested fitting moderately long autoregressive models as a

quick and easy alternative of identifying orders of ARMA models. The counter-argument is the

inflation of forecast error arising from increased parameter uncertainty that is a consequence of

sacrificing parsimony.

As in our first simulation example, we assume that the true data generating process is a zero

mean ARMA(1,1) process with parameters φ = 0.8 and θ = −0.3, and consider the misspecified

model as a zero mean AR(pM ) process for different values of pM . Let φpM ,j denote the jth parameter

of the AR(pM ) process, where j = 1, . . . , pM , i.e., φ11 denotes the only parameter of the AR(1)

process, φ21 and φ22 denote the two parameters of the AR(2) process, and so on. First, along the

lines of Definition 1, we provide the optimal values of the AR parameters φ∗pM ,j for pM ∈ {1, . . . , 8}

and j = 1, . . . , pM in Table 2. It is interesting to note that for fixed j, the sequence {φ∗pM ,j}j≥1

converges to some φ∗j as pM increases. That is, the autoregressive coefficients tend to stabilize

as the AR order increases. For example, the optimal value of φpM1 is 0.6281 for pM = 1, but it
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converges to 0.5063 for pM ≥ 4.

Figure 4 shows the decomposition of percentage inflation in forecast errors when these autore-

gressive models are fitted to the ARMA(1,1) process. We note that for h = 1, 2, 3, an AR process

of order 4 or greater appears to represent the ARMA(1,1) process fairly well, with the PMI index

almost becoming negligible for pM ≥ 4. However, increasing the number of parameters has a clear

adverse effect on the inflation of the forecast error through the increase of the PEI index, which is

a consequence of sacrificing parsimony.

φ∗pM ,j pM
1 2 3 4 5 6 7 8

φ∗pM ,1 0.6281 0.5176 0.5071 0.5063 0.5063 0.5063 0.5063 0.5063

φ∗pM ,2 0.1759 0.1449 0.1431 0.1428 0.1428 0.1428 0.1428

φ∗pM ,3 0.0599 0.0536 0.0529 0.0527 0.0528 0.0528

φ∗pM ,4 0.0123 0.0097 0.0094 0.0096 0.0096

φ∗pM ,5 0.0052 0.0043 0.0047 0.0045

φ∗pM ,6 0.0018 0.0035 0.0029

φ∗pM ,7 -0.0032 -0.0053

φ∗pM ,8 0.0040

Table 2: Optimal φ∗pM ,j for AR(p∗M ), when the true model is ARMA(1,1) with mean zero, φ = 0.8
and θ = −0.3.

5.2 Application 2: Traffic Engineering example

Some well-known daily seasonal ARIMA models considered appropriate for traffic data are: (i)

(1, 0, 1) × (0, 1, 1)96 (Williams et al., 1998), (ii) (2, 0, 1) × (0, 1, 1)96 (Ghosh et al., 2005), and (iii)

(2, 0, 0)×(0, 1, 1)144 (Kumar and Vanajakshi, 2015). The seasonal index in models (i) and (ii) is 96,

whereas that for model (iii) is 144 is due to the slight difference in data collection intervals for these

models. Whereas models (i) and (ii) were fitted using data collected at 15-minute intervals, model

(iii) was fit using data collected at 10-minute intervals. However, because the patterns observed for

10-minute and 15-minute resolution traffic data are similar, model (iii) can be considered equivalent

to a (2, 0, 0)× (0, 1, 1)96 model fitted with 15-minute resolution traffic data.

Among these three models, model (ii) has the highest number of parameters, and can be con-
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Figure 4: Decomposition of percentage inflation in forecast errors for a true ARMA(1,1) process
with parameters φ = 0.8, θ = −0.3, and σ2 = 100 fitting autoregressive models. 5000 simulations
have been run for every scenario.

sidered to contain all the information that models (i) and (ii) have. Thus, assuming model (ii)

to be the true model, we generate data and fit the three models to assess the inflation of forecast

error for the remaining two. This assessment essentially boils down to the study of the influence of

dropping a second order AR parameter (in model (i)) and a first order MA parameter (in model

(ii)) when these two parameters exist in the true model (ii). For the sake of completeness, we also

consider an additional model (2, 0, 1)× (1, 1, 1)96 to examine the influence of adding an unnecessary

seasonal AR term. We will refer this model as model (iv) in the subsequent discussion.

Figure 5 shows the percentage inflation in forecast error when generating data from true

(2, 0, 1) × (0, 1, 1)96 processes for 1- to 6-step ahead forecasts, which corresponds to 15-minute

to 90-minute ahead forecasts for 15-minute resolution data. Models (ii) and (iv) exhibit a similar

level of inflation in forecast error for every horizon, suggesting that the addition of a seasonal AR
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term does not hurt much. However, models (i) and (iii) both exhibit significant inflations in fore-

cast error, with model (i) performing the worst in terms of PMI. This observation indicates the

importance of the second AR term present in the true model, compared to the only MA term.
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Figure 5: Decomposition of percentage inflation in forecast errors for true SARIMA(2,0,1)(0,1,1)96
processes for a sample size n = 500. 1000 simulations have been run for every scenario.

6 Discussion

In this paper, we investigate the consequences of using a misspecified model for time series fore-

casting on the forecast error. On the basis of a decomposition of the MSE of the forecast obtained

from the misspecified model, we define two indices associated with the inflation of the MSE com-

pared to the true model. One quantifies the inflation associated with the incorrect use of model

whereas the other measures the contribution of parameter estimation from the incorrect model. A

simulation algorithm is proposed to perform this assessment for any ARIMA or SARIMA model,
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assuming that both the true model and the misspecified model can be converted to a stationary

ARMA process by differencing the same number of times. The proposed framework helps to assess

the consequences of sacrificing information by forecasting from models of lower order compared

to true models of higher order. On the other hand, it also helps assess the consequences of using

unnecessarily complex and larger models compared to the true model. We believe that the latter

assessment is particularly important in a world where almost unlimited computing power is creat-

ing a natural tendency to overfit, without paying enough attention to the probable consequences

of overfitting.
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Appendix

Equivalence of Definition 1 and the minimizer of the KL distance

The precise meaning of this equivalence is elaborated as follows. Let fθM ,n(y1, . . . , yn) and fn(y1, . . . , yn)

be the joint densities of {Y1, . . . , Yn} under the model M with parameter θM and the true model

M respectively. We shall consider the limit of the scaled KL-divergence

1

n
KL(fθM ,n||fn) =

1

n

∫
log

(
fn(y1, . . . , yn)

fθM ,n(y1, . . . , yn)

)
fn(y1, . . . , yn) dy1 . . . dyn.

Let us use yn := (y1, . . . , yn)′ to simplify the notation. Also let ŷk be the best linear prediction of

yk using y1, . . . , yk−1 under the model M with parameter θM , and denote by νj the corresponding

prediction error variance. Under normality of M , it holds that

− 1

n
log fθM ,n(yn) =

1

2n

n∑
k=1

[
log(2πνk) +

(yk − ŷk)2

νk

]
.

As k →∞, it holds that ŷk → ŷθMk , and

lim
k→∞

νk = ν∞ := EθM

(
yk − ŷθMk

)2
.

In the limit of the KL divergence,

lim
n→∞

1

n
KL(fθM ,n||fn) = lim

n→∞

1

n

∫
log [fn(yn)] fn(yn) dyn − lim

n→∞

1

n

∫
log [fθM ,n(yn)] fn(yn) dyn,

since the first term does not involve θM , we aim to minimize the second term, which in the limit

becomes

− lim
n→∞

1

n

∫
log [fθM ,n(yn)] fn(yn) dyn =

1

2
log(2πν∞) +

1

2ν∞
EM

[
Ŷ θM
n+1 − Yn+1

]2
.

This leads to our definition of the best misspecified model.
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Summary of R packages and simulations.

All the simulations have been run using R. The ARMA(1,1) series are obtained using the arima.sim()

function available in the package stats (Team and Worldwide, 2002). As this function does not sup-

port seasonality, the seasonal ARIMA processes are modelled by the function sim sarima() from

the package sarima (Boshnakov and Halliday, 2020). The function Arima() from the package fore-

cast (Hyndman et al., 2020) is used to fit both true and misspecified models. The predictions are

finally estimated with the function predict(), also available in the package stats.
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