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ABSTRACT
Composite index is a powerful and popularly used tool in providing an overall measure of a subject
by summarizing a group of measurements (component indices) of different aspects of the subject. It is
widely used in economics, finance, policy evaluation, performance ranking, and many other fields. Effective
construction of a composite index has been studied extensively. The most widely used approach is to
use a linear combination of the component indices, where the combination weights are determined by
optimizing an objective function. To maximize the overall variation of the resulting composite index, the
combination weights can be obtained through principal component analysis. In this article, we propose to
incorporate expert opinions into the construction of the composite index. It is noted that expert opinion
often provides useful information in assessing which of the component indices are more important for the
overall measure of the subject. We consider the case that a group of experts have been consulted, each
providing a set of importance scores for the component indices, along with a set of confidence scores which
reflects the expert’s own confidence in his/her assessment. In addition, the constructor of the composite
index can also provide an assessment of the expertise level of each expert. We use linear combinations to
construct the composite index, where the combination weights are determined by maximizing the sum
of resulting composite index variation and the negative weighted sum of squares of deviation between
the combination weights used and the experts’ scores. A data-driven approach is used to find the optimal
balance between the two sources of information. Theoretical properties of the procedure are investigated.
Simulation examples and an economic application on constructing science and technology development
index is carried out to illustrate the proposed method.
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1. Introduction

Composite index is used to provide a summary measurement
of a complex subject with many different features. By mea-
suring the features separately as the component indices, then
numerically combining them into a single value as the com-
posite index, it is often used for comparison and ranking. It
is widely used in economics, finance, policy evaluation, per-
formance ranking, and many other fields. For example, the
Leading Economic Index (LEI) published by The Conference
Board is composed of 10 economic component indices whose
change tend to precede changes in the overall economy (Stock
and Watson 1989). Market indices such as S&P 500 Index and
Dow Jones Index are composite indices by combining the prices
of a group of stocks (Cross 1973; Kawaller, Koch, and Koch
1987). Volatility index is a composite index constructed using
information in option prices of different strikes and expira-
tion dates (Whaley 2008). The Regulatory Indicators Assessment
index, the stakeholder engagement index and the ex post eval-
uation index constructed by OECD are all composite indices to
evaluate the regulatory policy and governance (Kaur and Lodhia
2014). College rankings are done by using a composite index
combining various aspects of the university, including student
life, graduation rate, funding levels to faculty research ability
(Karabel and Astin 1975).

CONTACT Rong Chen rongchen@stat.rutgers.edu Department of Statistics, Rutgers The State University of New Jersey, New Brunswick, NJ 08901-8554.

The research on how to construct a composite index is vast.
A common approach uses a linear combination of the indi-
vidual observed component indices to construct the compos-
ite index. With such an approach, the main task is then to
determine the combination weights. Two methods, the objec-
tive weighting method and the subjective weighting method,
are typically used, based on the information being used. The
objective weighting method relies only on the measured data
and is widely studied, including the principal component anal-
ysis (PCA) approach (Alzate and Suykens 2010; Tavoli et al.
2013), the entropy weighting method (Hoskisson et al. 1993;
Jing, Ng, and Huang 2007; Chen and Li 2010; Shemshadi et al.
2011), the clustering approach (Milligan 1989; Eisen et al. 1998;
Yu, Yang, and Lee 2011) and others. The subjective weight-
ing methods include ranking weighting method (Roszkowska
2013), analytic hierarchy process (AHP) (Al-Harbi 2001) and
others. These subjective weighting method heavily depends on
the experts’ professionalism. On the other hand, the objective
weighting method, which determines the combination weights
solely based on the observed component indices, along with
certain mathematical models and assumptions, neglects the
subjective judgment information of the decision makers and
may result in misleading and counter intuitive results (Aalian-
vari, Katibeh, and Sharifzadeh 2012). There are some recent
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researches on multi-criteria decision making (MCDM) methods
(Zardari et al. 2015), such as the Best-Worst Method (Rezaei
2015), Analytic Network Process (Saaty 2008; Meade and Pres-
ley 2002), and context tree weighting (Willems, Shtarkov, and
Tjalkens 1995; Garivier 2006). Those MCDM methods are data-
driven, and are used in many fields including systems engineer-
ing studies (Kujawski 2003).

In this article, we develop a novel method that combines
the objective information (data) with subjective information
(expert opinion). By effectively combining both sources of infor-
mation when available, it makes the construction more accurate
and reduces biases introduced by either source of informa-
tion. Specifically, we adopt a factor model setting to use the
observed component indices, and use a least-square penalty
term to incorporate the expert’s opinion regarding the com-
bination weight (importance) of each component index, along
with a self-assessment of confidence from the experts and an
expertise score from the composite index constructor. Such a
comprehensive collection of subjective information allows for
diverse opinions and different levels of expertise on different
subjects. We use a penalty parameter to balance the influence
of the objective information and subjective information. It can
be viewed as a ratio of the noise levels in the data and in expert
opinions. The optimal penalty parameter can be obtained by
maximizing the overall accuracy, through a cross-validation
approach.

The rest of the article is organized as follows. In Section 2,
we introduce the factor model assumed for the observed com-
ponent indices, and the data structure of the experts’ opin-
ion along with their confidence scores. We then introduce the
objective function that combines both sets of information. The
composite index is constructed by finding a set of combination
weights that optimizes the objective function. In Section 3, we
investigate the theoretical properties of the construction. Finite
sample properties of the developed procedure are investigated in
Section 4 through a simulation study. An economic application
on constructing a composite index on science and technology
development is shown in Section 5. Section 6 concludes.

2. Data, Model Setting, and Construction Procedure

2.1. Data and Model Setting

Suppose we have K candidate component indices {xki} for k =
1, . . . , K with N observations i = 1, . . . , N, to be included in the
construction of the composite index. We will use a linear com-
bination of the component indices to construct the composite
index. Specifically, the composite index is in the form

Ci =
K∑

k=1
wkxki, (1)

where the combination weight w = (w1, . . . , wK)′, normalized
so that ||w||22 = ∑K

k=1 w2
k = 1, needs to be determined.

Traditional composite index construction using PCA
approach (Li et al. 2012; Nardo et al. 2008) finds the combination
weight w so that the resulting component indices have the
largest variance among all possible such linear combinations
– the first principle component. Specifically, let ŵ be the

normalized eigenvector corresponding to the largest eigenvalue
of �̂N = 1

N
∑N

i=1 xix′
i, the sample covariance matrix of

xi = (x1i, . . . , xKi)′. That is,

ŵ = arg max||w||=1
w′�̂Nw. (2)

The composite index is then constructed as f̂i = ŵ′xi. The
variance of f̂i is the largest among all possible such combinations
by the construction of ŵ in Equation (2). PCA estimation is
usually done using singular value decomposition, though the
original optimization formulation can be useful when additional
information is used as it allows modifications of the objective
function.

We note that the solution of the PCA approach above is the
same as fitting a single-factor model

xi = wfi + εi, k = 1, . . . , K, i = 1, . . . , N, (3)

where w = (w1, . . . , wK) is the loading vector, and fi is the latent
common factor. The noise εi = (ε1i, . . . , εKi)′ is assumed to be
iid with zero mean and covariance matrix �ε . The estimator of
the latent factor fi is ŵ′xi, under a general condition on Var(fi)
and �ε .

In addition to observing the K component indices, we also
assume that we have surveyed total J experts who have provided
their direct assessments of the combination weight w for the
construction of the composite index, along with a confidence
score on each of the combination weights provided. Let (skj, γkj),
k = 1, . . . , K, j = 1, . . . , J, be the importance score and its
corresponding confidence score provided by the jth expert. The
importance score to each component index reflects the experts’
opinion on how much combination weight should be assigned
to a candidate component index in the construction. The score
skj is normalized so that

∑K
k=1 s2

kj = 1. We will assume that the
experts’ scores are proportionally unbiased, with E[skj] = δwk
where wk are given in Equation (3) and δ > 0 is a scalar. The
reason for the proportional unbiasedness assumption used here
instead of simple unbiasedness assumption is due to the fact that
the two conditions

∑K
k=1 s2

kj = 1 and
∑K

k=1 w2
k = 1 make the

simple unbiasedness assumption impossible.
The confidence score γkj reflects the expert’s assessment on

his/her own expertise level on the subject, possibly with different
levels of expertise among the K component indices. The larger
the γkj is, the higher the experts’ confidence is on the k’s compo-
nent. If the expert knows one component index very well, then
he/she will assign a large confidence score. Otherwise, a small
score will be assigned. Jiang, Liu, and Zhu (1996) considered the
situation that an expert will provide a range (interval) for each
of the combination weights. Corresponding to our setting, the
center point of their interval would be the importance score and
the inverse of the interval width would be the confidence score
in our case. In this article, the confidence score γkj is restricted
to [0, 1].

Furthermore, the constructor of the composite index may
assign an “expertise” score cj to the jth expert. This provides a
ranking among the experts in terms of their relative expertise on
the construction of the index of interest. We restrict the value of
cj to (0, 1].

It is the aim of this article to construct the composite index by
combining both the observed component indices and the expert
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opinion. Statistically speaking, our construction is based on a
model with two parts: a factor model on the observed indices,
and IID scores which are “proportionally unbiased” from the
experts. To use both sources of information, we use a combined
least-square objective function in the form

g∗
N,J(w, δ) = w′ ∑N

i=1 xix′
iw − Q

∑J
j=1 cj{∑K

k=1 γkj(skj − δwk)
2
}

= w′ ∑N
i=1 xix′

iw − Qδ2w′ ∑J
j=1 �jw

+2Qδ
∑J

j=1 s′j�jw − Q
∑J

j=1 s′j�jsj.

(4)

subject to 0 ≤ wk ≤ 1 and ||w||22 = 1, and δ > 0 is a simple
scalar, where �j = diag(cjγ1j, . . . , cjγKj).

The first term in Equation (4) is the original criterion of
estimating the optimal combination weight using PCA without
expert input. It is a classical quadratic maximization problem.
The second term is the weighted least-square term for fitting
the expert opinions, adjusted by their confidence scores and
expertise scores.

The constant Q is a penalty parameter which balances the
variance of the linear combination in the first term and the
error variance in fitting the expert opinions in the second term.
It is an important parameter. When Q is large, the objective
function g∗

N,J(w) in Equation (4) puts more combination weights
on the second term related to the expert opinion. Hence, the
solution ŵN,J would be closer to the optimizer of the second
term. Similarly, when Q is small, the solution would be closer
to the PCA solution that maximizes only the first term, without
the expert opinions. In fact, the optimal Q should reflect the
comparison between the noise level in the observed data and
the noise level in the expert opinion. When the noise level in
the observed data is larger than that in the expert opinion, we
would trust the experts more, hence using larger Q.

Remark 1. If we assume normality on xi and sj, then it is also
possible to estimate w using the maximum likelihood method.
In this article, we choose to use the weighted least-square cri-
terion so that we do not need to specify and estimate the error
covariance matrix.

Remark 2. If we treat the expert information as prior informa-
tion, then a Bayesian approach can be used as well. However,
it would require to specify the expert score distribution as well
as noise distribution in the factor model. We do not use the
Bayesian approach in this article.

Optimizing g∗
N,J(w) in Equation (4) is equivalent to optimize

gN,J(w, δ) = aN,Jw′�̂Nw − bN,JQδ2w′�̄Jw + 2bN,JQδs̄′Jw, (5)

where �̂N = 1
N

∑N
i=1 xix′

i is the sample covariance matrix of xi,
s̄J = 1

J
∑J

j=1 �jsj is the weighted average of the expert scores
sj, and �̄J = 1

J
∑J

j=1 �j. The constants aN,J = N/(N + J)
and bN,J = J/(N + J) reflect sample proportions from the two
sources of information.

The estimator of w is then
ŵN,J = arg max

||w||22=1
max

δ
gN,J(w, δ). (6)

Remark 3. Note that if we do not have the observed data,
then s∗ = �̄−1

J s̄J would be the solution of the second term
in Equation (4) without the w′w = 1 constraint. It provides a
summary of the expert scores, adjusted by the confidence scores
and expertise scores. In particular, if all γkj are the same, then �̄J
is in a form of a scalar matrix. Then the solution to the second
term in Equation (4) with the w′w = 1 constraint would be
s̄J/

√
s̄′J s̄J , a normalized average of the expert scores.

Solution to Equation (5) can be obtained through quadratic
programming, under quadratic equality constraints. We also
note that the objective function is a difference of two convex
functions in a constrained space. Optimization of such a func-
tion is easy and fast, with good properties (Markowitz 1956).

Once we obtain ŵN,J through optimizing (5), the composite
index can be constructed with Ci = ŵ′

N,Jxi and the fitted value
of xi can be obtained with x̂i = ŵN,Jŵ′

N,Jxi.

2.2. Geometry Interpretation

The quadratic term involving w in Equation (5) can be written as
w′�∗w, where �∗ = aN,J�̂N − bN,JQδ2�̄J . Therefore, different
from the PCA approach in which the covariance matrix is
always positive semidefinite, the combined objective function
gN,J(w, δ) is in a quadratic form with the “covariance” matrix �∗,
which can be positive definite, negative definite or indefinite,
depending on the penalty parameter Q. When Q is small, the
matrix �∗ is more likely to be positive definite; when Q is very
large, the matrix would be negative definite.

To illustrate, suppose K = 2. The surface in Figure 1 shows
the quadratic function gN,J(w, δ) for a fixed δ. The unit circle
constraint of w is represented by the cylinder space. The con-
straints restrict the quadratic maximization problem in a lower
dimensional constrained space which is also compact. Note that
there is no “corners” in the lower dimensional space, hence
the function gN,J(w, δ) is also continuous in the reduced space,
hence an optimization solution always exists, no matter whether
the matrix �∗ is positive definite, negative definite, or indefinite.

2.3. Determination of the Penalty Parameter

The penalty parameter Q is an important tuning parameter in
practice. It has significant impact on the constructed composite
index as discussed in Section 2.1. Here, we propose to use
a combined M-fold (M = M1M2) cross-validation for its
determination in practice. Specifically, the original observed
sample is randomly partitioned into M1 equal size subsets
D1, . . . , DM1 . The experts scores are divided into M2 equal size
subsets D∗

1, . . . , D∗
M2

. We use M1 − 1 observed data sample
subsets and M2 − 1 experts scores subsets as the training data
for estimating w. Then ŵN,J is used to predict the validation
subset under the factor model setting and the prediction sum of
squares of errors is obtained. Specifically, define

CV(Q) = 1
M1M2

M1∑
m1=1

M2∑
m2=1

⎡
⎣−

∑
i∈Dm1

[x′
iŵ

(−m)
N,J (Q)]2

+ C
∑

j∈D∗
m2

||sj − δ̂(−m)(Q)ŵ(−m)
N,J (Q)||22

⎤
⎦ , (7)
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Figure 1. Estimation picture.

Figure 2. Solution path of ŵ as a function of Q.

Table 1. Estimated weights in Exercise (i).

Estimation w1 w2 w3 w4

True Weight 0.866025 0.353553 0.176777 0.306186
PCA(Q = 0) 0.864550 0.354462 0.189595 0.301601
Q = 100 0.869681 0.351170 0.180353 0.296321
Score(Q = ∞) 0.870224 0.350812 0.179361 0.295753

where ŵ(−m)
N,J (Q) is the optimal w estimated using Q and without

using data in Dm1 and D∗
m2 . Optimal Q is the one with the small-

est cross-validation error CV(Q). Here C is a tuning parameter
that balanced the two sources of errors. For small sample cases,
leave-one-out cross-validation is used.

3. Large-Sample Properties

In this section, we investigate the large-sample properties of the
estimator proposed in the preceding sections. We consider the
rate of convergence when the number of involved component
indices K is fixed or grows with the sample sizes N and J.
In addition, we also establish the central limit theorem of ŵ
when K is fixed. In the high dimensional setting, we let K and
J be constants depending implicitly on N, and consider the
asymptotics as N → ∞.

We first list the assumptions for the fixed dimensional case.
For the rest of this article, we use ||·|| to denote the spectral norm
of a matrix, and the Euclidean norm of a vector. The symbol ⇒
denotes the convergence in distribution.

Assumption 1. Assume K > 0 is fixed, and xi are iid with mean
zero and covariance matrix �0. Let λ1 be the largest eigenvalue
of �0, and w0 the corresponding eigenvector. Assume that the
second largest eigenvalue λ2 of �0 is strictly smaller than λ1.
We also assume that var(w′xix′

iw) is bounded for all w with
||w||22 = 1.

Assumption 2. The expert scores sj are independent, satisfying
||sj|| = 1, E(sj) = δ0w0, and var(sj) = �s.

Assumption 3. The observed data {xi, i = 1, 2, . . . , N} and the
expert scores {sj, j = 1, 2, . . . , J} are independent.

Assumption 4. Let �̄J = 1
J
∑J

j=1 �j. Assume that �̄J → �0,
and J−1 ∑J

j=1 �j�s�
′
j → �̃s as J → ∞, where �0 is a constant

diagonal matrix, with positive diagonal elements, and �̃s is a
constant positive-definite matrix.

Assumption 5. Assume N/(N + J) → a as N, J → ∞, where
0 ≤ a ≤ 1.

For the high-dimensional case, we replace Assumptions 1
and 4 with the following:

Assumption 1(*): We assume K → ∞ as N, J → ∞. Assume
that xi are iid with mean zero and covariance matrix �0N . Let
λ1N be the largest eigenvalue of �0N , and w0N the corresponding
eigenvector. Let λ2N be the second largest eigenvalue of �0N ,
assume lim infN→∞(λ1N − λ2N) > 0. We consider the opti-
mization problem (5) with a covariance matrix estimator �̌N
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Figure 3. Performance measure as function of Q for (N, J) = (400, 40) case.

Table 2. Optimal Q and its corresponding performance.

MSE × 10−4 Q RMSE × 10−2 Q MSEr × 10−3 Q MAE Q

N = 100, J = 10 2.50 3.4 1.53 3.5 4.34 4.3 0.022 3.4
N = 100, J = 40 1.32 3.8 1.08 5.3 1.90 4.2 0.016 3.8
N = 400, J = 10 0.78 2.9 0.86 2.8 1.22 3.5 0.012 2.9
N = 400, J = 40 0.60 3.7 0.75 4.1 0.90 4.4 0.011 3.7

Table 3. Optimal Q under various noise levels.

σs

Q 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1 4.0 1.0 0.5 0.5 0.3 0.3 0.01 0.0 0.01 0.3
0.2 20.0 3.0 2.0 1.0 0.7 0.01 0.4 0.4 0.5 0.3
0.3 40.0 8.0 3.0 2.0 1.0 2.0 0.4 0.7 0.5 1.0
0.4 100.0 10.0 8.0 5.0 4.0 2.0 2.0 1.0 2.0 1.0

σε 0.5 100.0 20.0 10.0 9.0 5.0 5.0 2.0 2.0 2.0 1.0
0.6 100.0 30.0 20.0 10.0 8.0 5.0 5.0 3.0 3.0 3.0
0.7 100.0 80.0 20.0 20.0 20.0 10.0 5.0 5.0 4.0 4.0
0.8 100.0 100.0 40.0 20.0 10.0 10.0 9.0 5.0 6.0 5.0
0.9 100.0 100.0 50.0 50.0 20.0 20.0 10.0 10.0 8.0 9.0
1.0 100.0 100.0 90.0 40.0 30.0 30.0 20.0 10.0 10.0 10.0

satisfying ||�̌N − �0N || = OP(	1N), where 	1N → 0 as
N → ∞.

Assumption 4(*): Assume that the smallest diagonal element
of �̄J is positive and bounded away from zero.

The following remarks provide some comments on the
assumptions.

Remark 4. Assumption 1 is typical for principle component
analysis. The iid assumption of {xi}N

i=1 can be relaxed. The
results still hold if {xi}N

i=1 satisfy certain mixing conditions. A
more widely used but more restricted assumption (typical for a
factor model) that �0 = (λ1 −λ2)w0w′

0 +λ2I can be used here
as well, as it also guarantees that w0 maximizes w′�0w. Here
we choose to allow the noise term xi − w0w′

0xi to have nonzero
correlation.

Remark 5. Assumption 2 assumes that all experts make their
assessments independently. Assumption 3 assumes that the
experts do not make their assessments based on the observed
data.

Remark 6. Assumption 4 is needed to derive the central limit
theorem for fixed K. We do not make assumptions on the
confidence scores and expertise scores. We only need to assume
that as J goes to infinity, �̄J converges to a finite limit. If J is much

Table 4. Performance of composite index construction using cross-validation esti-
mator.

Sample Size N = 400, J = 40

PCA Q(CV) Score
(Q = 0) (Q = 10)

MSE × 10−5 8.8756 7.5430 8.6774
RMSE × 10−3 8.8646 7.9328 8.2140
MSEr × 10−3 1.3537 1.0920 1.2119

Figure 4. MSE against N.

larger than N (when N/(N + J) → 0), we assume the smallest
diagonal element �0 is non-zero so that all component indeces
receive sufficient input from the experts.

Remark 7. Assumptions 1(*) is needed to handle the high-
dimensional setting with K → ∞, which is on the convergence
rates of �̂. Since it is not the focus of this article to consider the
covariance matrix estimation, we list it as a high level condition.
Such convergence rates often require structural assumptions on
�0, and have been extensively studied and are widely available
in the literature; see, for example, Fan, Liao, and Liu (2016) and
Vershynin (2018) and references therein, among many others.
We also note that when K is fixed, Assumptions 1 guarantees that
Assumption 1(*) is fulfilled with �̌N = �̂N and 	1N = N−1/2.
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Table 5. Descriptive statistics of objective data.

Indices Description Mean S.D. Min Max

x1i
# Papers published in CSSCI and SCI

Total population of the region (10,000) 3.79 5.37 0.64 30.28

x2i
# National achievements

Total population of the region (10,000) 119.61 306.48 0.00 1754.00

x3i
# Invention Patents

Total population of the region (10,000) 9.07 15.70 1.30 85.00

x4i
Technical Transfer Amounts (10,000 CNY)

Total population of the region (10,000) 1128.79 3039.22 0.00 16969.24

x5i
International Technology Revenue (USD)

Gross Domestic Product (10,000 CNY) 4.20 10.63 0.02 52.42

Table 6. Correlation matrix.

Indices x1· x2· x3· x4· x5·
x1· 1.0000 0.9698 0.9674 0.9763 0.7324
x2· 0.9698 1.0000 0.9521 0.9844 0.6354
x3· 0.9674 0.9521 1.0000 0.9386 0.7785
x4· 0.9763 0.9844 0.9386 1.0000 0.6150
x5· 0.7324 0.6354 0.7785 0.6150 1.0000

We first establish the convergence rate of ŵ. For this result,
we allow K to grow with N and J. Based on Remark 7, a fixed K
is a special case of this scenario.

Theorem 1. Set the Q in Equation (5) as Q = QN = νN	2
1N ,

where ν > 0 is a constant. Under Assumptions 1(*), 2, 3, 4(*),
and 5, when N → ∞ and J → ∞, we have

||ŵN,J − w0|| = OP
(
min{	1N , J−1/2}) ,

where ŵN,J is the maximizer of gN,J(w, δ) in Equation (5).

The proof is shown in the appendix.

Remark 8. As discussed earlier, the parameter Q balances the
two sources of information. Theorem 1 requires Q = QN =
νN	2

1N to allow ŵ to follow the faster convergence rate. For an
arbitrary QN , let RN = √

(JQN)/N, the convergence rate can be
shown as

min
{
	1N ∨ [

(RN ∧ 1)J−1/2] ,
[
(1 ∧ R−1

N )	1N
] ∨ J−1/2} .

This is a slightly stronger result, but requires a more tedious
proof.

When K is fixed, we can further have the central limit theo-
rem for ŵ := ŵN,J .

Theorem 2. Under Assumptions 1 to 5, it holds that

(N+J)1/2(ŵ−w0) ⇒ N
[
0, �−1

0 (a�1 + (1 − a)Q2δ2
0�2)�

−1
0

]
,

where �0 = a (�0 − λ1I) − (1 − a)δ2
0QP2�0 + w0w′

0, �1 =
var(P1xix

′
iw0) and �2 = P2�̃sP2, where P1 = I − w0w′

0
and P2 = I − (w′

0�0w0)
−1�0w0w′

0. If xi follows a normal
distribution, then �1 = λ1(�0 − λ1w0w′

0).

The proof is shown in the appendix.

Remark 9. In the unbalanced cases (i.e., N/(N + J) goes to 0
or 1), the combined estimator has the same asymptotic variance
as that using the dominant source of information only. In the
balanced case, the estimator is more efficient than using only
one source.

Remark 10. The penalty coefficient Q should be chosen to
minimize the trace of the asymptotic variance matrix. However,
it is quite involved as Q appears in both �0 and the middle term
(a�1 + (1 − a)Q2�2) in the asymptotic variance. In practice,
we use cross validation procedure to choose the optimal Q.

4. Simulation Studies

In this section, we present some empirical studies to illustrate
the performance of the proposed estimator ŵN,J under different
N and J combinations. The impact of the penalty parameter Q
and the performance of the cross-validation method are inves-
tigated as well.

For each of simulation, we assume xi ∼ N(0, �0) where
�0 = w0w′

0 + σ 2
ε I, hence, it can be written as a factor model

xi = fiw0 + εi where fi ∼ N(0, 1) and εi ∼ N(0, σ 2
ε I). All fi

and εi are iid and independent to each other. The expert scores
sj are generated according to the distribution of s described as
follows. We first generate s̃ through the spherical representation

s̃1 = cos(e1),
s̃2 = sin(e1) cos(e2), . . . , s̃K

= sin(e1) · · · sin(eK−2) sin(eK−1),

where the spherical coordinates ek are IID N(0, σ 2
s ). Then, we

choose a K × K-dimensional orthogonal matrix U whose first
column is w0, and generate s as s = Us̃. It holds that ||s|| = 1,
E(s) = δ0w0, where δ0 = E[cos(e1)] = exp(−σ 2

s /2).
Exercise (i). In this experiment, we investigate the impact

of the penalty parameter Q. Specifically, we use K = 4, N =
400, J = 40, γkj = 1 and cj = 1 for k = 1, . . . , K, j =
1, . . . , J. We set θ0 = (π/6, π/4, π/3) with corresponding w0 =
(0.866025, 0.353553, 0.176777, 0.306186). The expert scores sj
are generated as described above. Here, we use σε = 0.2, σs =
0.2. We vary Q from 0 to 100 in the estimation.

Figure 2 shows the solution paths of the estimate ŵ as the
penalty parameter Q changes. It is seen that the solution paths
are continuous. The three horizontal lines mark the value of
the PCA solution (using only the observed component indices),
the estimates base on the experts score only, and the true value
w0 in the factor model. The relationship between the estimated
optimal combination weights and penalty parameter is clear
seen. When Q = 0, the estimated combination weights are
equal to the PCA estimates as the solution of the first term
of the objective function (6). When Q increases, the estimated
combination weights become closer to that of the experts. It is
noted that the four solution paths cross the true combination
weight line at different Q values and in the case of w1 it does not
cross at all. Table 1 lists some of the values.

Exercise (ii). We repeat the simulation in Exercise (i) 100
times, with sample sizes (N, J) = (100, 10), (400, 10), (100, 40),
and (400, 40) to check to performance of the estimator ŵN,J . We
set (σε , σs) = (0.2, 0.2). Again all cj’s and γkj’s are set to 1. Here
we investigate the performance with Q ranging from 0 to 10.

Four performance criteria are used: mean squared error
(MSE), root of mean squared error (RMSE), the relative of
MSE (MSEr), and mean angle error (MAE). They are defined as
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Figure 5. Distribution of component indices.

Figure 6. Expert opinion.
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Table 7. Descriptive statistics of subjective data.

Scores Mean S.D. Min Max Conf. Mean S.D. Min Max

s1j 0.4812 0.2372 0.1782 0.9006 γ1j 0.8423 0.1789 0.4500 1.0000
s2j 0.3000 0.1208 0.0971 0.4735 γ2j 0.8154 0.2125 0.2500 1.0000
s3j 0.3677 0.1928 0.0937 0.7144 γ2j 0.8354 0.1931 0.3000 1.0000
s4j 0.4129 0.2665 0.0430 0.8909 γ2j 0.8269 0.1666 0.5000 1.0000
s5j 0.4142 0.1971 0.1537 0.7921 γ5j 0.7954 0.2159 0.2500 1.0000

Expertise Mean S.D. Min Max
cj 0.8192 0.2650 0.1500 1.0000

follows:

MSE = 1
L

∑L
�=1 ||ŵ(�) − w0||2,

MAE = 1
L

∑L
�=1 ||ŵ(�) − w0||,

MSEr = 1
L

∑L
�=1

∑K
k=1

(
ŵ(�)

k −w0k
w0k

)2
,

RMSE = ∑K
k=1

[
1
L

∑L
�=1

(
ŵ(�)

k − w0k
)2

]1/2
,

where L is the number of replications. Here, RMSE gets the root
mean square error of each component wk first, then averages
over k.

Figure 3 shows the four performance measures as functions
of Q in the case of (N, J) = (400, 40). All of them show a
“U”-shape function, with minimum values corresponding to an
optimal Q under different criteria. They demonstrate that by
selecting an optimal Q, one can effectively combine both the
observed data and the expert opinion for the construction of the
composite index.

Table 2 shows the optimal Q and its corresponding perfor-
mance under each criteria for the four sample size combinations.
It is seen that, the optimal Q is larger when the number of experts
J is larger, hence the combined experts’ scores provides a more
accurate estimate of the combination weights. When the sample
size N is larger, the data provide more information, hence Q will
be smaller.

Exercise (iii). In this experiment, we investigate the relation-
ship between the optimal penalty parameter Q and the noise
levels of the observations and expert opinions. Using J = 10,
K = 2 and N = 100, we set fi ∼ N(0, 1), εi ∼ N(0, σ 2

ε I), all γ ’s
and c are set to 1. Let θ0 = π/4, or w0 = (

√
2/2,

√
2/2), and we

use different levels of σs to simulate expert scores sj.
Simulation is repeated 100 times to obtain MSE for each Q

value and obtain the optimal Q (0 ≤ Q ≤ 100) under each
σε and σs combination. Table 3 reports the optimal Q where σε

and σs are chosen to be the arithmetic sequence from 0.1 to 1
and from 0.05 to 0.50, separately.

There are some interesting observations. First, for a fixed σs,
the optimal Q increases as σε increases. It confirms our con-
clusion that the optimal estimator (ŵN,J) should depend more
on the expert opinions if the noise in the observed component
indices is large. Second, for a fixed σε , the optimal Q decreases as
σs increases. This means that if the expert opinion is less reliable,
the estimate (ŵN,J) will have a higher relevance on the observed
dataset. Hence, the optimal Q reflexes a balance between the
noise level of the observed data and noise level of expert opinion
information. If the σε and σs are provided, then theoretical
optimal Q can be chosen.

Figure 7. Cross-validation MSE.

Table 8. Estimation result.

Indices w1 w2 w3 w4 w5

Combined estimator 0.4497 0.4597 0.4440 0.4522 0.3707
Standard error 0.0255 0.0220 0.0142 0.0228 0.0397
PCA 0.4845 0.4747 0.4443 0.4621 0.3592
Standard error 0.2325 0.2301 0.2140 0.2223 0.1836
Weighted expert score 0.5829 0.3748 0.4314 0.3938 0.4227
Standard error 0.0749 0.0404 0.0590 0.0905 0.0634

Table 9. Composite Index.

Rank Provinces Index Rank Provinces Index Rank Provinces Index

1 Beijing 210.68 11 Sichuan 10.42 22 Hainan 5.15
2 Shanghai 88.64 12 Heilongjiang 10.18 23 Jiangxi 4.41
3 Tianjin 40.59 13 Shandong 8.91 24 Hebei 4.37
4 Jiangsu 23.35 14 Jilin 8.73 25 Ningxia 4.16
5 Shaanxi 22.37 15 Gansu 7.70 26 Shanxi 4.01
6 Guangdong 21.41 16 Qinhai 7.43 27 Yunnan 3.91
7 Zhejiang 17.93 17 Xinjiang 6.93 28 Guangxi 3.07

Benchmark 16.71 18 Anhui 6.68 29 I. Mongolia 2.87
8 Hubei 16.58 19 Fujian 6.34 30 Guizhou 2.86
9 Liaoning 15.43 20 Hunan 6.18 31 Tibet 1.13

10 Chongqing 11.22 21 Henan 5.67

Exercise (iv). In this exercise, we investigate the performance
of the proposed cross-validation procedure for the determina-
tion of the optimal Q and its corresponding performance on
the construction of the composite index. In this experiment,
we assume K = 4, N = 400, J = 40, fi ∼ N(0, 1) and
εi ∼ N(0, 0.22). We set θ0 = (π/6, π/4, π/3) as Exercise (i). sj’s
are generated using with σs = 0.2, γkj = 1, cj = 1. We restrict Q
in [0, 10], and we use 10-fold cross-validation for N and 4-fold
for J. Then we obtain CV(Q) in Equation (7), with C = 1.

Table 4 shows the performance of the estimator using the
estimated optimal Q under cross-validation. The performance
measures are obtained using 100 simulated datasets under
each sample size setting. It is clearly seen that the combined
construction with the optimal Q obtained from cross-validation
outperforms that using data alone or using expert opinion
alone.
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Figure 8. Solution path of real example.

Exercise (v). In this exercise, we investigate the convergence
of ŵN,J under the high dimensional setup. We fix J/N = 0.2,
let KN = 0.5N and generate fi ∼ N(0, 1), εi ∼ N(0, σ 2

ε I).
We choose σ 2

ε = σ 2
ε,N = 5/KN so that the relative rank of

�0N , which is tr(�0N)/||�0N || = 6/(1 + 5/KN), stays roughly
at a constant, and ||�̂N − �0N || = OP(N−1/2) according to
Koltchinskii and Lounici (2017), see also Chapter 9 of Vershynin
(2018). The expert scores sj are generated as Exercise (i) with
all γkj’s and cj setting to 1, θ0 = π ∗ (1, 2, . . . , KN − 1)′, and
σs = 0.2. We plot the MSE of ŵN,J against N in Figure 4, for
different choices of Q. The convergence of ŵN,J to w0 is clearly
seen from the plot.

5. An Application

In this section, as an empirical application, we use the proposed
method to construct a composite index for scientific and tech-
nological activity output of provinces and province-level munic-
ipalities in China. It is important for the policy makers to be able
to evaluate the output of scientific and technological activities
which in turn provide guidance for generating scientific and
technological investment policies. In this example, we use five
component indices (indicators) from National Scientific and
Technological Progress Statistical Monitoring Database main-
tained by the Ministry of Science and Technology of China. The

indicators include Number of Scientific Papers per capita (in
10,000 people), Number of National Scientific and Technolog-
ical Achievements Awards per capita (in 10,000 people), Num-
ber of Invention Patents per capita (in 10,000 people), Techni-
cal Transfer Amounts (in 10,000 CNY) per capita (in 10,000
people), and International Technology Revenue (in USD) per
Gross Domestic Product (in 10,000 CNY). We use data of year
2017. There are 31 provinces and province-level municipalities,
excluding Taiwan, Hong Kong and Macao. Source of data is
the 2017 National Scientific and Technological Progress Statis-
tical Monitoring Report from Ministry of Science and Technol-
ogy. Table 5 shows the detailed variable description and some
descriptive statistics.

We standardize each of observed component index xk· to
mean zero and standard deviation 1. Table 6 shows the corre-
lation matrix of the five component indices. The correlations
among the component indices are very close to one, except x5·.

Figure 5 shows the distribution of the five indices. There are
some obvious outliers. Among this small sample, Shanghai and
Beijing are two very large outliers. They hold the two largest
values in each of the five indicators. This is due to the fact
that Shanghai and Beijing are the political, culture, science and
technology, and business centers of China. These two outliers
are also the source of the extreme high sample correlations
among the component indices. We exclude these two sets of
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Figure 9. Composite Index for Science and Technology Output of China.

observations from the estimation of the combination weights for
the composite index construction. Otherwise, their features will
dominate the entire composition. We obtain the value of their
composite index at the end base on the combination weights
estimated using the data set without these two cities, for com-
parison purpose.

We surveyed 13 researchers who are experts on the issues
related to science and technology development. Each expert
gave scores to each of the five component indices and their
corresponding confidence score. We also assessed their exper-
tise levels ranging from 0.15 to 1. Figure 6 shows the boxplot
of the expert scores and their confidence levels. The scores
are standardized. Descriptive statistics of expert information is
given in Table 7.

Since the sample size in this application is small, we use leave-
one-out cross-validation instead of K-fold cross-validation in
determining the optimal penalty parameter Q. Figure 7 shows
CV(Q) defined in (7). The estimated optimal Q is 2.5, when
CV(Q) is the smallest. Meanwhile, the estimated optimal δ is
0.8812.

Using the optimal Q, we estimate the combination weights,
shown in Table 8. Due to the small sample size, we obtain
bootstrap standard error (Efron and Tibshirani 1985) of the esti-
mated combination weights, where both observed component
induces and expert opinions are bootstrapped separately.

For combined estimation, we bootstrap the component
indices and the export scores separately, in over the maintain
the relative sample proportion. The combined estimates have
relatively smaller bootstrap standard errors than the estimates

using PCA or using expert opinion alone. Table 8 also shows the
estimated combination weights using the observed data alone
(PCA) and using the expert scores alone. For lower correlations
between x5· and others, it is interesting to see that PCA gives a
small ŵ5 (0.3592), the combination weight for the international
technology transfer, while the experts give a much larger value
(0.4227). Combining both information, we assign 0.3707 to the
indicator.

Figure 8 shows the solution path of the estimated combi-
nation weights as a function of Q. The vertical line indicates
the optimal Q used and horizonal lines corresponding to the
estimated combination weights.

The estimated combination weights are used to construct the
composite index on science and technology output, including
Beijing and Shanghai. We also use the national average of each
component indicators to obtain the national index as a bench-
mark. Beijing has the highest science and technology output,
since it has a large number of top universities and a large number
of research institutes under Chinese Academy of Sciences.
Shanghai ranks the second, due to its high concentration of
major corporations and their R&D centers, as well as several
major universities and research institutes. There are 7 provinces
or province-level municipalities above the national benchmark:
Beijing, Shanghai, Tianjin, Jiangsu, Shaanxi, Guangdong, and
Zhejiang. Except Shannxi, these are the most industrial and
developed regions of China. Figure 9 shows the constructed
composite index for each provinces with their geographical
locations. It is seen that some western provinces such as Shaanxi,
Chongqing, Sichuan, Gansu, and Qinhai score high, although
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traditionally their economic developments are slower than
provinces on the east coast line. This is partially due to the
recent strategic Western Development policy of the central
government and the road-belt initiative (Liu and Dunford 2016;
Démurger et al. 2002).

6. Conclusion

This article proposes a penalized optimization approach to
incorporate expert opinion information with the principal
component analysis of observed component indicators in a
factor model framework for the construction of composite
index using linear combination of the component indicators.
The combination weights are determined by objective data
and subjective expert opinion. The approach involves a penalty
parameter Q that balances two sources of noises, one from the
observations and the other from the expert opinions. It can be
chosen through a data-driven cross-validation approach.

The proposed approach can be naturally and technically
easily extended to construct multiple indices, similar to find-
ing multiple factors or principle components. However, index
construction often has specific target and interpretations — the
reason that a group of experts would generally agree on the
importance of each series. A second (and maybe orthogonal)
index would be very difficult to interpret. In addition, it would
be almost impossible to ask the experts to provide their weights
on the second index that may or may not be orthogonal to the
first one. Despite of the difficulty in defining and interpreting
multiple indices, it is worth further exploration for practical
uses.

Appendix

A.1. Proof of Theorem 1

Lemma 1. Under Assumption 2, ||s̄J − δ0�̄Jw0|| = OP(J−1/2).

Proof: Since ||sj|| = 1 and all diagonal elements of �j are less than or
equal to 1,

E||�jsj − δ0�jw0||2 ≤ E||�jsj||2 ≤ 1.

Therefore, E||s̄J − δ0�̄Jw0||2 ≤ 1/J, and the conclusion follows.
Proof of Theorem 1: Recall that J = JN is a constant depending

implicitly on N. Set 	2N = J−1/2
N , and 	N = min{	1N , 	2N}. To

show that ||ŵ − w0|| = OP(	N), it suffices to prove that ||ŵ − ŵ0|| =
oP(dN	N) for any sequence dN → ∞. We shall prove that for any
given diverging sequence {dN} and constant ζ > 0,

lim
N→∞ P

[
sup

||w−w0||≥ζdN	N ,δ∈R
gN,J(w, δ) < gN,J(w0, δ0)

]
= 1, (8)

which implies P
(||ŵ − ŵ0|| ≥ ζdN	N

) = 0, and then the conclusion
of Theorem 1 follows.

Let

g1(w) = w′�̌N w,
g2(w, δ) = δ2w′�̄Jw − 2δs̄′Jw.

Recall that

gN,J(w, δ) = aN,Jg1(w) − bN,JQN g2(w, δ).

Our strategy of proving (8) is to compare gN,J(w, δ) with aN,Jg1(ŵ1)−
bN,JQN g2(ŵ2, δ̂2) through

gN,J(w, δ) = aN,J
{

g1(ŵ1) − [
g1(ŵ1) − g1(w)

]}
−bN,JQN

{
g2(ŵ2, δ̂2) −

[
g2(ŵ2, δ̂2) − g2(w, δ)

]}
,

where ŵ1 and (ŵ2, δ̂2) maximize g1(w) and g2(w, δ) respectively, whose
precise definitions will be given in the sequel. Note that by definition

gN,J(w, δ) ≤ aN,Jg1(ŵ1) − bN,JQN g2(ŵ2, δ̂2).

Let ŵ1 be the leading eigenvector of �̌N . According to Wedin’s
sin(�) Theorem (Wedin 1972),

||ŵ1−w0|| ≤
√

2||(�̌N − �0N)ŵ1||
||�̌N || − λ2N

≤
√

2 ||�̌N − �0N ||
λ1N − λ2N − ||�̌N − �0N || ,

which, together with Assumption 1(*), implies that ||ŵ1 − w0|| =
OP(	1N). Write w0 = τ̂ ŵ1 + √

1 − τ̂2w̃1, where 0 ≤ τ̂ ≤ 1 and
w̃1 ⊥ ŵ1. Note that ||w0 − ŵ1||2 = 2(1 − τ̂ ). It holds that

g1(ŵ1) − g1(w0) = ŵ′
1�̌N ŵ1 −

(
τ̂ ŵ1 + √

1 − τ̂2w̃1
)′

�̌N
(
τ̂ ŵ1 + √

1 − τ̂2w̃1
)

= (1 − τ̂2)ŵ′
1�̌N ŵ1 − (1 − τ̂2)w̃′

1�̌N w̃1
≤ 2(1 − τ̂ )λ̂1N = λ̂1N ||w0 − ŵ1||2.

By Assumption 1(*), there exists constants λ̄ > λ > 0 such that λ1N ≤
λ̄ and λ1N −λ2N ≥ λ when N is large enough. Consider the event A1N
on which

||ŵ1 − w0|| ≤ √
dN/2	1N , and λ̂1N < 2λ̄, and

|λ̂1N − λ̂2N | ≥ λ/2.

Then P[A1N ] → 1, and on A1N ,

g1(ŵ1) − g1(w0) ≤ λ̄dN	2
1N . (9)

Recall that 	2N = J−1/2
N . Let δ̂2 = ||�̄−1

J s̄J || and ŵ2 = �̄−1
J s̄J/δ̂2.

By Assumption 4(*), there exists a constant γ > 0 such that the
minimum diagonal entry of �̄J is larger than γ when N is large enough,
and hence by Lemma 1,

||δ̂2ŵ2 − δ0w0|| ≤ ||�̄−1
J || · ||s̄J − δ0�̄Jw0|| = OP(	2N).

Define the event A2N :=
[
||δ̂2ŵ2 − δ0w0|| ≤ √

dN	2N
]

, then
P[A2N ] → 1, and on A2N , it holds that

g2(w0, δ0) − g2(ŵ2, δ̂2) =
(
δ̂2ŵ2 − δ0w0

)
�̄J

(
δ̂2ŵ2 − δ0w0

)
≤ ||δ̂2ŵ2 − δ0w0||2 ≤ dN	2

2N .
(10)

Combining (9) and (10), we know on the event A1N ∩ A2N ,

gN,J(w0, δ0) ≥ aN,Jg1(ŵ1) − bN,JQN g2(ŵ2, δ̂2)
−dN

(
aN,J λ̄	2

1N + bN,JQN	2
2N

)
. (11)

We now consider gN,J(w, δ) with ||w|| = 1 and ||w − w0|| ≥
ζdN	N . Note that ||w|| = 1 and ||w − w0|| ≥ ζdN	N implies

inf
δ∈R ||δw − δ0w0|| ≥ δ0||w − w0|| ≥ δ0ζdN	N .

Define two more events

A′
1N = [||w − ŵ1|| ≥ ζdN	N/2],

A′
2N = [ inf

δ∈R ||δw − δ̂2ŵ2|| ≥ δ0ζdN	N/2].
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When N is large enough, on A1N ∩ A2N , at least one of A′
1N and A′

2N
happens. More specifically, if 	1N ≤ 	2N , then A′

1N happens, and
thus (similar to (9)),

g1(ŵ1) − g1(w) ≥ 2(λ̂1N − λ̂2N)||w − ŵ1||2 ≥ λζ 2d2
N	2

N/4.

Since QN = νN	2
1N = ν(N	2

1N)/(J	2
2N), comparing with (11), we

see that when N is large enough

gN,J(w, δ)≤ aN,Jg1(ŵ1) + bN,JQN g2(ŵ2, δ̂2) − λζ 2d2
N aN,J	2

N/4
< aN,Jg1(ŵ1) + bN,JQN g2(ŵ2, δ̂2) − (λ̄ + ν)dN aN,J	2

N≤ gN,J(w0, δ0).
(12)

On the other hand, if 	1N ≥ 	2N , then A′
2N happens, and

g2(w, δ) − g2(ŵ2, δ̂2) =
(
δ̂2ŵ2 − δw

)
�̄J

(
δ̂2ŵ2 − δw

)
≥ γ δ2

0ζ 2d2
N	2

N/4.

Again, comparing with (11), when N is large enough,

gN,J(w, δ)≤ aN,Jg1(ŵ1) + bN,JQN g2(ŵ2, δ̂2) − γ δ2
0ζ 2d2

N bN,J	2
N/4

< aN,Jg1(ŵ1) + bN,JQN g2(ŵ2, δ̂2) − (λ̄/ν + 1)dN bN,J	2
N≤ gN,J(w0, δ0).

(13)
Combining (12) and (13), it holds that when N is large enough, on
the event A1N ∩ A2N , if ||w|| = 1 and ||w − w0|| ≥ ζdN	N , then
gN,J(w, δ) < gN,J(w0, δ0), and the proof of (8) is complete, so is the
proof of Theorem 1.

A.2. Proof of Theorem 2

Proof of Theorem 2: The Lagrangian form of optimizing gN,J(w, δ)
with w′w = 1 constraint is

aN,Jw′�̂N w − bN,JQδ2w′�̄Jw + 2bN,JQδs̄′Jw − aN,Jλ(||w||22 − 1).

Note that we insert aN,J in front of the Lagrangian term for ease of
presentation. Its corresponding gradient condition is

aN,J�̂N ŵN,J−bN,JQδ̂2�̄JŵN,J+bN,JQδ̂s̄J − aN,J λ̂N,JŵN,J = 0, (14)

δ̂ŵ′
N,J �̄JŵN,J − s̄′JŵN,J = 0. (15)

For notational simplicity, set Ñ = N+J. By Theorem 1, we know under
the assumptions of Theorem 2, it holds that

ŵN,J − w0 = OP(Ñ−1/2), and δ̂ − δ = OP(J−1/2).

Therefore, the first term in (14) can be written as

aN,J�̂N ŵN,J = aN,J(�0 + �̂N − �0)(w0 + ŵN,J − w0)

= aN,J�0w0 + aN,J(�̂N − �0)w0

+ aN,J�0(ŵN,J − w0) + oP(Ñ−1/2), (16)

due to the fact that aN,J(�0 − �̂N) = OP(aN,JN−1/2) = oP(1). The
sum of the second and third terms in (14) is

− bN,JQδ̂2�̄JŵN,J + bN,JQδ̂s̄J

= −bN,JQ(δ0 + δ̂ − δ0)2�̄J(w0 + ŵN,J − w0)

+ bN,J(δ0 + δ̂ − δ0)Q(δ0�̄Jw0 + s̄J − δ0�̄Jw0)

= −bN,JQδ2
0�̄J(ŵN,J − w0) + bN,JQδ0(s̄J − δ0�̄Jw0)

− bN,JQδ0(δ̂ − δ0)�̄Jw0 + oP(Ñ−1/2), (17)

where we have used the fact

bN,JQ(δ̂ − δ0)(s̄J − δ0�̄Jw0) = OP(J/(N + J) · J−1/2 · J−1/2)

= oP(Ñ−1/2)

to get the second identity. The last term in (14) is treated under two
scenarios: a > 0 and a = 0. First, if a > 0, (14) implies that λ̂N,J −λ1 =
oP(1), where λ1 is the largest eigenvalue of �0. Hence the last term in
(14) is

aN,J λ̂N,JŵN,J = aN,J(λ1 + λ̂N,J − λ1)(w0 + ŵN,J − w0)

= aN,Jλ1w0 + aN,J(λ̂N,J − λ1)w0

+ aN,Jλ1(ŵN,J − w0) + oP(Ñ−1/2). (18)

Second, when a = 0, from (14), (16) and (17), we see that

aN,J λ̂N,JŵN,J − aN,Jλ1w0 = OP(Ñ−1/2),

which implies that

aN,J(λ̂N,J − λ1)ŵN,J = aN,Jλ1(w0 − ŵN,J) + OP(Ñ−1/2)

= OP(Ñ−1/2),

and henceforth aN,J(λ̂N,J − λ1) = OP(Ñ−1/2). Therefore, (18) will
continue to hold when a = 0. From equation (15), using the facts
ŵN,J − w0 = OP(Ñ−1/2), s̄J − δ0�̄Jw0 = OP(J−1/2) and δ̂ − δ0 =
OP(J−1/2), we see that

(δ̂ − δ0)w′
0�̄Jw0 + δ0w′

0�̄J(ŵN,J − w0) − (s̄J − δ0�̄Jw0)′w0

= oP(Ñ−1/2),

and it follows that

δ̂ − δ0 = w′
0(s̄J − δ0�̄Jw0) − δ0w′

0�̄J(ŵN,J − w0)

w′
0�̄Jw0

+ oP(Ñ−1/2).

(19)
Plugging (19) into (17), and combining (16) and (18), we conclude

that

[aN,J(�0 − λ1I) − bN,JQδ2
0P̄2�̄J ](ŵN,J − w0) − aN,J(λ̂N,J − λ1)w0

= −aN,J(�̂N − �0)w0 − bN,JQδ0P̄2(s̄J − δ0�̄Jw0) + oP(Ñ−1/2),
(20)

where P̄2 = I − (w′
0�̄Jw0)−1�̄Jw0w′

0. Multiplying both sides of
(20) by the projection matrix P1 = I − w0w′

0 and using the facts
P1 (�0 − λ1I) = (�0 − λ1I)and P1P̄2 = P̄2, we have[

aN,J (�0 − λ1I) − bN,JQδ2
0P̄2�̄J

]
(ŵN,J − w0)

= − aN,JP1(�̂N − �0)w0 − bN,JQδ0P̄2(s̄J − �̄Jw0) + oP(Ñ−1/2).

Note that the matrix in front of (ŵN,J − w0) is singular. Since
||ŵN,J ||2 = ||w0||2 = 1, it follows that w′

0(ŵN,J − w0) = (w′
0ŵN,J −

1) = − 1
2 ||ŵN,J − w0||2 = oP(Ñ−1/2). Therefore,[

aN,J (�0 − λ1I) − bN,JQδ2
0P̄2�̄J + w0w′

0
]
(ŵN,J − w0)

= − aN,JP1(�̂N − �0)w0 − bN,JQδ0P̄2(s̄J − �̄Jw0) + oP(Ñ−1/2).
(21)

Assumption 4 supposes �̄J → �0 and J−1 ∑J
j=1 �j�s�′

j → �̃s, which
implies that P̄2 → P2. By the central limit theorem,

√
NP1(�̂N − �0)w0 ⇒ N(0, �1),√
JP̄2(s̄J − �̄Jw0) ⇒ N(0, �2),
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where �1 = var(P1xix′
iw0) and �2 = P2�̃sP2. If xi follows a normal

distribution, then

�1 = var(P1xix′
iw0) = var(P1xi)var(x′

iw0) = λ1(�0 − λ1w0w′
0),

due to the fact thatP1xi and x′
iw0 are both normal andE(P1xix′

iw0) =
0. Since the first two terms on the right-hand side of (21) are indepen-
dent under Assumption 3, we have√

N + J(ŵN,J − w0) ⇒ N
[

0, �−1
0 (a�1 + (1 − a)Q2δ2

0�2)�
−1
0

]
,

where �0 = a (�0 − λ1I) − (1 − a)Qδ2
0P2�0 + w0w′

0.
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