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One of the important and widely used classes of models for non-Gaussian time series is the generalized autoregressive model
average models (GARMA), which specifies an ARMA structure for the conditional mean process of the underlying time series.
However, in many applications one often encounters conditional heteroskedasticity. In this article, we propose a new class
of models, referred to as GARMA-GARCH models, that jointly specify both the conditional mean and conditional variance
processes of a general non-Gaussian time series. Under the general modeling framework, we propose three specific models,
as examples, for proportional time series, non-negative time series, and skewed and heavy-tailed financial time series. Maxi-
mum likelihood estimator (MLE) and quasi Gaussian MLE are used to estimate the parameters. Simulation studies and three
applications are used to demonstrate the properties of the models and the estimation procedures.
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1. INTRODUCTION

The traditional autoregressive and moving average (ARMA) models for time series analysis assume the condi-
tional mean of yt given the past information depends linearly on the past observations and past innovations. To
capture empirical characteristics such as serial dependence between squared innovations, volatility clustering and
other heteroskedasticity in many time series encountered in the real data, especially in economic and financial
applications, additional assumptions on the conditional variance are often introduced and included in the model,
resulting in models such as the generalized autoregressive conditional heteroskedasticity (GARCH) models pro-
posed by Engle (1982) and Bollerslev (1986) and stochastic volatility models proposed by Taylor (1982, 1986).
The resulting combined ARMA and GARCH processes are often referred to as the ARMA-GARCH models. In
dealing with non-Gaussian time series exhibiting heavy tailed and asymmetric behaviors, the innovation (error)
process in the ARMA-GARCH models is often assumed to follow certain non-Gaussian distributions, including
Student-t (Bollerslev, 1987), generalized error distribution (Nelson, 1991), skewed Student-t (Lambert and Lau-
rent, 2001), and others. These approaches are often referred to as the innovations-based approaches for dealing
with non-Gaussian time series.

A different approach for modeling non-Gaussian time series is the data-based approach, in which one first
assumes a non-Gaussian conditional distribution of yt given the past, then models the temporal evolution of the
parameters of the distribution. Such an approach is often used to model time series of count, time series of positive
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random variables, and proportional time series, including the autoregressive conditional duration models (Engle
and Russell, 1998), multiplicative error models (Engle, 2002a; Engle and Gallo, 2006), Poisson and negative
binomial models for discrete-valued or count data (Davis et al., 2003; Ferland et al., 2006; Davis and Wu, 2009;
Fokianos et al., 2009; Fokianos and Fried, 2010; Qian et al., 2020), Beta autoregressive moving average (ARMA)
models (Rocha and Cribari-Neto, 2009; Scher et al., 2020), and many others. A general class of such models is
the generalized ARMA (GARMA) model of Benjamin et al. (2003) and its martingalized version (M-GARMA)
model of Zheng et al. (2015). Through a link function, GARMA and M-GARMA assume an ARMA form for the
conditional mean process.

Similar to the need of extending the approach of modeling only the conditional mean to jointly modeling
the conditional mean and variance in the innovation-based approach mentioned above, there is also a need to
extend the GARMA models to include the modeling of the conditional variance process, to address conditional
heteroskedasticity often observed in applications. This is actually more important in the data-based approaches
since here we directly model the conditional distribution. If the conditional distribution involves more than one
parameter, then the conditional mean itself is often not sufficient to capture the time varying behavior of the con-
ditional distribution. For example, if the distribution is parameterized by its mean and some other parameters, the
GARMA model would need to require all the parameters except the mean to be fixed, and only the mean param-
eter to be time varying and carry the past information. Such an assumption limits the modeling flexibility for real
applications.

In this article, we propose a data-based approach for modeling non-Gaussian time series by jointly modeling
the conditional mean and variance processes, through a link function. It is an extension of the GARMA model,
with an additional GARCH structure for the conditional variance process.

It is not straightforward to include a GARCH structure under the GARMA model framework of Benjamin et al.
(2003). The reason is that if the specified link function h(⋅) in the GARMA formation is not identity, the induced
error sequence under the link function {h(yt) − E[h(yt) ∣ t−1]} is not a martingale difference sequence (MDS)
and thus its squared counterparts as a measure of the conditional variance are complicate and difficult to interpret.
On the other hand, the martingalized-GARMA (M-GARMA) model proposed by Zheng et al. (2015) provides a
promising framework, allowing the error sequence being an MDS.

Based on the preceding discussions, this article formally proposes the GARMA-GARCH model under the
M-GARMA framework of Zheng et al. (2015) to capture the conditional heteroskedasticity of non-Gaussian time
series. We also introduce three specific models under the general framework: a log-Gamma-GARMA-GARCH
model for non-negative time series, a logit-Beta-GARMA-GARCH model for proportional time series, and a gen-
eralized hyperbolic skew Student-t (GHSST) distribution based GARMA-GARCH model for financial time series.
We then present the maximum likelihood estimator (MLE) and quasi Gaussian MLE (GMLE) for estimating the
parameters in the GARMA-GARCH models.

The rest of this article is organized as follows. Section 2 introduces the GARMA-GARCH model, together
with the three specific models and their properties. In Section 3, we introduce the MLE and GMLE for
GARMA-GARCH models. Section 4 presents some simulation studies to demonstrate the finite sample per-
formance of the estimators. In Section 5, empirical applications are carried out for realized volatility, U.S.
personal saving rate and stock returns by using the three specific models respectively. The last section
concludes.

2. THE MODEL

2.1. GARMA-GARCH Model

The GARMA-GARCH model relies on a given parametric family of distributions f (y ∣ 𝛾, 𝜑) with parameters 𝛾

and 𝜑, and a y-link function h(⋅). Here both 𝛾 and 𝜑 can be vectors. Define the functions g𝜑(𝛾) ∶= E[h(Y)] and
V𝜑(𝛾) ∶= Var[h(Y)], where Y follows the distribution f (y ∣ 𝛾, 𝜑). The GARMA-GARCH model assumes that the

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 125–146 (2022)
DOI: 10.1111/jtsa.12602



GARMA-GARCH MODEL 127

conditional distribution p(yt ∣ t−1) is

p(yt ∣ t−1) = f (yt ∣ 𝛾t, 𝜑), (1)

where 𝛾t is determined by t−1 through the conditional expectation and variance of h(yt), that is

g𝜑(𝛾t) = E[h(yt) ∣ t−1] = 𝜙0 +
p∑

j=1

𝜙jh(yt−j) +
q∑

j=1

𝛿j𝜀t−j, (2)

V𝜑(𝛾t) = Var[h(yt) ∣ t−1] = 𝜔 +
r∑

i=1

𝛼i𝜀
2
t−i +

s∑
j=1

𝛽j𝜎
2
t−j, (3)

where 𝜀t ∶= h(yt) − g𝜑(𝛾t), and 𝜎2
t ∶= V𝜑(𝛾t). We assume that 𝜑 is a vector of time invariant parameters, and 𝛾t

can be uniquely solved from (2) and (3), once t−1 is given. Note that in most cases, this would require that 𝛾t is a
two-dimensional vector.

We use 𝜃 to denote the set of all model parameters

{𝜑, 𝜙0, 𝜙1,… , 𝜙p, 𝛿1,… , 𝛿q, 𝜔, 𝛼1,… , 𝛼r, 𝛽1,… , 𝛽s}.

Since (3) is regarding the conditional variance, we impose the natural requirement that 𝜔 is strictly positive, and
𝛼i (i = 1,… , r) and 𝛽j (j = 1,… , s) are non-negative.

Adding 𝜀t = h(yt) − g𝜑(𝛾t) on both sides of (2) leads to the following ARMA representation of {h(yt)}.

h(yt) = 𝜙0 +
p∑

j=1

𝜙jh(yt−j) + 𝜀t +
q∑

j=1

𝛿j𝜀t−j. (4)

The joint model (4) and (3) is in the standard ARMA-GARCH model form, for the transformed time series h(yt),
except that the innovation process 𝜀t∕𝜎t here is a martingale difference process, instead of an i.i.d. sequence.

Similar to the GARCH model, (3) can also be represented in an ARMA form. For this purpose we define
𝜁t ∶= 𝜀2

t − 𝜎2
t , and add 𝜁t on both sides of (3), resulting in the following equivalent representation:

𝜀2
t = 𝜔 +

r∨s∑
i=1

(𝛼i + 𝛽i)𝜀2
t−i + 𝜁t −

s∑
j=1

𝛽j𝜁t−j, (5)

where r ∨ s denotes the maximum of r and s.
Some remarks on different issues of the model are in order:

Remark 1 (Relationship to the M-GARMA model). The GARMA-GARCH model is a direct extension of the
M-GARMA model of Zheng et al. (2015), with the additional equation (3) for the conditional variance of h(yt).
The M-GARMA model only allows a one-dimensional time varying parameter 𝛾t in (1). The GARMA-GARCH
model allows two parameters to be time varying and to depend on past information. It also closely mimics the
standard ARMA-GARCH model widely used in applications.

Remark 2 (Relationship to the innovation-based ARMA-GARCH). The innovation-based ARMA-GARCH
model assumes the form (4) and (3) for the transformed series h(yt) with the error term 𝜀t = 𝜎tet, where et are
independent, following a common distribution such as normal, Student’s-t, and skewed t. In this case, the GARCH
process {𝜀t} is said to be strong, following definition of Francq and Zakoïan (2010) and Drost and Nijman (1993).
For such models, the conditional distribution of yt given t−1 can be found through the inverse transformation
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of the transformed random variable h(yt). In certain non-Gaussian time series such as time series of counts, the
data-based approach taken here is more natural and the model is easier to interpret. Under the GARMA-GARCH
model, the ‘innovation’ process {𝜀t∕𝜎t} is not an i.i.d. sequence, but a MDS, and the GARCH component is
said to be semi-strong. The parallel between the two models allow us to obtain a quasi likelihood estimator
for the GARMA-GARCH model by assuming that h(yt) follows a ARMA-GARCH model with i.i.d. Gaussian
innovations.

Remark 3 (Mean and variance link functions). Define

𝜇t ∶= g𝜑(𝛾t) = E[h(yt) ∣ t−1], (6)

𝜎2
t ∶= V𝜑(𝛾t) = Var(𝜀t ∣ t−1) = Var[h(yt) ∣ t−1]. (7)

These functions link the conditional mean and variance of h(yt) givent−1 to the underlying time varying parameter
𝛾t. Different to the M-GARMA model, the link function 𝜇t here is not necessarily a function of conditional mean
of yt. If the y-link function is identity, the mean and variance link functions are indeed directly linked to the
conditional mean and variance of yt. Otherwise, they differ greatly. The link functions of course depend on the
form of parameterization of the conditional distribution in (1).

Remark 4 (Solving time-varying parameters). It is important to be able to solve the time-varying parameters 𝛾t

using (2) and (3), given past information. This is because they are needed to evaluate the likelihood function of
the model and so to carry out the maximum likelihood estimation. That is, we need to solve 𝛾t = (𝛾1t, 𝛾2t) based
on given 𝜇t and 𝜎2

t using the link functions (6) and (7) as a system of equations, via exact or numerical methods.
In practice, when there is more than one solution for the system, we can select the solution that maximizes the
corresponding likelihood function value of the GARMA-GARCH model.

Remark 5 (The choice of the y-link function). One of the key components of a good GARMA-GARCH model
is a properly chosen y-link function h(⋅), which specifies the explicit links between 𝛾t and (𝜇t, 𝜎

2
t ). The y-link

function is similar to the link function of the generalized linear models of McCullagh and Nelder (1989). It is a
model assumption that is based on the problem at hand, and can be checked and sometimes justified with sensible
model validation statistics and procedures.

Remark 6 (Dimension of the time-varying parameters). In general, the dimension of the time-varying parameter
𝛾t is assumed to be two under the GARMA-GARCH model, as discussed earlier. If the dimension of 𝛾t is one, one
may choose to use either the conditional mean relationship (2) or the conditional variance relationship (3), but not
both. An alternative is to adopt a generalized moment method approach by solving the one-dimensional 𝛾t with
two moment equations. This is an interesting problem to be further investigated. When the dimension of 𝛾t is larger
than 2, two equations with the mean and variance link functions are not enough to determine the time-varying
parameters. In this case, we may extend the GARMA-GARCH model to include modeling assumptions of the
higher moments of yt given t−1.

Remark 7 (Extensions to multi-variate non-Gaussian time series). In this article, we study univariate time
series yt through GARMA-GARCH model. The model can be easily extended to multi-variate time series, with
a multi-variate y-link function h(⋅), and a vector ARMA form in place of (2) and a multi-variate GARCH
form in place of (3). To avoid various ambiguities in multi-variate ARMA, vector AR models can be used
(Lütkepohl, 2005; Tsay, 2014). There are also many different multi-variate GARCH models, including those in
Archakov et al. (2020), Engle (2002b), and Engle and Kroner (1995). The dependencies among the components
of 𝜇t (as a vector) and 𝜎2

t (as a covariance matrix) induce dependencies among the components of yt.
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2.2. Some Specific Models

We introduce three specific models under the general GARMA-GARCH model framework, with specific choices
of the conditional distribution f (⋅), and the y-link function h(⋅). They are designed for certain types of non-Gaussian
time series.

To simplify the model formula, define the following characteristic polynomials: 𝜙(z) = 1 − 𝜙1z − · · · − 𝜙pzp,
𝛿(z) = 1 + 𝛿1z + · · · + 𝛿qzq, 𝛼(z) = 𝛼1z + · · · + 𝛼rz

r, and 𝛽(z) = 1 − 𝛽1z − · · · − 𝛽sz
s. Let L be the backward shift

operator such that Lyt = yt−1.

(1) Log-Gamma-GARMA-GARCH model: Suppose yt is a non-negative continuous random variable.
Using Gamma distribution as the conditional distribution and log function as the y-link function, the
log-Gamma-GARMA(p, q)-GARCH(r, s) model for a time series {yt} is given by

yt ∣ t−1 ∼ Gam

(
ct,

ct

𝜂t

)
, 𝜙(L) log yt = 𝜙0 + 𝛿(L)𝜀t, 𝛽(L)𝜎2

t = 𝜔 + 𝛼(L)𝜀2
t , (8)

with 𝜀t = log yt −𝜇t = log yt −g(𝜂t, ct), where ct and ct∕𝜂t are the shape and rate parameters of Gamma distribution
respectively, 𝜂t and 𝜇t are the conditional expectations of yt and log yt respectively, and 𝜎2

t is the conditional
variance of 𝜀t or h(yt). Moreover, the resulting conditional mean and variance link functions are expressed as

g(𝜂t, ct) = 𝜇t = log 𝜂t + 𝜓(ct) − log ct, (9)

V(𝜂t, ct) = 𝜎2
t = 𝜓1(ct), (10)

where 𝜓(⋅) is the digamma function, and 𝜓1(⋅) is the trigamma function.
In this model (8), we have no fixed parameter 𝜑, and (ct, 𝜂t) are the time-varying parameters of the distribution.

Given the values of 𝜇t and 𝜎2
t , we can first obtain the unique root ct = 𝜓−1

1 (𝜎2
t ) from (10) via the numerical methods

or the bisection method, and then substituting it into the link function (9) to calculate 𝜂t = exp[𝜇t + log ct −𝜓(ct)].
Without the conditional variance process, Zheng et al. (2015) proposed the log-Gamma-M-GARMA(p, q)model

in which the conditional distribution is assumed to be Gam(c, c∕𝜂t) with a time invariant parameter c, the y-link
function used is the log function, and the conditional mean process assumes an ARMA form. Comparing to the
log-Gamma-GARMA-GARCH model, its shape parameter c is time-invariant, and it does not have all the GARCH
parameters in the conditional variance process.

Remark 8. Here we point out a special feature of the log-Gamma-M-GARMA process. Because the y-link
function is log(⋅), the conditional distribution of 𝜀t is actually completely determined by the shape parameter ct,
no matter what value 𝜂t takes. To see this, note that ỹt ∶= (ct∕𝜂t)yt ∼ Gam(ct, 1), and

𝜀t = log yt − g(𝜂t, ct) = yt − 𝜓(ct) − log 𝜂t + log ct = log ỹt − 𝜓(ct).

On the other hand, according to (10), ct is uniquely determined by 𝜎2
t (note that𝜓1(⋅) is a strictly decreasing function

on the positive real line). Consequently, we can give an equivalent definition of the log-Gamma-GARMA-GARCH
model. We first define the process {𝜀t} according to

ỹt ∣ t−1 ∼ Gam(ct, 1), 𝜀t = ỹt − 𝜓(ct), 𝛽(L)𝜎2
t = 𝜔 + 𝛼(L)𝜀2

t . (11)

Once {𝜀t} is given, the {h(yt)} process can be constructed by (4) using the pre-generated {𝜀t} process. This
equivalent definition reveals that {𝜀t} can be defined without referring to the conditional mean equation (2), and
{h(yt)} is simply a linear ARMA process with innovations {𝜀t}. This feature simplifies the investigation of various
probabilistic properties of the process.
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(2) Logit-Beta-GARMA-GARCH model: This model is based on the logit-Beta-M-GARMA model proposed
by Zheng et al. (2015). Suppose a proportional time series {yt} lies in interval (0,1). Using the Beta distribution
as the conditional distribution and the logit transformation as the y-link function, that is, h(yt) = logit(yt) =
log[yt∕(1 − yt)], the logit-Beta-GARMA(p, q)-GARCH(r, s) model is given by

yt ∣ t−1 ∼ Beta(at, bt), 𝜙(L)logit(yt) = 𝜙0 + 𝛿(L)𝜀t, 𝛽(L)𝜎2
t = 𝜔 + 𝛼(L)𝜀2

t , (12)

with 𝜀t = logit(yt) − 𝜇t = logit(yt) − g(at, bt), where at and bt are two positive parameters of the Beta distribution,
𝜇t is the conditional expectation of logit(yt), and 𝜎2

t is the conditional variance of 𝜀t or logit(yt). The resulting mean
and variance functions are expressed as

g(at, bt) = 𝜇t = 𝜓(at) − 𝜓(bt), (13)

V(at, bt) = 𝜎2
t = 𝜓1(at) + 𝜓1(bt), (14)

where 𝜓(⋅) and 𝜓1(⋅) are the digamma and trigamma functions.
In this case, we also have no fixed parameter 𝜑, but two time-varying parameters of the distribution, at and

bt. Although this system of equations (13) and (14) is nonlinear, the solution given by the values of 𝜇t and 𝜎2
t is

unique. Since both digamma and trigamma are strictly monotonic on (0,∞), there must exist a unique solution
such that at = 𝜓−1[𝜇t + 𝜓(bt)] (for a given bt), and also a unique solution of bt to the nonlinear equation 𝜎2

t =
𝜓1{𝜓−1[𝜇t + 𝜓(bt)]} + 𝜓1(bt) since 𝜓(⋅) is monotonically increasing and 𝜓1(⋅) is monotonically decreasing. In
practice, since the system of (13) and (14) is highly nonlinear, numerical methods are used to solve both at and bt

simultaneously.
Again, without the conditional variance process, Zheng et al. (2015) proposed the logit-Beta-M-GARMA(p, q)

model in which the conditional distribution is assumed to be Beta(𝜏𝜂t, (1 − 𝜏)𝜂t) with a time invariant parame-
ter 𝜏, the y-link function used is the logit function, and the conditional mean process assumes an ARMA form.
Comparing to the logit-Beta-GARMA-GARCH model, it has one extra time-invariant parameter 𝜏 = at + bt

(with at = 𝜏𝜂t, bt = (1 − 𝜏)𝜂t), but does not have all the GARCH parameters in the conditional variance
process.

(3) GHSST-GARMA-GARCH model: To model leptokurtic and skewed financial time series {yt}, we consider
a generalized hyperbolic skew Student-t (GHSST) distribution proposed by Aas and Haff (2006). It is shown
that the GHSST distribution can exhibit unequal thickness in both tails, contrary to other skewed extensions of
the Student-t, and that this offers more modeling flexibility. Using the identity y-link function, we propose the
following GHSST-GARMA(p, q)-GARCH(r, s) model

yt ∣ t−1 ∼ GHSST(𝜉t, 𝜍t, 𝜈, 𝜏), 𝜙(L)yt = 𝜙0 + 𝛿(L)𝜀t, 𝛽(L)𝜎2
t = 𝜔 + 𝛼(L)𝜀2

t , (15)

where 𝜀t = yt − 𝜇t. The conditional density of yt follows the GHSST distribution

f (yt ∣ 𝜉t, 𝜍t, 𝜈, 𝜏) =
2

1−𝜈
2 𝜍𝜈t |𝜏| 𝜈+1

2 K 𝜈+1
2

(√
𝜏2(𝜍2

t + (yt − 𝜉t)2)
)

exp(𝜏(yt − 𝜉t))

Γ( 𝜈
2
)
√
𝜋

(√
𝜍2

t + (yt − 𝜉t)2
) 𝜈+1

2

, (16)

where 𝜉t and 𝜍t (> 0) are the time varying location and scale parameters of the GHSST distribution, and
𝜈 and 𝜏 are the degrees of freedom and shape parameters. The function Kj(x) = 1

2
∫ ∞

0 zj−1e−
x
2
(z+z−1)dz for

x > 0 denotes the modified Bessel function of the third kind and of order j ∈ ℝ (Abramowitz and Stegun,
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1972). The conditional density f (yt ∣ 𝜉t, 𝜍t, 𝜈, 𝜏) can be recognized as the density of a non-central (scaled) Stu-
dent’s t-distribution with 𝜈 degrees of freedom. In particular when 𝜏 = 0, it becomes the standard Student’s
t-distribution.

In model (15), the corresponding conditional mean and variance functions are given by

g𝜈,𝜏(𝜉t, 𝜍t) = 𝜇t = 𝜉t +
𝜏𝜍2

t

𝜈 − 2
, (17)

V𝜈,𝜏(𝜉t, 𝜍t) = 𝜎2
t =

𝜍2
t

𝜈 − 2
+

2𝜏2𝜍4
t

(𝜈 − 2)2(𝜈 − 4)
. (18)

The variance is only finite when 𝜈 > 4, as opposed to the symmetric Student’s t-distribution which only requires
𝜈 > 2. In this case, we can first solve the roots of the polynomial on the right-hand side of (18) and select the
unique positive real root as the value of 𝜍t, that is,

𝜍t =

√√√√−b0 + b0

√
1 + 8𝜏2𝜎2

t ∕(𝜈 − 4)

4𝜏2
,

where b0 = (𝜈 − 2)(𝜈 − 4). Then, the other time-varying parameter 𝜉t can be calculated as 𝜉t = 𝜇t − 𝜏𝜍2
t ∕(𝜈 − 2).

Under the model framework presented in this study, we can estimate all parameters in (15) using the maximum
likelihood estimation procedure directly. We note that Deschamps (2012) proposed another ARMA-GARCH form
by assuming 𝜀t as a mixture of normal and inverted Gamma random variables, the likelihood function cannot be
expressed analytically and thus the MLE is infeasible. In practice under the mixture representation, one has to use
the Markov chain Monte Carlo methods for the parameter estimation.

2.3. Stationarity and Ergodicity

To study the stationarity and ergodicity of the GARMA-GARCH model, we consider the state space representation
of the model and apply the theory of Markov chains on a general state space. The theoretical tools involved in
our analysis are covered by the classical treatise in Meyn and Tweedie (2009), especially Chapter 15. We will not
repeat the concepts and terminologies about the Markov chains here, but refer the readers to the aforementioned
book.

To represent the GARMA-GARCH model in the state space form, we start from (4) and (5). Without loss of
generality, assume for (4), q = p − 1, and at least one of 𝜙p and 𝛿p−1 is non-zero, and similarly for (5), s = r − 1,
and at least one of 𝛼r and 𝛽r−1 is non-zero. Define the square matrices

Φ =

⎛⎜⎜⎜⎜⎜⎝

𝜙1 𝜙2 · · · 𝜙p−1 𝜙p

1 0 · · · 0 0
0 1 · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠
, A =

⎛⎜⎜⎜⎜⎜⎝

𝛼1 + 𝛽1 𝛼2 + 𝛽2 · · · 𝛼r−1 + 𝛽r−1 𝛼r

1 0 · · · 0 0
0 1 · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠
, (19)

and set 𝛿 = (1, 𝛿1,… , 𝛿p−1)′ and 𝛽 = (1,−𝛽1,… ,−𝛽r−1)′. Let 𝜇 = 𝜙0∕(1−
∑

i 𝜙i) and 𝜎2 = w∕(1−
∑

i 𝛼i −
∑

j 𝛽j).
We first define a Markov chain {(X′

t ,Z
′
t )
′} on ℝp+r, where Xt and Zt are p- and r-dimensional respectively. Given

Xt−1 and Zt−1, we generate yt as

yt ∼ f (yt ∣ 𝛾t, 𝜑), (20)
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where the parameter 𝛾t is determined by

g𝜑(𝛾t) = 𝜇t ∶= 𝜇 + 𝛿′ΦXt−1 and V𝜑(𝛾t) = 𝜎2
t ∶= 𝜎2 + 𝛽′AZt−1.

We then set 𝜀t = h(yt) − 𝜇t, 𝜁t = 𝜀2
t − 𝜎2

t , and define

(
Xt

Zt

)
=
(
Φ 0
0 A

)(
Xt−1

Zt−1

)
+ (𝜀t, 0,… , 0, 𝜁t, 0,… , 0)′. (21)

Clearly {(X′
t ,Z

′
t )
′} is a time-homogeneous Markov chain. It can be shown that h(yt) = 𝛿′Xt, and the {yt} process

defined in (20) satisfies the recursive relationship (1), (2), and (3).
In general, the stationarity and ergodicity of the Markov chain {(X′

t ,Z
′
t )
′} can be implied by the geometric drift

condition (see Chapter 15 of Meyn and Tweedie, 2009). Such conditions depend on the conditional distribution
assumption and the y-link function used. As an illustration, we next show when this condition is fulfilled for the
log-Gamma-GARMA-GARCH and logit-Beta-GARMA-GARCH models. Recall that 𝜙(z) = 1−𝜙1z−· · ·−𝜙pzp,
and A is the r×r matrix defined in (21). Let A1 be the r×r matrix whose first row is (𝛼1,… , 𝛼r), and other elements
are zero. Define the sequence of matrices {Bk} recursively as B0 = I, and Bk = A′Bk−1A + 5A′

1Bk−1A1 for k ≥ 1.

Theorem 1. Consider the log-Gamma-GARMA-GARCH model (8). Assume (i) for some h, the operator norm
of Bh is strictly less than one; and (ii) 𝜙(z) ≠ 0 for |z| ≤ 1. Then (8) admits a solution {yt} that is strictly stationary,
and satisfying E[h(yt)]4 < ∞.

Theorem 2. Consider the logit-Beta-GARMA-GARCH model (12). If for some h, the operator norms of Bh

and Φh are both strictly less than one, then (8) admits a solution {yt} that is strictly stationary, and satisfying
E[h(yt)]4 < ∞.

Note that in Theorem 2, the condition that the operator norm of Φh is strictly less than one for some h entails
that 𝜙(z) ≠ 0 for |z| ≤ 1. The proofs of the theorems are in the Appendix.

3. PARAMETER ESTIMATION

Let 𝜃 be the fixed and unknown parameter vector containing all model parameters. We partition the parameter
vector into three sub-vectors: 𝜃arma includes all the parameters in the ARMA process (2), 𝜃garch includes all the
parameters in the GARCH process (3), and 𝜑 includes all time invariant parameters in the conditional distribution
(1). Specifically, 𝜃 = (𝜃′arma, 𝜃

′
garch, 𝜑

′)′, where

𝜃arma = (𝜙0, 𝜙1,… , 𝜙p, 𝛿1,… , 𝛿q), 𝜃garch = (𝜔, 𝛼1,… , 𝛼r, 𝛽1,… , 𝛽s).

We further set the initial values 0 = y0 = (y0,… , y1−m), 𝜺0 = (𝜀0, 𝜀−1,… , 𝜀1−m), 𝜺2
0 = (𝜀2

0,… , 𝜀2
1−m), and

𝝈
2
0 = (𝜎2

0 ,… , 𝜎2
1−m), where m = max(p, q, r, s).

Suppose the available data set is {y1−m,… , y0, y1,… , yT}. We next introduce two approaches for parameter
estimation. The first is based on the likelihood, and the second is based on quasi Gaussian likelihood with additional
conditional likelihood estimation.
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3.1. Maximum Likelihood Estimation

The log-likelihood function conditional on the initial values (y0, 𝜺0, 𝜺2
0, and 𝝈

2
0) is

LT (𝜃) =
T∑

t=1

𝓁t(𝜃) =
T∑

t=1

log f (yt ∣ 𝛾t, 𝜑), (22)

where 𝛾t for t = 1,… ,T can be solved by the system consisting of the link and variance functions given by (6)
and (7).

Given a set of parameters 𝜃, 𝜇t = g𝜑(𝛾t) and 𝜎2
t = V𝜑(𝛾t) can be recursively obtained for t = 1,… ,T . Recursively

solving the system consisting of mean and variance link functions yields 𝛾t for t = 1,… ,T . By plugging 𝛾t into
(22), we can evaluate the log-likelihood function Lt(𝜃). The maximum likelihood estimate is then obtained by
maximizing (22), using nonlinear optimization procedures.

In practice, one can set the initial values 𝜀0 = · · · = 𝜀1−m to zero and 𝜀2
0 = · · · = 𝜀2

1−m = 𝜎2
0 = · · · = 𝜎2

1−m to
the unconditional variance to reduce the complexity, a common practice in time series estimation. The resulting
estimate �̂� is the conditional maximum likelihood estimate. One can also use the quasi Gaussian MLE for the
ARMA and GARCH parameters and its corresponding ML estimate for 𝜑 (see the next subsection) as the initial
values for this procedure.

The theory of Hall and Heyde (1980) can be applied to study the asymptotic distribution of the MLE. However,
for concrete GARMA-GARCH models, sufficient conditions that ensure the asymptotic normality are still under
investigation. Regardless of the technical issues, we provide a reasonable formula for the asymptotic covariance
matrix. Let

ut(𝜃) =
𝜕 log f (yt|𝛾t, 𝜑)

𝜕𝜃
.

Let 𝜃0 be the true parameter. Under regularity conditions, {ut(𝜃0)} is an MDS with respect to {t}. Define

IT (𝜃0) =
T∑

t=1

E𝜃0
[ut(𝜃0)(ut(𝜃0))′|t−1].

Under regularity conditions, it holds that

[IT (𝜃0)]−1∕2(�̂� − 𝜃0) ⇒ N(0, I).

For some GARMA-GARCH models presented in this study, for a given 𝜃0, the conditional information
E𝜃0

[ut(𝜃0)(ut(𝜃0))′|t−1] can be calculated explicitly. By substituting the estimate �̂�, we get an estimate IT (�̂�) of the
Fisher information. In practice, the standard errors of the estimates can also be obtained by evaluating the Hessian
matrix of the log-likelihood function (22) at the MLE. Our empirical experiences have shown that this estimator
works very well.

3.2. Gaussian ML Estimation

Just based on (2) and (3), one can use quasi Gaussian likelihood to estimate the ARMA and GARCH parameters
quickly. This estimate will be referred to as GMLE. Let 𝜗 = (𝜃′arma, 𝜃

′
garch)

′. The GMLE for the GARMA-GARCH
model is equivalent to a minimizer of

QT (𝜗) =
1
T

T∑
t=1

qt =
1
T

T∑
t=1

(
log 𝜎2

t (𝜗) +
𝜀2

t (𝜗)
𝜎2

t (𝜗)

)
, (23)
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where 𝜀t(𝜗) and 𝜎2
t (𝜗) are defined by (2) and (3). This objective function can be evaluated relatively cheaply, and

many algorithms are available for finding its minima.
The asymptotic properties such as consistency and asymptotic normality (CAN) of the GMLE can be obtained

based on the existing studies. For example, many studies such as Lumsdaine (1996), Berkes et al. (2003), Ling
(2007), and Francq and Zakoïan (2004, 2010, 2012) have investigated the CAN of the GMLE when the GARCH
process of 𝜀t in our model is strong with i.i.d. innovations. Lee and Hansen (1994) studied the CAN of the GMLE
for strictly stationary semi-strong GARCH(1,1) model and Escanciano (2009) further proved the CAN of the
GMLE for general GARCH(p, q) model under martingale assumptions.

The general CAN theory of the GARMA-GARCH model is very challenging to establish, which we leave to
the future work. Here we only discuss how the result in Escanciano (2009) can be adapted to give the asymptotic
normality of the GMLE for the two examples given in Section 2.2.

For the log-Gamma-GARMA-GARCH or the logit-Beta-GARMA-GARCH model, we assume the conditions
of Theorem 1 or Theorem 2 hold respectively. Assume in addition that (i) the parameter space Θ of 𝜗 is compact
and 𝜗 belongs to the interior of Θ; (ii) 𝜙(z) and 𝛿(z) have no common roots, and 𝛿(z) ≠ 0 when |z| ≤ 1; (iii) 𝛼(z)
and 𝛽(z) have no common roots, 𝛽(z) ≠ 0 when |z| ≤ 1, and 𝛼(1) ≠ 0, 𝛼r + 𝛽s > 0; and (iv) E|𝜀t|4+𝛿 < ∞ for some
𝛿 > 0. Under these regularity conditions, it holds that√

T(�̄� − 𝜗0) ⇒ N(0, I(𝜗0)−1), (24)

where I(𝜗0) denotes the information matrix, which is defined as minus the expected Hessian, that is, I(𝜗0) =
−E

(
𝜕2qt(𝜗)
𝜕𝜗𝜕𝜗′

|𝜗=𝜗0

)
.

The GML estimation procedure does not provide an estimator for the invariant parameter 𝜑. However, given the
GML estimate �̄�, we can obtain the estimated ARMA residual �̂�t and the estimated conditional variance �̂�2

t . Set
�̂�t = h(yt) − �̂�t. Given 𝜑, and with �̂�t and �̂�2

t , we can obtain �̂�t(𝜑) by solving the system of equations g𝜑(𝛾t) = �̂�t

and V𝜑(𝛾t) = �̂�2
t . We emphasize that �̂�t depends on 𝜑. Now define the log-likelihood function of 𝜑 given fixed �̄� as

L̄T (𝜑) =
T∑

t=1

log f (yt|�̂�t(𝜑), 𝜑).

The maximizer of LT (𝜑) can be treated as the pseudo-ML estimator of 𝜑.

Remark 9 (Model identification and model checking). Both AIC and BIC can be used for model/order selection.
Standard time series analysis tools such as ACF, PACF, and EACF (Tsay and Tiao, 1984; Chen et al., 2013)
can be used to obtain the preliminary lag orders for the ARMA process. Empirical studies have shown that r =
s = 1 are often sufficient for the GARCH process in practice and can be used as the starting point of the model
building process. For model checking, the portmanteau Q-statistic of the residuals and the squared standardized
residuals can be used, as a standard exercise for time series model checking, especially for time series with potential
conditional heteroskedasticity, along with other residual analysis tools.

4. SIMULATION EXAMPLES

We investigate finite sample performances of the preceding two estimators (named as GMLE and MLE) under
the log-Gamma-GARMA-GARCH and logit-Beta-GARMA-GARCH models introduced in Section 2.2. We also
present empirical evidence regarding the impact of model mis-specification when ignoring the GARCH process in
the model. Without the GARCH part, the models become the log-Gamma-M-GARMA and logit-Beta-M-GARMA
models in Zheng et al. (2015).

All estimates are obtained through a constraint optimization procedure that uses the MaxSQP algorithm, imple-
menting a sequential quadratic programming technique, see Nocedal and Wright (1999). We also use the solver
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Table I. Simulation results of the log-Gamma-GARMA-GARCH model

Log-Gamma-M-GARMA Log-Gamma-GARMA-GARCH

Parameter True GMLE MLE GMLE MLE

T = 100
𝜙0 0.00 −0.0006 (0.1189) 0.0025 (0.0791) 0.0052 (0.0052) 0.0033 (0.0758)
𝜙1 0.95 0.8551 (0.1741) 0.8635 (0.1293) 0.8642 (0.1272) 0.8710 (0.1230)
𝛿1 −0.65 −0.5768 (0.1941) −0.5873 (0.1618) −0.5850 (0.1640) −0.5886 (0.1555)
c 2.8333 (0.8293) 2.8497 (0.8247) – –
𝜔 0.02 – – 0.0882 (0.1044) 0.0830 (0.1045)
𝛼1 0.06 – – 0.0712 (0.1002) 0.0638 (0.0848)
𝛽1 0.90 – – 0.7227 (0.2927) 0.7401 (0.2913)

T = 500
𝜙0 0.00 0.0007 (0.0150) −0.0003 (0.0181) 0.0011 (0.0144) 0.0003 (0.0139)
𝜙1 0.95 0.9369 (0.0238) 0.9259 (0.0274) 0.9374 (0.0245) 0.9379 (0.0214)
𝛿1 −0.65 −0.6396 (0.0538) −0.6371 (0.0506) −0.6395 (0.0503) −0.6393 (0.0436)
c 2.5598 (0.3815) 2.5706 (0.3733) – –
𝜔 0.02 – – 0.0417 (0.0606) 0.0376 (0.0561)
𝛼1 0.06 – – 0.0655 (0.0357) 0.0623 (0.0310)
𝛽1 0.90 – – 0.8458 (0.1538) 0.8574 (0.1424)

T = 2000
𝜙0 0.00 0.0003 (0.0060) 0.0000 (0.0076) 0.0003 (0.0056) 0.0002 (0.0057)
𝜙1 0.95 0.9467 (0.0111) 0.9331 (0.0135) 0.9468 (0.0105) 0.9467 (0.0095)
𝛿1 −0.65 −0.6473 (0.0255) −0.6436 (0.0246) −0.6471 (0.0105) −0.6464 (0.0110)
c 2.4904 (0.2099) 2.4987 (0.2029) – –
𝜔 0.02 – – 0.0228 (0.0103) 0.0220 (0.0082)
𝛼1 0.06 – – 0.0613 (0.0169) 0.0602 (0.0135)
𝛽1 0.90 – – 0.8923 (0.0328) 0.8952 (0.0259)

Note: For each cell, the statistics given are based on 500 simulated samples. The mean and root mean squared error (in parentheses) for each
estimator are shown.

for systems of nonlinear equations (SolveNLE) in OxMetrics software (see Doornik, 2007) to recursively obtain
the solution of 𝛾t.

4.1. Log-Gamma-GARMA(1,1)-GARCH(1,1) Model

We consider a log-Gamma-GARMA-GARCH model with lag orders p = q = r = s = 1. Specifically,

yt ∼ Gam

(
ct,

ct

𝜂t

)
, log yt = 𝜙0 + 𝜙1 log yt−1 + 𝜀t + 𝛿1𝜀t−1, 𝜎2

t = 𝜔 + 𝛼1𝜀
2
t−1 + 𝛽1𝜎

2
t−1,

with 𝜀t = log yt − log 𝜂t −𝜓(ct)+ log ct and 𝜎2
t = 𝜓1(ct). The specific true parameter values are assigned as 𝜙0 = 0,

𝜙1 = 0.95, 𝛿1 = −0.65, 𝜔 = 0.02, 𝛼1 = 0.06, and 𝛽1 = 0.90. We consider different sample sizes T = 100, 500, or
2000. Each simulation is repeated for 500 times. The mean and standard errors of the estimates are presented in
Table I.

Several observations can be drawn from Table I. First, under the true GARMA-GARCH model, both GMLE
and MLE perform well, especially when the sample size is large. This result is consistent with the theoretical
result of Lee and Hansen (1994) and Escanciano (2009) that the GMLE is consistent under relatively weak con-
ditions. GMLE performs slightly worse than the MLE when sample size is large, with slightly larger biases and
root mean squared errors (in parentheses) than that of the MLE. This is possibly due to the loss of efficiency
when using GMLE. Nevertheless, the GMLE can serve as good starting values for ML estimation. Second, under
the mis-specified log-Gamma-M-GARMA model, both GMLE and MLE produce relative accurate estimates for
the ARMA parameters, with slightly larger variances than those under the true model. The parameter c under
log-Gamma-M-GARMA model is the extra time invariant shape parameter in the conditional Gamma distribution,
as mentioned in Section 2.2.
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Table II. Simulation results of the logit-Beta-GARMA-GARCH model

Logit-Beta-M-GARMA Logit-Beta-GARMA-GARCH

Parameter True GMLE MLE GMLE MLE

T = 100
𝜙0 −0.10 −0.1790 (0.1466) −0.1758 (0.1397) −0.1531 (0.1080) −0.1531 (0.1071)
𝜙1 0.90 0.8203 (0.1473) 0.8237 (0.1403) 0.8459 (0.1090) 0.8460 (0.1079)
𝛿1 −0.50 −0.4363 (0.2216) −0.4380 (0.2178) −0.4601 (0.1572) −0.4586 (0.1578)
𝜏 90.418 (42.408) 90.476 (42.386) – –
𝜔 0.01 – – 0.0135 (0.0092) 0.0136 (0.0092)
𝛼1 0.45 – – 0.3940 (0.1796) 0.3940 (0.1791)
𝛽1 0.45 – – 0.3999 (0.2311) 0.3964 (0.2306)

T = 500
𝜙0 −0.10 −0.1154 (0.0497) −0.1142 (0.0524) −0.1085 (0.0261) −0.1084 (0.0261)
𝜙1 0.90 0.8844 (0.0498) 0.8856 (0.0524) 0.8914 (0.0262) 0.8915 (0.0262)
𝛿1 −0.50 −0.4922 (0.1042) −0.4906 (0.4906) −0.4908 (0.0545) −0.4906 (0.0542)
𝜏 69.287 (19.761) 69.375 (19.658) – –
𝜔 0.01 – – 0.0106 (0.0032) 0.0106 (0.0033)
𝛼1 0.45 – – 0.4330 (0.0798) 0.4341 (0.0801)
𝛽1 0.45 – – 0.4450 (0.0836) 0.4440 (0.0839)

T = 2000
𝜙0 −0.10 −0.1068 (0.0280) −0.1047 (0.0240) −0.1017 (0.0111) −0.1017 (0.0110)
𝜙1 0.90 0.8932 (0.0281) 0.8953 (0.0238) 0.8983 (0.0109) 0.8984 (0.0108)
𝛿1 −0.50 −0.4938 (0.0648) −0.4948 (0.0563) −0.4983 (0.0254) −0.4981 (0.0251)
𝜏 64.576 (11.430) 64.612 (11.441) – –
𝜔 0.01 – – 0.0101 (0.0014) 0.0101 (0.0014)
𝛼1 0.45 – – 0.4478 (0.0434) 0.4480 (0.4480)
𝛽1 0.45 – – 0.4477 (0.0388) 0.4476 (0.0387)

Note: For each cell, the statistics given are based on 500 simulated samples. The mean and root mean squared error (in parentheses) for each
estimator are shown.

4.2. Logit-Beta-GARMA(1,1)-GARCH(1,1) Model

In this example, we simulate the time series of proportions from the following logit-Beta-GARMA(1,1)-
GARCH(1,1) model

yt ∼ Beta(at, bt), logit(yt) = 𝜙0 + 𝜙1logit(yt−1) + 𝜀t + 𝛿1𝜀t−1, 𝜎2
t = 𝜔 + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1,

where 𝜀t = logit(yt) − 𝜓(at) + 𝜓(bt) and 𝜎2
t = 𝜓1(at) + 𝜓1(bt). Again we consider three sample sizes T = 100,

T = 500, and T = 2000. The true parameter values are set as 𝜙0 = −0.10, 𝜙1 = 0.90, 𝛿1 = −0.50, 𝜔 = 0.01,
𝛼1 = 0.45, and 𝛽1 = 0.45. We carry out 500 repeated experiments for each simulation.

Table II reports the empirical performance of the two estimators. It is seen that, under the true model, the GMLE
and MLE perform very similarly in both small and large samples. This implies that the GMLE can be used as a sur-
rogate of the MLE for this model. On the other hand, when the model is mis-specified as the logit-Beta-M-GARMA
model, the corresponding GMLE and MLE of the ARMA parameters have larger biases and root mean squared
errors (in parentheses) than the GMLE and MLE under the true logit-Beta-GARMA-GARCH model. The param-
eter 𝜏 under the logit-Beta-M-GARMA model is the extra time invariant parameter in the conditional Beta
distribution.

5. APPLICATIONS

5.1. High-Frequency Realized Volatility

In this application, we employ the proposed log-Gamma-GARMA-GARCH model (8) to capture the time-varying
volatility phenomenon of the realized volatility. Realized volatility has been extensively modeled and studied
in financial econometrics, see for example Barndorff-Nielsen and Shephard (2002), Hansen and Lunde (2005),
Takahashi et al. (2009), and Zheng and Song (2014). In particular, a recent study related to this article by
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Table III. Estimation results of the log-Gamma-GARMA-GARCH model

Log-Gamma-M-GARMA Log-Gamma-GARMA-GARCH

Parameter GMLE MLE GMLE MLE

𝜙0 −0.0582 (0.0198) −0.0609 (0.0221) −0.0623 (0.0179) −0.0816 (0.0228)
𝜙1 0.9552 (0.0115) 0.9532 (0.0120) 0.9533 (0.0108) 0.9422 (0.0126)
𝛿1 −0.4067 (0.0386) −0.3517 (0.0371) −0.4315 (0.0394) −0.3829 (0.0424)
c 2.4924 (0.1013) 2.4992 (0.1126) – –
𝜔 – – 0.0433 (0.0228) 0.0534 (0.0237)
𝛼1 – – 0.0583 (0.0224) 0.1093 (0.0362)
𝛽1 – – 0.8311 (0.0718) 0.8053 (0.0651)
Loglik 258.79 260.11 191.63 272.59
AIC −0.5303 −0.5330 −0.3863 −0.5548
BIC −0.5100 −0.5127 −0.3559 −0.5244
RSS 3034.3 3026.4 3029.5 2919.7
JB-test 30.58∗∗ 26.31∗∗ 34.78∗∗ 30.00∗∗

Q(1) 0.7653 0.3027 1.1873 0.0007
Q(5) 4.6380 6.2492 6.7898 4.9045
Q(22) 28.301 29.504 26.229 28.331
Q2(1) 4.148∗∗ 2.8142 0.2282 0.2198
Q2(5) 17.84∗∗ 14.359∗ 2.9546 2.9060
Q2(22) 52.18∗∗ 50.35∗∗ 9.5137 13.797

Note: ‘∗∗’ and ‘∗’ indicate that the test statistic is significant at 1% and 5% levels respectively. The standard deviation errors of parameter
estimates are reported in parentheses.

Corsi et al. (2008) showed that allowing for time-varying volatility of the realized volatility and logarithmic
realized variance substantially improves model fitting as well as predictive performance. We use the 5-minute
daily realized volatility (RV5m, computed by the sum of squared 5-minute log returns) of Standard & Poor 500
Index (SP500), taken from the ‘Oxford-Man Institute’s realized library’ (version 0.3, available at the website:
http://realized.oxford-man.ox.ac.uk). The data are sampled from January 3, 2017 to June 30, 2020 with 873 obser-
vations. Based on the extended autocorrelation function (Tsay and Tiao, 1984; Chen et al., 2013), the order is
selected as p = 1 and q = 1 for the log-Gamma-M-GARMA process. We then set p = q = r = s = 1 for the
log-Gamma-GARMA-GARCH model.

Table III shows the estimation performance of different estimators, including the GMLE and MLE of the
log-Gamma-M-GARMA and log-Gamma-GARMA-GARCH models respectively. Again, the shape parameter c
is the fixed extra parameter for the log-Gamma-M-GARMA model. In the top panel of Table I we report the
parameter estimates and their standard errors. In the bottom panel we report a few statistics for model validation.
The first three rows provide the maximum log likelihood, AIC and BIC respectively. In the fourth row, RSS stands
for root residual sum of squares defined by RSS =

∑T
t=1(yt − �̂�t)2. The fifth row reports the test statistic of Jarque

and Bera (1987) for normality. The quantity Q(m) denotes the Box–Ljung test statistic with m lags (Ljung and Box,
1978). The statistic Q2(m) is the portmanteau test statistic based on squared standardized residuals ê2

t , which are
defined as ê2

t = �̂�2
t ∕�̂�

2
t , where �̂�2

t = 𝜓1(ĉt). This statistic is used to test whether the conditional heteroskedasticity
has been accommodated by the model (McLeod and Li, 1983).

The parameter estimates from the GMLE and MLE seem to be close under both models, indicating that the
GMLE is a good estimator. However, comparing the left and right panels of Table III, we see that including the
GARCH process is indeed appropriate since the coefficients 𝛼1 and 𝛽1 are significant, and the resulting AIC and
BIC values are smaller.

Based on the statistics Q(m) and Q2(m) for various m, it can be seen that the log-Gamma-GARMA-GARCH
model is more suitable for the data than the log-Gamma-M-GARMA model since it captures the conditional het-
eroskedasticity in the process adequately, while the latter one fails to do so. Moreover, the values of log-likelihood
function and RSS show that including the GARCH process improves the in-sample fitting performance greatly. In
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Figure 1. Modeling S&P 500 realized volatility using GARMA-GARCH model

addition, the normality test shows that the residuals from the GMLE do not follow a normal distribution, indicating
that the Gaussian assumption for the innovations is not suitable here.

Figure 1 shows some features of the estimated log-Gamma-GARMA(1,1)-GARCH(1,1) model. The upper-left
panel is a plot of the original time series yt and the fitted values ŷt, showing a good fit to the data. The upper-right
panel compares the estimated residuals �̂�t with conditional standard deviation �̂�t, further showing a good descrip-
tion of the conditional heteroskedasticity in the process. The lower left panel presents the estimated time-varying
parameter ĉt = 𝜓−1

1 (�̂�2
t ), indicating that this shape parameter varies between 1 and 4, mostly around 2 and 3. We

also construct a P–P plot to check the conditional distribution assumption of the model. Specifically, if the distri-
bution assumption is valid, then 𝜈t = F(yt ∣ 𝛾t) should follow the uniform distribution, where F is the cumulative
distribution function. The lower right panel plots the quantiles of �̂�t = F(yt ∣ �̂�t) vs. the quantiles of the uniform
distribution. It suggests that the conditional Gamma assumption is reasonable.

5.2. U.S. Personal Saving Rate

In this example we study the monthly U.S. personal saving rate from January 1990 to December 2019 with 360
observations, shown in the upper left panel of Figure 2. This seasonal adjusted monthly series is retrieved from
FRED, the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/PSAVERT). We assume that the
saving rate is in the range (0, 0.15), and hence multiply the series by 20∕3. The unit-root test with Phillips–Perron
test statistic indicates that the series is stationary. Using BIC and standard ARMA modeling, the order of the
ARMA process is determined as p = 5 and q = 0. We then use p = 5, q = 0, and r = s = 1 for the
logit-Beta-GARMA-GARCH model, which can be represented as

yt ∣ t−1 ∼ Beta(at, bt), logit(yt) = 𝜙0 +
5∑

j=1

𝜙jlogit(yt−j) + 𝜀t,

𝜎2
t = 𝜔 + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1,
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Figure 2. Modeling U.S. personal saving rate using GARMA-GARCH model

where 𝜀t = logit(yt) − g(at, bt). We then estimate the logit-Beta-M-GARMA(5,0) model and
logit-Beta-GARMA(5,0)-GARCH(1,1) model using different estimators.

Table IV reports the estimation results and some summary statistics. Again, the log-Gamma-M-GARMA
model has an extra time invariant parameter 𝜏. From the parameter estimates shown in the upper panel, we
can see that the estimated AR coefficients are significantly different under the two models. In particular, the
coefficient 𝜙5 is statistically significant under the logit-Beta-M-GARMA model, but insignificant under the
logit-Beta-GARMA-GARCH model. Moreover, the GARCH coefficients 𝛼1 and 𝛽1 are strongly significant,
indicating that adding the GARCH process to the logit-Beta-M-GARMA model is reasonable.

In the lower-left panel of Table IV, the significant Q2(m) statistics show that the squared standardized resid-
uals of the logit-Beta-M-GARMA model, ê2

t = �̂�2
t ∕�̂�

2
t , have strong autocorrelations. However, under the

logit-Beta-GARMA-GARCH model, the portmanteau test results in the lower-right panel show no significant auto-
correlations in the squared standardized residuals ê2

t = �̂�2
t ∕�̂�

2
t , indicating the advantage of including the GARCH

type conditional variance process in the model.
Figure 2 depicts some features of the estimated logit-Beta-GARMA(5,0)-GARCH(1,1) model using the MLE.

The estimated conditional mean ŷt = ât∕(ât + b̂t) is shown together with the observed series in the upper left
panel of the figure. The conditional standard deviation �̂�t (upper right panel) is shown in the upper right panel
along with the estimated residuals yt − ŷt, showing reasonable coverage. The lower left panel shows the estimated
time-varying parameters ât and b̂t, indicating strong time varying behavior of the two parameters. The lower right
panel shows the P–P plot similar to that in Figure 1, indicating that the logit-Beta-GARMA-GARCH model is
reasonable for this time series data.

5.3. Stock Returns

In this example, the proposed GHSST-GARMA-GARCH model in Section 2.3 is employed to investigate the
skewness, fat-tail, and volatility in stock returns. We use the daily log returns of SP500 from January 3, 2000 to
June 30, 2020 with 5157 observations, obtained from Yahoo Finance (https://finance.yahoo.com/). The upper-left
panel of Figure 3 shows the time series.
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We consider a GHSST-GAR(1)-GARCH(1,1) model specified as follows:

yt ∣ t−1 ∼ GHSST(𝜉t, 𝜍t, 𝜈, 𝜏), yt = 𝜙0 + 𝜙1yt−1 + 𝜀t,

𝜎2
t = 𝜔 + 𝛼1𝜀

2
t−1 + 𝛽1𝜎

2
t−1.

We also estimate the AR(1)-GARCH(1,1) models with normal and Student t-distributions for comparison, which
can be seen as special cases of the GHSST distribution.

Table V reports the estimation results based on different models. First, according to the portmanteau tests in
the lower panel, the residuals and squared standardized residuals have no significant autocorrelations for all three
models, indicating that all the models can explain the conditional heteroskedasticity in the process. Second, the

Table IV. Estimation results of the logit-Beta-GARMA-GARCH model

Logit-Beta-M-GARMA Logit-Beta-GARMA-GARCH

Parameter GMLE MLE GMLE MLE

𝜙0 −0.0140 (0.0119) −0.0123 (0.0116) 0.0049 (0.0078) 0.0047 (0.0079)
𝜙1 0.6148∗∗ (0.0521) 0.6275∗∗ (0.0527) 0.6027∗∗ (0.0590) 0.5979∗∗ (0.0586)
𝜙2 0.0775 (0.0610) 0.0721 (0.0597) 0.1956∗∗ (0.0705) 0.2019∗∗ (0.0718)
𝜙3 −0.0191 (0.0611) −0.0260 (0.0607) −0.0031 (0.0601) −0.0054 (0.0612)
𝜙4 0.1362∗ (0.0610) 0.1432∗ (0.0607) 0.1163∗ (0.0484) 0.1135∗ (0.0488)
𝜙5 0.1460∗∗ (0.0521) 0.1425∗∗ (0.0458) 0.0567 (0.0381) 0.0547 (0.0379)
𝜏 121.56∗∗ (10.486) 121.59∗∗ (5.0038) – –
𝜔 – – 0.0063∗∗ (0.0012) 0.0065∗∗ (0.0013)
𝛼1 – – 0.6964∗∗ (0.0777) 0.7058∗∗ (0.0767)
𝛽1 – – 0.2495∗∗ (0.0639) 0.2397∗∗ (0.0623)
Loglik 616.34 616.39 689.64 689.76
AIC −3.3852 −3.3855 −3.7813 −3.7820
BIC −3.3097 −3.3099 −3.6842 −3.6848
RSS 0.6798 0.6796 0.6962 0.6977
JB-test 534.27∗∗ 550.41∗∗ 563.58∗∗ 556.53∗∗

Q(1) 3.3e-6 0.0542 3.2231 3.4302
Q(3) 1.6662 1.6532 7.6838 7.9635
Q(12) 9.7379 9.8820 19.555 19.805
Q2(1) 41.224∗∗ 40.405∗∗ 0.0344 0.0454
Q2(3) 44.417∗∗ 43.264∗∗ 2.8419 3.1277
Q2(12) 46.474∗∗ 45.255∗∗ 15.216 17.064

Note: ‘∗∗’ and ‘∗’ indicate that the test statistic is significant at 1% and 5% levels respectively. The standard deviation errors of parameter
estimates are reported in parentheses.

Table V. Estimation results of GHSST-GAR(1)-GARCH(1,1) model

Parameter Normal Student-t GHSST

𝜙0 0.0628∗∗ (0.0110) 0.0764∗∗ (0.0102) 0.0636∗∗ (0.0104)
𝜙1 −0.0602∗∗ (0.0151) −0.0632∗∗ (0.0140) −0.0729∗∗ (0.0141)
𝜔 0.0203∗∗ (0.0029) 0.0088∗∗ (0.0019) 0.0121∗∗ (0.0025)
𝛼1 0.1275∗∗ (0.0100) 0.0807∗∗ (0.0078) 0.1196∗∗ (0.0102)
𝛽1 0.8627∗∗ (0.0099) 0.8771∗∗ (0.0105) 0.8773∗∗ (0.0103)
𝜈 – 5.9138∗∗ (0.5056) 6.9631∗∗ (0.6246)
𝜏 – – −0.2006∗∗ (0.0502)
Loglik −7089.7 −6969.3 −6951.1
AIC 2.7515 2.7052 2.6985
BIC 2.7611 2.7145 2.7107
Q(1) 0.5559 0.8591 2.3289
Q(5) 8.0251 8.4076 10.189
Q(22) 32.868 33.618 30.475
Q2(1) 1.1042 0.6035 0.3015
Q2(5) 5.1283 3.8969 4.4023
Q2(22) 21.172 17.881 23.367

Note: ‘∗∗’ indicates that the test statistic is significant at 1% and 5% levels respectively. The standard deviation errors of parameter estimates
are reported in parentheses.
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Figure 3. Modeling S&P 500 returns using GHSST-GAR(1)-GARCH(1,1) model

parameter estimates �̂� and 𝜏 for GHSST-GAR(1)-GARCH(1,1) model in the upper panel are significant, showing
that the log returns are indeed leptokurtic and left skewed. We also see the advantage of the GHSST model over
the normal and Student-t settings, with its larger log-likelihood value.

Figure 3 plots the residuals along with conditional standard deviation �̂�t, (the upper right panel) and the two
time varying parameters 𝜉t and �̂�t in the lower left and right panels respectively. The figures show that the
GHSST-GAR(1)-GARCH(1,1) captures the salient features of the observed time series.

6. CONCLUDING REMARKS

The GARMA model is a useful class of data-based models for analyzing non-Gaussian time series. Since it
only models the conditional mean process through an ARMA formation, it lacks the ability to address con-
ditional heteroskedasticity often encountered in applications. In this article we extend the GARMA model to
GARMA-GARCH model with an additional model assumption on the conditional variance process, under a
GARCH formation. In addition, three special GARMA-GARCH models are proposed for non-negative time series,
proportional time series, and skewed and heavy tailed financial time series. Furthermore, maximum likelihood
and quasi Gaussian likelihood estimation procedures are introduced, and their finite sample performances are
illustrated. We find that the GMLE performs very well and the corresponding parameter estimates can be used
as starting values of the MLE procedure. Three real data examples are used to demonstrate the properties of the
proposed models.

There are several directions to extend the model. It is possible to introduce additional model assumptions on the
higher moments of the conditional distribution so to capture additional time varying features of the conditional dis-
tribution. Modeling additional higher moments can be fruitful even when the conditional distribution is specified
with a small number of parameters, since a generalized moment method type of procedure can be used to enhance
the parameter estimation. Another direction is to extend the model to analyzing multi-variate non-Gaussian time
series, a topic less studied. The GARMA-GARCH framework conveniently introduces dependencies among
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the component time series though dependencies among the conditional mean and variance processes under a
multi-variate version of the ARMA and GARCH formations.
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APPENDIX

We give the proofs of Theorem 1 and 2 in the Appendix. The proof relies on the geometric drift condition discussed
in Chapter 15 of Meyn and Tweedie (2009). Lemma 1 of Zheng et al. (2015) is a convenient wrap-up of the tool
that we need, so we repeat it here.
Let {Xn}n≥0 be a Markov chain on the state space 𝔛, equipped with some 𝜎-field (𝔛). Let {P(x,A), x ∈
𝔛,A ∈ (𝔛)} be the transition probability kernel. The geometric drift condition requires that there exists an
extended-valued function  ∶ 𝔛 → [1,∞], a measurable set C, and constants b < ∞, 𝛽 > 0 such that

Δ(x) ∶= ∫ P(x, dy)(y) − (x) ≤ −𝛽(x) + bIC(x), x ∈ 𝔛. (A1)
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Lemma 1. Suppose {Xt} is a 𝜓-irreducible and aperiodic Markov chain. If for some m, the skeleton {Xmt}
satisfies the drift condition (A1) for a petite set C and a function  which is everywhere finite. Then {Xt} is
geometrically ergodic, and ∫𝔛 V(x)𝜋(dx) < ∞, where 𝜋 is the unique invariant probability measure.

Proof of Theorem 1. According to Remark 8, we can embed the process {𝜀t} into the following Markov chain {Zt}.
Given Zt−1, we generate ỹt as ỹt ∼ Gam(ct, 1), where the parameter ct is determined by𝜓1(ct) = 𝜎2

t ∶= 𝜎2+𝛽′AZt−1.
We then set 𝜀t = h(ỹt) − 𝜓(ct), 𝜁t = 𝜀2

t − 𝜓1(ct), and define Zt = AZt−1 + (1, 0,… , 0)′𝜁t. It holds that

E(‖Zt‖2 ∣ Zt−1) = Z′
t−1A′AZt−1 + Var(𝜁t ∣ Zt).

According to Section 2.2 of Chan (1993),

Var(𝜁t ∣ Zt−1) = Var(𝜁t ∣ 𝜎2
t ) = 𝜓3(ct) − [𝜓1(ct)]2,

where 𝜓m(z) is the order-m polygamma function defined as the (m + 1)th derivative of the function logΓ(z). The
polygamma function has the following two properties

𝜓m(z + 1) = 𝜓m(z) +
(−1)mm!

zm+1
, 𝜓m(z) = (−1)m+1m!

∞∑
k=0

1
(z + k)m+1

. (A2)

It follows that for each 𝜅 > 0, there exists a D𝜅 > 0 such that

Var(𝜁t ∣ 𝜎2
t ) ≤ 5(1 + 𝜅)(𝛽′AZt−1)2 + D𝜅, (A3)

and

E(‖Zt‖2 ∣ Zt−1) ≤ Z′
t−1A′AZt−1 + 5(1 + 𝜅)(𝛽′AZt−1)2 + D𝜅

= Z′
t−1A′AZt−1 + 5(1 + 𝜅)Z′

t−1A′
1A1Zt−1 + D𝜅

≤ (1 + 𝜅)Z′
t−1B1Zt−1 + D𝜅.

Next, by taking a double expectation

E(‖Zt‖2 ∣ Zt−2) ≤ (1 + 𝜅)E[Z′
t−1B1Zt−1 ∣ Zt−2] + D𝜅.

Applying (A3) again,

E[Z′
t−1B1Zt−1 ∣ Zt−2] = Z′

t−2A′B1AZt−2 + w1Var(𝜁t−1 ∣ 𝜎2
t−1)

≤ Z′
t−2A′B1AZt−2 + 5w1(1 + 𝜅)(𝛽′AZt−2)2 + w1D𝜅

= Z′
t−2A′B1AZt−2 + 5(1 + 𝜅)𝜆Z′

t−2A′
1B1A1Zt−2 + w1D𝜅

≤ (1 + 𝜅)Z′
t−2B2Zt−2 + w1D𝜅.

It follows that

E(‖Zt‖2 ∣ Zt−2) ≤ (1 + 𝜅)2Z′
t−2B2Zt−2 + (1 + 𝜅)w1D𝜅 + D𝜅,

where w1 is the (1, 1)th entry of B1.
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Following the same argument recursively, we have for any positive integer h,

E(‖Zt‖2 ∣ Zt−h) ≤ (1 + 𝜅)hZ′
t−hBhZt−h +

h−1∑
j=0

(1 + 𝜅)jwjD𝜅.

where wj is the (1, 1)th entry of Bj for j ≥ 1, and w0 = 1. Choose h, such that the operator norm of Bh is less than
1 − 2𝜄 for some 𝜄 > 0. Choosing 𝜅 such that (1 + 𝜅)h(1 − 2𝜄) < 1 − 𝜄, we have

E(‖Zt‖2 ∣ Zt−h) ≤ (1 − 𝜄)‖Zt−h‖2 +
h−1∑
j=0

(1 + 𝜅)jwjD𝜅.

Since the log-Gamma distribution is absolutely continuous on ℝ, from here it is easy to verify that for the skeleton
{Zth}t≥1, the drift condition (A1) is met with (x) = ‖x‖2+1 for x ∈ ℝp, and other conditions of Lemma 1 are also
fulfilled. Therefore, the chain {Zt} is geometrically ergodic, and E𝜋‖Zt‖2 < ∞, where 𝜋 is the unique invariant
probability measure. Because 𝜀2

t = 𝜎2 + 𝛽′Zt, it follows that E𝜋𝜀
4
t < ∞.

Finally, once the strictly stationary process {𝜀t} has been generated, the condition 𝜙(z) ≠ 0 for |z| ≤ 1 guarantees
that the {h(yt)} process generated according to (4) admits a strictly stationary solution such that E[h(yt)4] < ∞.

Proof of Theorem 2. For the logit-Beta-GARMA-GARCH model, the process {𝜀t} cannot be generated by itself,
and has to be generated together with yt. Therefore, we need to consider the Markov chain defined in (21). For
notational simplicity, denote Wt = (X′

t ,Zt)′. Using the relationship between the Beta and Gamma distribution, it
can be shown that

g(at, bt) = 𝜓(at) − 𝜓(bt) = 𝜇 + 𝛿′ΦXt−1,

V(at, bt) = 𝜓1(at) + 𝜓1(bt) = 𝜎2 + 𝛽′AZt−1,

Var(𝜁t ∣ Wt−1) = 𝜓3(at) − [𝜓1(at)]2 + 𝜓3(bt) − [𝜓1(bt)]2.

Suppose for some, the operator norms of both Bh and Φh are less than 1− 2𝜄 with some 𝜄 > 0. Let vj be the (1, 1)th
entry of (Φj)′Φj, and wj be the (1, 1)th entry of Bj for j ≥ 1, and set v0 = w0 = 1. Note that wj > 0 for each j. By
(A2), for each 𝜅 > 0, there exists a D𝜅 > 0 such that

vjVar(𝜀t−j ∣ Wt−j−1) + wjVar(𝜁t−j ∣ Wt−j−1) ≤ 5wj(1 + 𝜅)(𝛽′AZt−j−1)2 + D𝜅, 0 ≤ j < h. (A4)

It follows that (using the preceding inequality with j = 0)

E(‖Wt‖2 ∣ Wt−1) ≤ X′
t−1Φ

′ΦXt−1 + Z′
t−1A′AZt−1 + 5(1 + 𝜅)(𝛽′AZt−1)2 + D𝜅

≤ X′
t−1Φ

′ΦXt−1 + (1 + 𝜅)Z′
t−1B1Zt−1 + D𝜅 .

Since

E(X′
t−1Φ

′ΦXt−1 ∣ Wt−2) = X′
t−2(Φ

2)′Φ2Xt−2 + v1Var(𝜀t−1 ∣ Wt−2),

and

E(Z′
t−1B1Zt−1 ∣ Wt−2) = Z′

t−2A′B1AZt−2 + w1Var(𝜁t−1 ∣ Wt−2),
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applying (A4) again with j = 1 we have

E(‖Wt‖2 ∣ Wt−2) ≤ X′
t−2(Φ

2)′Φ2Xt−2 + (1 + 𝜅)Z′
t−2A′B1AZt−2

+ 5wj(1 + 𝜅)2(𝛽′AZt−j−1)2 + (2 + 𝜅)D𝜅

≤ X′
t−2(Φ

2)′Φ2Xt−2 + (1 + 𝜅)2Z′
t−2B2Zt−2 + (2 + 𝜅)D𝜅 .

Similar to the proof of Theorem 1, applying (A4) recursively, we have

E(‖Wt‖2 ∣ Wt−h) ≤ X′
t−h(Φ

h)′ΦhXt−h + (1 + 𝜅)hZ′
t−hBhZt−h + [(1 + 𝜅)h − 1]D𝜅∕𝜅.

Choosing 𝜅 such that (1 + 𝜅)h(1 − 2𝜄) < 1 − 𝜄, it holds that

E(‖Wt‖2 ∣ Wt−h) ≤ (1 − 𝜄)‖Wt−h‖2 + [(1 + 𝜅)h − 1]D𝜅∕𝜅.

The rest of the proof follows the same argument of Theorem 1, so we skip the details. The proof is complete.
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