
Hybrid Kronecker Product Decomposition and Approximation

Abstract

Discovering underlying low dimensional structure of a high dimensional matrix is tradition-

ally done through low rank matrix approximations in the form of a sum of rank-one matrices.

In this paper, we propose a new approach. We assume a high dimensional matrix can be ap-

proximated by a sum of a small number of Kronecker products of matrices with potentially

different configurations, named as a hybrid Kronecker outer Product Approximation (hKoPA).

It provides an extremely flexible way of dimension reduction compared to the low-rank matrix

approximation. Challenges arise in estimating a hKoPA when the configurations of component

Kronecker products are different or unknown. We propose an estimation procedure when the

set of configurations are given, and a joint configuration determination and component estima-

tion procedure when the configurations are unknown. Specifically, a least squares backfitting

algorithm is used when the configurations are given. When the configurations are unknown, an

iterative greedy algorithm is developed. Both simulation and real image examples show that

the proposed algorithms have promising performances. Some identifiability conditions are also

provided. The hybrid Kronecker product approximation may have potentially wider applica-

tions in low dimensional representation of high dimensional data.

Keywords: Dimension reduction, Identifiability, Information criterion, Kronecker product, Low

dimensional structure in high dimensional data, Matrix decomposition
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1 Introduction

High dimensional data often has a low dimensional structure that allows significant dimension

reduction and compression. In applications such as data compression, image denoising and pro-

cessing, matrix completion, high dimensional matrices of interest are often assumed to be of low

ranks and can be represented as a sum of several rank-one matrices (vector outer products) in the

form of the singular value decomposition (SVD),

X =

K∑
k=1

λkuk ⊗ vT
k , (1)

where X is a P ×Q matrix, uk and vk are P and Q dimensional vectors, and ⊗ denotes the outer

product. Eckart and Young (1936) reveals the connection between singular value decomposition

and low-rank matrix approximation. Recent studies include image low-rank approximation (Freund

et al., 1999), principle component analysis (Wold et al., 1987; Zou et al., 2006), factorization in high

dimensional time series (Lam and Yao, 2012; Yu et al., 2016), non-negative matrix factorization

(Hoyer, 2004; Cai et al., 2009), matrix factorization for community detection (Zhang and Yeung,

2012; Yang and Leskovec, 2013; Le et al., 2016), matrix completion problems (Candès and Recht,

2009; Candes and Plan, 2010; Yuan and Zhang, 2016), low rank tensor approximation (Grasedyck

et al., 2013), machine learning applications (Guillamet and Vitrià, 2002; Pauca et al., 2004; Zhang

et al., 2008; Sainath et al., 2013), among many others.

As an alternative to vector outer product, the Kronecker product can also be used to represent

a high dimensional matrix with a potentially smaller number of elements. For any two matrices

A ∈ Rp×q and B ∈ Rp∗×q∗ , the Kronecker product A⊗B is a (pp∗)× (qq∗) matrix defined by

A⊗B =


a1,1B a1,2B · · · a1,qB

a2,1B a2,2B · · · a2,qB
...

...
. . .

...

ap,1B ap,2B · · · ap,qB

 ,

where ai,j is the (i, j)-th element of A. The dimensions (p, q, p∗, q∗) is called the configuration of

the Kronecker product.

The decomposition of a high dimensional matrix into the sum of several Kronecker products

of identical configuration is known as Kronecker product decomposition (Van Loan and Pitsianis,
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1993), in the form of

X =
K∑
k=1

λkAk ⊗Bk, Ak ∈ Rp×q, Bk ∈ Rp∗×q∗ (2)

where X is a P ×Q matrix with P = pp∗ and Q = qq∗, and Ak and Bk are of dimensions p× q and

p∗ × q∗ respectively. In fact, any P × Q matrix can be decomposed in the form (2) with at most

K = min{pq, p∗q∗} terms (Van Loan and Pitsianis, 1993). The formal definition of the Kronecker

product decomposition can be found in Appendix D. Note that the SVD in (1) is a special case of

(2) with q = 1 and p∗ = 1. The form of Kronecker product appears in many fields including signal

processing, image processing and quantum physics (Werner et al., 2008; Duarte and Baraniuk,

2012; Kaye et al., 2007), where the data has an intrinsic Kronecker product structure.

For a given configuration, the approximation using a sum of several Kronecker products can be

turned into an approximation using a low rank matrix after a rearrangement operation of the matrix

elements (Van Loan and Pitsianis, 1993). Cai et al. (2019) considers to model a high dimensional

matrix with a sum of several Kronecker products of the same but unknown configuration, and uses

an information criterion to determine the unknown configuration.

However, it is often the case that the Kronecker outer Product Approximation (KoPA) using

a single configuration requires a large number of terms to make the approximation accurate. By

allowing the use of a sum of Kronecker products of different configurations, an observed high di-

mensional matrix can be approximated more effectively using a much smaller number of parameters

(elements). We note that often the observed matrix can have much more complex structure than

what a single Kronecker product can handle. For example, representing an image in a matrix form

with Kronecker products of the same configuration is often not satisfactory since the configuration

dimensions determine the block structure of the recovered image, similar to the pixel size of the im-

age. A single configuration is often not possible to provide as much details as needed. Due to these

limitations, we propose to extend the KoPA approach to allow for multiple configurations. It is

more flexible and may provide more accurate representation with a smaller number of parameters.

In this paper, we generalize the KoPA method in Cai et al. (2019) to a multi-term setting, where

the observed high dimensional matrix is assumed to be generated from a sum of several Kronecker

products of different configurations – we name the model hybrid KoPA (hKoPA). As a special case,

when all the Kronecker products are vector outer products, hKoPA is equivalent to the low rank

matrix approximation.

We consider two problems in this paper. We first propose a procedure to estimate a hKoPA with
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a set of known configurations. The procedure is based on an iterative backfitting algorithm. Each

step involves finding the best one-term Kronecker product approximation to a given matrix, under

a known configuration. This operation is obtained through a SVD of a rearranged matrix. Next,

we consider the problem of determining the configurations in the hKoPA for the observed matrix.

As exploiting the space of all possible configuration combinations is computationally expensive, we

propose an iterative greedy algorithm similar to the forward stepwise selection. In each iteration,

a single Kronecker product term is added to the model by fitting the residual matrix from the

previous iteration. The configuration of the added Kronecker product is determined similar to the

procedure proposed in Cai et al. (2019). This algorithm efficiently fits a hKoPA model with a

potentially sub-optimal solution as a compromise between computation and accuracy.

The rest of the paper is organized as follows. The hKoPA model is introduced and discussed in

Section 2, with a set of identifiability assumptions. In Sections 3 and 4, we provide the details of the

iterative backfitting estimation procedure for the model with known configurations and the greed

algorithm to fit a hKoPA with unknown configurations. Section 5 demonstrates the performance

of the proposed procedures with a simulation study and a real image example. Section 6 concludes.

Notations: For a matrix M , ∥M∥F :=
√

tr(MMT ) stands for its Frobenius norm and ∥M∥S

its spectral norm, which is the largest singular value of M . For a positive integer n, [n] denotes

the set of positive integers up to n such that [n] = {1, . . . , n}. We denote by em,n
i,j the m×n matrix

with 1 at the (i, j)-th entry and 0 elsewhere.

2 Hybrid Kronecker Product Model

2.1 The Model

In this paper we consider the K-term hybrid KoPA (hKoPA) model, in the form

Y = X +E, (3)

where the observed matrix Y is the sum of a signal matrix X and a noise matrix E with i.i.d.

standard Gaussian entries. We assume that the signal matrix X has the same form of (2)

X =
K∑
k=1

λkAk ⊗Bk, Ak ∈ Rpk×qk , Bk ∈ Rp∗k×q∗k , (4)

but here the matrices (Ak,Bk) are allowed to have different configurations. Specifically, we assume

that Y and X are of the dimension P × Q, and the matrices Ak and Bk in the k-th component
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are pk × qk and p∗k × q∗k, respectively. We call the dimensions of Ak and Bk, (pk, qk, p
∗
k, q

∗
k), the

configuration of the Kronecker product Ak⊗Bk. Since P and Q are fixed and given by the observed

matrix Y , in the sequel we will simply use the pair (pk, qk) to denote the configuration of Ak⊗Bk.

We also assume that 1 < pkqk < PQ for all 1 ≤ k ≤ K so that none of Ak and Bk are scalars.

Comparing (2), we refer to (4) as a hybrid Kronecker representation of X.

It is helpful to understand (4) as a “multi-resolution” representation of X. More specifically,

if X is an image, then the term Ak ⊗Bk corresponds to a partition of the image into non-overlap

p∗k×q∗k blocks. By allowing different configurations, i.e. different sizes of Bk’s, (4) is able to extract

the local patterns at different resolution (or pixel size), offering the flexibility to capture different

texture of the image. This “multi-resolution” interpretation also suggests that hKoPA are useful

for many other applications, e.g. spatial-temporal data, multi-dimensional signals analysis etc.

Define the configuration set of the hKoPA model (3) as the collection of individual configurations

C := {(pk, qk), 1 ≤ k ≤ K}. When the configuration set C is known, we need to estimate the

component matrices Ak and Bk, for k = 1, . . . ,K in model (3). When C is unknown, the estimation

of model (3) requires the determination of the configuration set C in advance.

2.2 Identifiability Conditions

The primary goal is to estimate λk, Ak and Bk in (3). However, there are some obvious uniden-

tifiability regarding them. We discuss the identifiability conditions in this section. Due to the

complexity of the hKoPA models, we use a specific definition of identifiability as follows. First of

all, we assume that the configuration set C is an ordered set, that is, the order of the configurations

{(p1, q1), . . . , (pK , qK)} is fixed. With this assumption, the following definition automatically ex-

cludes the unidentifiability due to different orderings of the terms {λkAk ⊗Bk, 1 ≤ k ≤ K} when

their configurations are all distinct.

Definition 1 (Identifiability). We say that the representation (4) is identifiable up to sign changes

with respect to the ordered configuration set C if there are no other matrices {Ãk, B̃k} of the same

configurations {pk, qk}, and coefficients {λ̃k} such that

K∑
k=1

λkAk ⊗Bk =

K∑
k=1

λ̃kÃk ⊗ B̃k,

unless Ãk = ±Ak, B̃k = ±Bk and λ̃kÃk ⊗ B̃k = λkAk ⊗Bk.

In the sequel we shall often refer to the identifiability defined above as “identifiable up to sign
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changes”, but omit “with respect to the ordered configuration set C” for simplicity. Nevertheless, it

should be understood that once the representation (4) is given, the associated ordered configuration

set C is also determined, and the discussion of the identifiability will be based on this given C.

Two more definitions are needed for the discussion of identifiability of hKoPA model.

Definition 2 (Conformality). Let A be a matrix of dimension (pA, qA) and B of (pB, qB). If pA

is a factor of pB and qA is a factor of qB, A is said to be conformally smaller than B, denoted by

A ⋐ B or B ⋑ A. This includes the special case that pA = pB and qA = qB, which we also say

that A and B are conformally equal, denoted by A ∼= B.

Remark 1. Conformality is of interests because if A of dimension (pA, qA) is strictly conformally

smaller than B of (pB, qB), then for any matrix C of dimension (pB/pA, qB/qA) (C is not a scalar),

A⊗C and C ⊗A have the same dimension as B, or A⊗C ∼= B and C ⊗A ∼= B.

Definition 3 (Orthogonality). Let A ∈ RpA×qA and B ∈ RpB×qB be two matrices such that

A ⋐ B. We say A and B are block-wise orthogonal (b-orthogonal) if

argmin
C∈R(pB/pA)×(qB/qA)

∥B −C ⊗A∥F = 0,

or equivalently, tr[BT (e
pB/pA,qB/qA
i,j ⊗A)] = 0 for all i = 1, . . . , (pB/pA), j = 1, . . . , (qB/qA). Simi-

larly, we say A and B are grid-wise orthogonal (g-orthogonal) if

argmin
C∈R(pB/pA)×(qB/qA)

∥B −A⊗C∥F = 0,

or equivalently, tr[BT (A ⊗ e
pB/pA,qB/qA
i,j )] = 0, for all i = 1, . . . , (pB/pA), j = 1, . . . , (qB/qA). In

particular, if A ∼= B, then b-orthogonality and g-orthogonality are equivalent, and both require

tr[BTA] = 0. In this case we say A and B are orthogonal.

Remark 2. If A ⋐ B and write B = (Bij) as a block matrix such that each block Bij has the same

dimension as A. Then the b-orthogonality of A and B implies tr(ATBij) = 0 for all the blocks Bij

of B. Similarly, if A ⋐ B and B
(g)
ij is the (i, j)-th sub-grid of B (consisting of all grid elements with

stride size (pB/pA, qB/qA), i.e. bi+s1(pB/pA),j+s2(qB/qA) for s1 = 0, . . . , pA − 1, s2 = 0, . . . , qA − 1),

then that A and B are g-orthogonal implies tr(ATB
(g)
ij ) = 0 for all the sub-grids B

(g)
ij of B.

We first list the following two conditions on the signal matrix X in (4).

Assumption 1. For all k = 1, . . . ,K, ∥Ak∥F = ∥Bk∥F = 1, and λk > 0.

Assumption 2. Assume (pk, qk) ̸= (1, Q) for all k = 1, . . . ,K.
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Remark 3. Assumption 1 is standard and can be satisfied by re-scaling A and B. For Assump-

tion 2, note that when (pk, qk) = (1, Q), Ak is a row vector and the corresponding Bk is a column

vector of size (P, 1). In this case, Ak ⊗ Bk = Bk ⊗ Ak. Assumption 2 can be easily satisfied by

switching so that (pk, qk) = (P, 1) when needed.

Assumption 3. For any 0 ≤ k, l ≤ K such that Ak ⋐ Al, Ak and Al are g-orthogonal. For all

k ̸= l such that Ak
∼= Al, Ak and Al are orthogonal, and Bk and Bl are orthogonal.

Assumption 3’. For any 0 ≤ k, l ≤ K such that Bk ⋐ Bl, Bk and Bl are b-orthogonal. For all

k ̸= l such that Ak
∼= Al, Ak and Al are orthogonal, and Bk and Bl are orthogonal.

Remark 4. This condition is to address the following identifiability situations. Suppose A1 ⋐ A2,

then for any p2/p1 × q2/q1 matrix C, it holds that

λ1A1 ⊗ (B1 + λ2C ⊗B2) + λ2(A2 − λ1A1 ⊗C)⊗B2 = λ1A1 ⊗B1 + λ2A2 ⊗B2. (5)

Assumption 3 excludes this type of unidentifiability by requiring b-orthogonality between A1 and

A2. Such a requirement can be achieved through an orthogonalization operation. For example, let

the (i, j)-th element of C be [C]i,j = tr
[
A2(A1 ⊗ e

p2/p1,q2/q1
i,j )T

]
. Let

λ1A1 ⊗B1 + λ2A2 ⊗B2 = A1 ⊗ (λ1B1 + λ2C ⊗B2) + λ2(A2 −A1 ⊗C)⊗B2

=: λ̃1A1 ⊗ B̃k + λ̃2Ã2 ⊗B2,

with all the quantities in the last expression being rescaled to compile with Assumption 1. It is easy

to show that A1 and Ã2 are b-orthogonal in this new representation. Algorithm 3 in Appendix C

performs such an orthogonalization for multiple terms iteratively.

Remark 5. Assumptions 3 and 3’ are parallel conditions, one on Ai and another on Bi. We refer

to them as “Ortho-A” and “Ortho-B” conditions, respectively. Only one of them is needed.

Assumption 4. Suppose

(i) For all k ̸= l such that Bk is a row vector and Bl is a column vector, Al and Bk are

b-orthogonal.

(ii) For all k ̸= l such that Ak is a row vector and Al is a column vector, Al and Bk are

g-orthogonal.
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Remark 6. This condition is needed. Consider a two term representation of the form

A1 ⊗ βT
1 +A2 ⊗ β2,

where βi are column vectors. Now pick any matrix C such that C ⊗ β2 has the same dimension

as A1, then it holds that C ⊗ βT
1 has the same dimension as A2, and

A1 ⊗ βT
1 +A2 ⊗ β2 = (A1 +C ⊗ β2)⊗ βT

1 + (A2 −C ⊗ βT
1 )⊗ β2,

due to the fact that β2 ⊗ βT
1 = βT

1 ⊗ β2. Assumption 4 excludes this type of unidentifiability

by requiring b-orthogonality between A2 and βT
1 . Note that βT

1 ⋐ A2 as βT
1 is of 1 × q∗1 and

A2 is of p2 × Q, with q∗1 being a factor of Q. Such a requirement can be achieved through an

orthogonalization operation in Algorithm 3.

Remark 7. As seen in the example given in Remark 6, Assumption 4 could also have been made

on the b-orthogonality of A1 and β2. We choose the current formulation.

The following theorem states that, for any X that can be written in (4), then there is another

representation such that the above conditions are satisfied. And the representation can be obtained

through a sequence of orthogonalization operations.

Theorem 1. If X =
∑K

k=1 λkAk ⊗Bk of configuration set C satisfies Assumptions 1 and 2, then

after the generalized Gram-Schmidt procedure given in Algorithm 3 in Appendix C, the resulting

representation

X =
K̃∑
k=1

λ̃kÃk ⊗ B̃k. (6)

has a configuration set C̃ ⊂ C, and satisfies Assumptions 1, 2, 4 and 3 (the Ortho-A representation).

The proof of the theorem is in Appendix D.

Remark 8. We can also obtain a representation satisfying Assumptions 1, 2, 4 and 3’ (the Ortho-B

representation) by slightly modifying Algorithm 3.

Remark 9. Algorithm 3 outputs a representation which has a configuration set same as the original

C, but may have some zero λ̃k. Hence the configuration set C̃ in (6) can be a subset of C.

We have not required any ordering of the terms λkAk ⊗ Bk, because it is assumed that the

ordered configuration set C is given, so the terms are ordered according to C. However, when some

configurations in C are the same, we need to fix their orders according to the next identifiability con-

dition. This condition is also similar to the distinct singular values condition for the identifiability

of the singular vectors in the SVD of a matrix.
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Assumption 5. If 1 ⩽ k < l ⩽ K and (pk, qk) = (pl, ql), then λk > λl.

Remark 10. The reason that the condition is needed can be seen from the following example. If

Ak
∼= Al (and Bk

∼= Bl as well) satisfy Assumptions 1 and 3, and λk = λl = 1, then

Ak ⊗Bk +Al ⊗Bl =
Ak +Al√

2
⊗ Bk +Bl√

2
+

Ak −Al√
2

⊗ Bk −Bl√
2

=: Ãk ⊗ B̃k + Ãl ⊗ B̃l,

but Ãk, B̃k, Ãl, B̃l also satisfy Assumptions 1 and 3. When λk ̸= λl, such an ambiguity does not

occur.

So far we have given some necessary conditions for the identifiability. It is very challenging to

verify whether they are sufficient due to the complexity of the hKoPA model, especially due to the

fact that different configurations are present in (4). We shall leave the general sufficient conditions

to the future work. In the next two sections, we give a nearly complete answer for a special case of

(4) with two terms of configurations (p1, q1) and (p2, q2). We consider two scenarios depending on

whether these two configurations are conformal or not.

2.3 Identifiability of the Conformal Two-Term Model

We first consider the conformal two-term representation X = λ1A1 ⊗ B1 + λ2A2 ⊗ B2, where

A1 ⋐ A2. We need one more technical condition.

Assumption 6. If A1 ⋐ A2, assume that A2 cannot be decomposed as C ⊗D, where C has the

same dimension as A1.

Theorem 2. If A1 ⋐ A2, and Assumptions 1, 3, 5 and 6 hold, then the representation

X = λ1A1 ⊗B1 + λ2A2 ⊗B2

is identifiable up to sign changes.

The proof of the theorem is given in Appendix D. The theorem says that for a conformal

two-term model, the Ortho-A representation is unique. Similarly, under Assumptions 1, 3’, and 5,

6, we also have an unique Ortho-B representation.

In the following we discuss the relationship between the Ortho-A and Ortho-B representations

for the two-term model. Suppose that for the configurations (p1, q1) and (p2, q2), p1 is a factor of

p2 and q1 is a factor of q2, and the matrix X is given by

X = λ1A1 ⊗B1 + λ2A2 ⊗B2 + λ12A1 ⊗C ⊗B2, (7)
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where A1 ∈ Rp1×q1 , B1 ∈ Rp∗1×q∗1 , A2 ∈ Rp2×q2 , B2 ∈ Rp∗2×q∗2 and C ∈ Rp2/p1×q2/q1 . Let’s assume

that A1 and A2 are orthogonal, and so are B1 and B2. This representation can always be obtained

for any two-term model through an Ortho-A operation then an Ortho-B operation. The third

term A1 ⊗ C ⊗ B2 is conformally equal to both the first configuration (p1, q1) (when written as

A1⊗(C⊗B2)) and the second configuration (p2, q2) (when written as (A1⊗C)⊗B2). By an abuse

of terminology, we refer to it as the interaction of the two configurations. One can distribute the

interaction term over the first and second Kronecker products, resulting in different representations

of X under configurations (p1, q1) and (p2, q2):

X = λ̃1Ã1 ⊗ B̃1 + λ̃2Ã2 ⊗ B̃2. (8)

Two extreme cases are listed in (9) and (10).

X = λc
1A1 ⊗Bc

1 + λ2A2 ⊗B2, (9)

= λ1A1 ⊗B1 + λc
2A

c
2 ⊗B2, (10)

where

λc
1 =

√
λ2
1 + λ2

12, Bc
1 =

λ1

λc
1

B1 +
λ12

λc
1

C ⊗B2,

λc
2 =

√
λ2
2 + λ2

12, Ac
2 =

λ2

λc
2

A2 +
λ12

λc
2

A1 ⊗C.

In (9), the interaction term is merged into the first Kronecker product, so that A1 and A2 are

orthogonal but Bc
1 and B2 are not. In other words, (9) satisfies Assumption 3 and is the Ortho-A

representation. Similarly, in (10), the interaction term is merged into the second Kronecker product,

where B1 and B2 remains orthogonal but A1 and Ac
1 are not. Hence it satisfies Assumption 3’,

and is the Ortho-B representation. Any other possible representation of X in the form (8) is an

affine combination of (9) and (10).

2.4 Identifiability of the Non-conformal Two-Term Model

In this section we consider the identifiability of the non-conformal two-term model. Assume the

configurations of X = λ1A1 ⊗B1 + λ2A2 ⊗B2 are not conformal, and satisfy Assumptions 1 and

2. We divide the non-conformal two-term models into two types, and treat them accordingly.

Type I non-conformal two-term model. One of A1,A2 is a column and the other is a row; or

one of B1,B2 is a column and the other is a row.
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Type II non-conformal two-term model. All the non-conformal two-term models that are not

of type I are classified as type II.

We first point out that the type I model can be converted into a conformal model so that

Theorem 2 applies for its identifiability. Without loss of generality, assume that B1 is a p∗1 × 1

column vector, B2 is a 1 × q∗2 row vector. To better illustrate the idea, we rewrite this two-term

model as X = A1 ⊗ β1 + A2 ⊗ βT
2 . According to Assumption 2, A1 must not be a row/column

vector. Write X = (Xij) as a p1 × q2 block matrix, where all the blocks Xij have the same size

p∗1 × q∗2. We perform the block stacking operation on X to turn it into a (Pq2)× q∗2 matrix as

X −→ Qp1,q2(X) := [XT
11, X

T
12, · · · XT

1,q2 , X
T
21, · · · XT

p1,q2 ]
T .

Now do a similar operation on Ai: first write Ai as a p1 × q2 block matrix with equal size blocks,

then rearrange its blocks by the Qp1,q2 operation and denote the resulting matrix by Qp1,q2(Ai),

i = 1, 2. Note that Qp1,q2(A2) is a column vector. It follows that

Qp1,q2(X) = Qp1,q2(A1)⊗ β1 +Qp1,q2(A2)⊗ βT
2 = Qp1,q2(A1)⊗ β1 + βT

2 ⊗Qp1,q2(A2). (11)

The right hand side of the preceding equation gives a conformal two term representation, and the

orthogonality of A1 and βT
2 is equivalent to the orthogonality of Qp1,q2(A1) and βT

2 . Therefore,

the identifiability of the original type I model becomes the identifiability of the conformal two-term

model in (11). We therefore have the following corollary regarding the type I model.

Corollary 1. Consider the type I non-conformal two-term model. Suppose Assumptions 1, 2 and

4 hold. The representation X = λ1A1⊗B1+λ2A2⊗B2 is identifiable up to sign changes for each

of the following scenarios.

(i) If B1 is a column vector, B2 is a row vector, assume A1 cannot be decomposed as C ⊗D,

where D is a row vector of the same length as B2.

(ii) If A1 is a column vector, A2 is a row vector, assume B2 cannot be decomposed as C ⊗D,

where C is a column vector of the same length as A1.

For the type II model, all of Assumptions 3, 4 and 5 are not relevant. On the other hand,

it is very difficult to verify whether Assumptions 1 and 2 are sufficient for the identifiability. We

provide an affirmative answer when the dimensions of X are powers of 2, and when Ak and Bk are

in “generic positions”. It is also possible to give a set of sufficient conditions which guarantees the
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identifiability of any type II model. However, unlike the conformal case, these sufficient conditions

are very tedious, so we choose not to spell the details out, and only discuss the identifiability for

“generic” Ak and Bk, under simplified conditions.

Theorem 3. Suppose X = λ1A1 ⊗B1 + λ2A2 ⊗B2 is a type II model, where Ak are 2mk × 2nk

matrices (k = 1, 2), and Bk are 2m
∗
k × 2n

∗
k respectively. Suppose Assumptions 1 and 2 hold,

and m1 + n1 + m∗
1 + m∗

2 > 4. Then if the elements of Ak and Bk are in generic positions, the

representation X = λ1A1 ⊗B1 + λ2A2 ⊗B2 is identifiable up to sign changes.

Remark 11. By “generic positions”, we mean the following. If the elements of Ak and Bk are

generated from some joint distribution which is absolutely continuous with respect to the Lebesgue

measure, then the identifiability holds with probability one. In the proof (given in Appendix D),

without loss of generality, we will assume that the elements of Ak and Bk are IID N(0, 1).

Remark 12. Theorem 3 covers both the conformal and non-conformal two-term models. However,

the conformal case has already been warranted by Theorem 2, so the main thrust of Theorem 3 is

on the non-conformal model.

Remark 13. The condition m1 + n1 + m∗
1 + m∗

2 > 4 is equivalent to requiring that X has at

least 32 entries. We make this technical condition due to the following reasons. First, when

m1 + n1 + m∗
1 + m∗

2 ≤ 3, all two-term models satisfying Assumption 1 and Assumption 2 are

conformal or type I non-conformal. Second, when m1 + n1 + m∗
1 + m∗

2 = 4, the only possible

configuration sets, denoted by {(p1, q1), (p2, q2)}, of the type II non-conformal two-term model are

{(2, 2), (4, 1)} when X is 4 × 4, {(2, 2), (4, 1)} when X is 8 × 2, and {(2, 2), (1, 4)} when X is

2 × 8. We consider these cases in Examples 1 and 2 in Appendix D, and demonstrate why such

non-conformal two-term models are not identifiable, even when Ak and Bk are in generic positions.

3 Hybrid Kronecker Product Model with Known Configurations

When the configuration set C = {(pk, qk), 1 ≤ k ≤ K} is known, we consider the following least

squares problem.

min

∥∥∥∥∥Y −
K∑
k=1

λkAk ⊗Bk

∥∥∥∥∥
2

F

. (12)

When K = 1, such a problem can be solved by singular value decomposition of a rearranged version

of matrix Y . Specifically, the rearrangement operation Rp,q[·] reshapes the P × Q matrix Y to a
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new pq × p∗q∗ matrix such that

Rp,q[Y ] = [vec(Y p∗,q∗

1,1 ), . . . , vec(Y p∗,q∗
p,q )]T ,

where Y p∗,q∗

i,j stands for the (i, j)-th p∗ × q∗ block of matrix Y and vec(·) is the vectorization

operation that flattens a matrix to a column vector. It was observed by Van Loan and Pitsianis

(1993) that the rearrangement operation can transform a Kronecker product to a vector outer

product such that

Rp,q[A⊗B] = vec(A)vec(B)T .

This can be seen from the fact that all the elements in the matrix A⊗B are in the form of ai,jbk,ℓ,

which is exactly the same as those in vec(A)vec(B)T , where ai,j is the (i, j)-th element in A and

bk,ℓ is the (k, ℓ)-th element in B. The re-arrangement operation Rp,q[Y ] is also linear and preserves

the Frobenius norm.

Therefore, the least squares optimization problem min ∥Y − λA ⊗ B∥2F , is equivalent to a

rank-one matrix approximation problem since

∥Y − λA⊗B∥2F = ∥Rp,q[Y ]− λvec(A)vec(B)T ∥2F ,

whose solution is given by the leading component in the SVD of Rm,n[Y ] (Eckart and Young, 1936).

If the multiple terms in (3) are of the same configuration, they can be retrieved from the singular

components of Rp,q[Y ] as well.

When there are multiple terms K > 1 in model (3), but of different configurations, we propose

to solve the optimization problem (12) through a backfitting algorithm (or an alternating least

squares algorithm) by iteratively estimating λk, Ak and Bk through

min
λk,Ak,Bk

∥∥∥∥∥∥
Y −

∑
i ̸=k

λ̂iÂi ⊗ B̂i

− λkAk ⊗Bk

∥∥∥∥∥∥
2

F

,

using the rearrangement operator and SVD, with fixed λ̂i, Âi and B̂i (i ̸= k) from the previous

iteration.

When all configurations {(pk, qk)}Kk=1 are distinct, the backfitting procedure for hKoPA is de-

picted in Algorithm 1, where vec−1
p,q is the inverse of the vectorization operation that convert a

column vector back to a p × q matrix. When r terms indexed by k1, . . . , kr in the hKoPA model

have the same configuration, these terms are updated simultaneously in the backfitting algorithm by

keeping the first r components from the SVD of the residual matrix Ê(k) = Y −
∑

i ̸=k1,...,kr
λ̂iÂi⊗B̂i.
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Algorithm 1 Backfitting Least Squares Procedure

1: Set λ̂1 = λ̂2 = · · · = λ̂K = 0.

2: repeat

3: for k = 1 to K do

4: Ê(k) = Y −
∑

i ̸=k λ̂iÂi ⊗ B̂i.

5: Compute SVD of Rpk,qk [Ê
(k)]:

Rpk,qk [Ê
(k)] =

J∑
j=1

sjujv
T
j .

6: Update λ̂k = s1, Âk = vec−1
pk,qk

(u1) and B̂k = vec−1
p∗k,q

∗
k
(v1).

7: end for

8: until convergence

9: Orthonormalize the components by Algorithm 3.

10: Return {(λ̂k, Âk, B̂k)}Kk=1.

We also orthonormalize the components by the Gram-Schmidt procedure (Algorithm 3) at the end

of each backfitting round. Algorithm 1 is also referred as alternating least squares (ALS) algorithm

in the subsequent context.

4 Hybrid KoPA with Unknown Configurations

In this section, we consider the case when the model configuration C = {(pk, qk)}Kk=1 is unknown.

We use a greedy method similar to forward stepwise selection to obtain the approximation by

iteratively adding one Kronecker product at a time, based on the residual matrix obtained from

the previous iteration. Specifically, we start the algorithm with Y (1) = Y , and at iteration t, we

obtain

Y (t) = Y −
t−1∑
i=1

λ̂iÂi ⊗ B̂i,

where λ̂i, Âi and B̂i are obtained in the previous iteration. Then we use the single-term KoPA

with unknown configuration proposed in Cai et al. (2019) to obtain

min
λt,At,Bt

∥Y (t) − λtAt ⊗Bt∥2F .

The procedure is repeated until a stopping criterion is reached as detailed in Algorithm 2. The

algorithm without step 10 is referred later as Algorithm 2′.

14



Algorithm 2 Greedy Additive Algorithm for hKoPA Estimation

1: Set Y (1) = Y , K̂ = Tmax.

2: for t = 1 to Tmax do

3: for all possible configuration (p, q) do

4: Compute SVD for Rp,q[Y
(t)]: Rp,q[Y

(t)] =
∑J

j=1 sjujv
T
j .

5: Set λ̂
(p,q)
t = s1, Â

(p,q)
t = vec−1

p,q(u1) and B̂
(p,q)
t = vec−1

p∗,q∗(v1).

6: Compute Ŝ
(p,q)
t = λ̂

(p,q)
t Â

(p,q)
t ⊗ B̂

(p,q)
t .

7: end for

8: Compute

(p̂t, q̂t) = argmin
(p,q)

PQ log
∥Y (t) − Ŝ

(p,q)
t ∥2F

PQ
+ κη.

9: Set λ̂t = λ̂
(p̂t,q̂t)
t , Ât = Â

(p̂t,q̂t)
t and B̂t = B̂

(p̂t,q̂t)
t .

10: (ALS Refinement) Refine {(λ̂i, Âi, B̂i)}ti=1 with respect to configuration set {(p̂i, q̂i)}ti=1 using

Algorithm 1.

11: if a stopping criterion is met then

12: Set K̂ = t.

13: break

14: end if

15: Set Y (t+1) = Y −
∑t

i=1 λ̂iÂi ⊗ B̂i.

16: end for

17: Return {(λ̂t, Ât, B̂t)}K̂t=1.

Some implementation details are as follows:

Overall Objective Function and The Greedy Search Algorithm: The formulation of the

data generating mechanism (3) and (4) naturally suggests an overall objective function in the form

of

cICκ(K, (pi, qi), i = 1, . . . ,K) = PQ log
∥Y −

∑K
i=1 λ̂iÂi ⊗ B̂i∥2F

PQ−
∑K

i=1(piqi + p∗i q
∗
i )

+ κ

K∑
i=1

(piqi + p∗i q
∗
i ), (13)

where λ̂i, Âi, B̂i (i = 1, . . . ,K) are the estimators obtained through Algorithm 1 in Section 3, given

K, (pi, qi, p
∗
i , q

∗
i ), i = 1, . . . ,K. Here

∑K
i=1(piqi+p∗i q

∗
i ) is the number of parameters in the model and

κ is the penalty coefficient on model complexity. We refer to the criterion in (13) as the cumulative

information criterion, denoted by cICκ. In particular, when κ = 2, cICκ corresponds to AIC and

when κ = logPQ, cICκ corresponds to Bayes information criterion (BIC) (Schwarz, 1978). As
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shown in Cai et al. (2019), in a single-term Kronecker product case, when the signal-to-noise ratio

is sufficiently large, minimizing such an information criterion produces a consistent estimate of the

true configuration.

Unfortunately it may not be practical to optimize such an objective function, since it would

require an exhaustive search over all possible configurations. For computational efficiency, we use

a greedy algorithm (with refinement) to obtain a solution. Specifically we propose the step-wise

algorithm which, at t-th step, uses

IC(t)
κ (p, q | (p̂i, q̂i), 1 ≤ i ≤ t− 1) = PQ log

∥Y (t) − λ̂
(p,q)
t Â

(p,q)
t ⊗ B̂

(p,q)
t ∥2F

PQ− η(t−1)
+ κη(t−1) + κ(pq + p∗q∗),

(14)

where η(t−1) =
∑t−1

i=1(p̂iq̂i + p̂∗i q̂
∗
i ), to detemine the “best” configuration (p̂t, q̂t) of a new term to

be added to the model (given the existing (t− 1) terms), and terminates the build-up according to

the stopping rule

K̂ = min {t : cICκ(t+ 1) ⩾ cICκ(t)} , (15)

Algorithm 2 amounts to a greedy algorithm for optimizing the overall objective function in (13).

Refinement: Step 10 “ALS Refinement” in Algorithm 2 updates all the existing terms by Algo-

rithm 1, with all the selected configurations fixed, at the end of each iteration. Without this step,

Algorithm 2 is also of the boosting flavor, adding one term (a “weak” learner) in each iteration

without modifying the existing terms. To distinguish the two versions, we later refer to Algorithm 2

without Step 10 as Algorithm 2′. Our simulation study in Section 5.1.4 suggests that Algorithm 2,

with the refinement step, has the potential to achieve a better approximation of X, and select the

number of terms/configurations more accurately, comparing with Algorithm 2′. On the other hand,

the refinement at each iteration will increase the computational cost significantly. Therefore, if the

computation is of primary concern, we recommend Algorithm 2′ in practice, which does not involve

any intermediate refinement, but can have a final round of refinement using Algorithm 1 after the

terms/configurations have been decided.

Remark 14. Strictly speaking, the number of parameters in (13) and (14) should be calculated

under the constraint that terms of conformal configurations are orthogonal (see Definition 1 and 2

of conformality and orthogonality in Section 2.2). We choose the present formulation for several

reasons. First, if all terms have the same configuration, it is easy to count how many free parameters

there are under the orthogonality constraints. However, if different configurations are present, it

is difficult to express this number explicitly. Second, in this paper we intend to deal with matrices
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of large dimensions, hence the reduction of the number of free parameters due to orthogonality

constraints is of a very small fraction of the total number of parameters used, and will have very

minor impact on the information criterion. So we choose the present form for simplicity.

Remark 15. Note that our current formulation of the problem and the algorithms rely on the

factorization of P and Q. Such factorization provides a better and cleaner structure for model

identifiability and other discussions and presentations. On the other hand, it does limit the choices

of possible configurations, when P and Q do not have many factors. We briefly discuss how to

alleviate this limitation in practice. In fact, for model building and estimation, any (p, q, p∗, q∗)

configuration such that p = ⌈P/p∗⌉ and q = ⌈Q/q∗⌉ can be used, where ⌈x⌉ denotes the smallest

integer larger than or equal to x. In this case, the estimation step (the rearrangement and SVD

given a configuration, presented in Section 3) can be done in two different ways. One is to expand

the matrix Y with several rows and columns so that it becomes a (pp∗) × (qq∗) matrix. These

extra rows and columns can be imputed with zeros or through an iterative EM type of procedures

in the estimation step to obtain Â of size p × q and B̂ of size p∗ × q∗. A second approach is to

truncate the matrix Y by several rows and columns so that it becomes a ((p− 1)p∗)× ((q − 1)q∗)

matrix. Using this reduced-size matrix, we can estimate Â∗ of size (p− 1)× (q − 1) and B̂ of size

p∗ × q∗. Each element of the missing column and row in A can be estimated by a least squares

using the corresponding unused elements in Y and the estimated B̂. Combining Â∗ and the

estimated missing row and column results in the estimated Â of size p× q. The evaluation of the

corresponding IC criteria (13) and (14) for configuration determination need to be adjusted, so that

only the observed entries of Y and the estimated matrix Â⊗B̂ truncated to size P×Q are involved

in the evaluation. Such an approach expands the set of possible configurations significantly, creating

extra flexibility and model robustness, though it also demands significantly higher computational

cost for configuration selection. A compromise is to consider (p∗, q∗) being powers of 2. If Y is

an image, a common practice is to super-sample or sub-sample the pixels and then apply the two

aforementioned approaches respectively. Further investigation on more efficient model building

procedures is needed.
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5 Empirical Examples

5.1 Simulation

Intuitively, the comparison of hKoPA with SVD and KoPA goes like follows: hKoPA performs

similarly to SVD if the true signal has low rank, and similarly to KoPA if the true signal is of low

rank under KPD. On the other hand, hKoPA performs much better if the true signal is generated

with terms of different configurations. This intuition has been confirmed by empirical results based

on a 3-term Kronecker product model, which we choose to report in Appendix A for the interest

of space.

In this section, we focus on the performance of the least squares backfitting algorithm in Algo-

rithm 1 and the iterative algorithm in Algorithm 2 for a two-term Kronecker product model and

determine the factors that affect the estimation accuracy and convergence speed of the algorithm.

In particular we focus on Model (7), as it reveals the identification issue and allows the study

of the impact of interaction strength. We repeat (7) here for easy reference.

X = λ1A1 ⊗B1 + λ2A2 ⊗B2 + λ12A1 ⊗C ⊗B2,

whereA1 ⋐ A2 and are orthogonal, andB2 ⋐ B1 and are orthogonal. Recall that strictly speaking,

this is a two term model with two different configurations and the third term A1⊗C⊗B2 is called

the interaction between the two configurations, and its strength is controlled by the coefficient λ12.

We first generate Ak, Bk and C as normalized Gaussian random matrices with i.i.d. standard

normal entries. We then perform the Gram-Schmidt orthogonalization so that A1 and A2 are

orthogonal with each other in the sense of Assumption 3, and so are B1 and B2. Finally all these

matrices are rescaled to have Frobenius one.

In this example, we set P = 2M , Q = 2N such that any conformable configuration (p, q) can be

written as p = 2m, q = 2n for some integers 0 ⩽ m ⩽ N and 0 ⩽ n ⩽ N . To ease the notation, we

simply use (m,n) to denote the configuration (p, q) = (2m, 2n).

The observed Y is a corrupted version of X with additive Gaussian noise such that

Y = X +
σ

2(M+N)/2
E,

where E is a 2M × 2N matrix with i.i.d. standard Gaussian entries.

We express the fitted Ŷ as

Ŷ = λ̂1Â1 ⊗ B̂1 + λ̂2Â2 ⊗ B̂2,
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where Â1 ⊗ B̂1 and Â2 ⊗ B̂2 are the two Kronecker products with configurations (m1, n1) and

(m2, n2) correspondingly. Recall that either Ortho-A (9) or Ortho-B (10) can be adopted to repre-

sent Ŷ and either representation is unique. Most of the simulations are carried out under Ortho-A,

which is also consistent with Assumption 3. In Section 5.1.2 we also study the impact of choosing

different orthogonalizations on the estimation.

We use the following notations of various estimation errors for easier reference.

EY = ∥Ŷ − Y ∥2F ,

EL1 = |λ̂1/λ1 − 1|, EL1c = |λ̂1/λ
c
1 − 1|,

EL2 = |λ̂2/λ2 − 1|, EL2c = |λ̂2/λ
c
2 − 1|,

EA1 = ∥Â1 −A1∥2F , EA2 = ∥Â2 −A2∥2F , EA2c = ∥Â2 −Ac
2∥2F ,

EB1 = ∥B̂1 −B1∥2F , EB1c = ∥B̂1 −Bc
1∥2F , EB2 = ∥B̂2 −B2∥2F .

where Ac
2, Bc

1, λc
1 and λc

2 are defined in (9) and (10). We also define the reconstruction error

(RCE),

RCE =
∥Ŷ −X∥2F

∥X∥2F
(16)

which will be used later to compare the performance of different models.

5.1.1 The Benchmark Case

In the benchmark case, we use M = N = 9, (m1, n1) = (4, 4), (m2, n2) = (5, 5), λ1 = λ2 = λ12 = 1,

σ = 1 to generate the signal matrix X in (7) and the observed matrix Y . Algorithm 1 is applied to

fit Y with the true configurations and the orthogonalization is done by Ortho-A. In other words, we

are estimating the matrices in (9). The errors from the first 20 iterations are reported in Figure 1,

where we compare B̂1 to Bc
1 (instead of B1) under Ortho-A. The convergence of the estimators is

observed at roughly the 10-th iteration.

From the middle panel of Figure 1, it is seen that the smaller matrices A1 and B2 usually have

smaller estimation errors as EA1 and EB2 are smaller than EB1c and EA2 after convergence. Note

that in the definitions of these estimation errors, all involved matrices are scaled to have Frobenius

norm 1, so for example, EA1 essentially corresponds to the angle between vec(Â1) and vec(A1).

Similar phenomenon has been observed in estimating singular vectors of a low rank matrix (Cai

et al., 2018). On the other hand, before convergence and especially in the first iteration, the errors

EA1 and EA2 are much larger than EB1c and EB2. Here we provide two explanations.
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Suppose the full Kronecker product decomposition of A2 is written as A2 =
∑K

k=1 µkA2,k ⊗Ck

where A2,k has the same dimension (m1, n1) as A1. Then we have

X = λ1A1 ⊗B1 + λ2

K∑
k=1

µkA2,k ⊗ (Ck ⊗B2) + λ12A1 ⊗C ⊗B2,

where {vec(A1), vec(A2,1), . . . , vec(A2,K)} are orthogonal with each other. Then in the first iter-

ation, Â1 and B̂1 are obtained from the singular value decomposition of the re-arranged matrix

(with configuration (m1, n1))

Rm1,n1 [X] = λ1vec(A1)vec(B1)
T + λ2

K∑
k=1

µkvec(A2,k)vec(Ck ⊗B2)
T + λ12vec(A1)vec(C ⊗B2)

T .

Then Rm1,n1 [X]Tvec(A1) ∝ vec(Bc
1) but Rm1,n1 [X]vec(Bc

1) ̸∝ vec(A1) since tr(CTCk) (k =

1, . . . ,K) are usually not zero. Therefore, in power iterations, plugging in the true value of A1

gives the true value of Bc
1, but the reverse is not true.

Alternatively, one can show that the error EB1c is smaller than EA1 in the first iteration when

λ2
2 < λ2

1 + λ2
12. Let vec(Â1) = c(vec(A1) + vec(∆A1)) for some vec(∆A1) ⊥ vec(A1). Then

vec(B̂1) = Rm1,n1 [X]Tvec(Â1) = c(vec(Bc
1) + λ2/λ

c
1Rm1,n1 [A2 ⊗B2]

Tvec(∆A1)).

It is easy to verify that

∥λ2/λ
c
1Rm1,n1 [A2 ⊗B2]

Tvec(∆A1)∥22 ⩽
λ2
2

λ2
1 + λ2

12

∥Rm1,n1 [A2 ⊗B2]∥2S ∥vec(∆A1)∥2

⩽
λ2
2

λ2
1 + λ2

12

∥vec(∆A1)∥2.

Hence, when λ2
2 < λ2

1 + λ2
12, EB1c is smaller than EA1 in the first iteration. The absolute errors in

the coefficients λi, |EL1c| and |EL2|, decrease and converge as expected.

Figure 1: Errors for benchmark setting
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5.1.2 Ortho-A and Ortho-B Representations

In this part, we investigate the influence of the choice of representation: Ortho-A and Ortho-B.

In the benchmark case above, we have obtained the errors for EB1c and EA2c under Ortho-A.

We will compare them with the estimation obtained under Ortho-B, in which in each iteration of

Algorithm 1 we perform orthogonalization under Ortho-B. The errors are plotted in Figure 2. From

the figure, it is seen that, under Ortho-A, EA2 and EB1c are smaller compared with EA2c and EB1,

while EA2c and EB1 are smaller under Ortho-B. We also note that a symmetry exists between the

two representations. The component A1 and Bc
1 under Ortho-A are of the same position to Ac

2

and B2 under Ortho-B. The error curves of EA2 and EB1c under Ortho-A should be similar to the

ones of EB1 and EA2c under Ortho-B, correspondingly. This phenomenon is observed in Figure 2

by comparing the curves in the left plot with the ones in the right plot.

Figure 2: Errors for benchmark setting with different orthogonalizations.

5.1.3 Impact of Interaction Strength

In this part, we compare the accuracies and convergence rates of different parameter estimates

under different absolute interaction strengths under Model (7). We fix the signal-to-noise ratio

in order to isolate the impact of the interaction strength. Specifically, we set the value of α in

the range α ∈ {0.0, 0.5, 1.0, 1.5, 2.0}, and λ1 = 1/
√
1 + α2, λ2 = 1, and λ12 = α/

√
1 + α2. The

orthogonalization is done under Ortho-A, hence λc
1 = 1. The value of α controls the “correlation”

between the first Kronecker product and second one in (9). In particular, α2/(1 + α2) represents

the proportion of ∥λc
1A1 ⊗Bc

1∥2F that is linearly dependent to A2 ⊗B2.

The fitting error EY under different relative interaction strength is reported in Figure 3. A sim-

21



Figure 3: Errors of Y with different relative interaction strength α’s.

ilar accuracy after convergence is observed for all different relative interaction strength α. It is seen

that Algorithm 1 converges slower when higher dependence exists between the two configurations.

In the absence of interaction (α = 0), Algorithm 1 converges in one iteration.

Figure 4 plots the error curves of the six fitted components. It is seen that the errors of the

components converge to a similar value for different relative interaction strength α’s. Again, the

value of α only affects the convergence speed. We note that the intermediate errors of EA1 and

EA2 are larger than the ones of EB1c and EB2 but eventually they all converge to similar values.

This phenomenon is due to the potentially large estimation error of EA1 in the first iteration as

discussed in the benchmark section.

5.1.4 Unknown Configurations

In this part, we simulate the data in the same way as in Section 5.1.3 and use Algorithm 2 with

the stopping rule in (15) to fit hKoPA model without assuming the true figuration. Algorithm 2’

(without Step 10) is also considered. The results are reported in Table 1.

From the table, it is clear that although the true configuration set contains only two configura-

tions (5, 5) and (4, 4), Algorithm 2′ requires a third or fourth term (configuration) except for the

case without the interaction (α = 0). More terms are used as the interaction is strengthened. It is

a direct consequence of the greediness of the iterative algorithm. On the other hand, Algorithm 2

stops after two iterations, selecting the two true configurations, for all levels of interaction strength.

The reconstruction errors defined in (16) are also reported in Table 1, in the rows labelled

by “RCE”. For Algorithm 2′, we also try an additional ALS as a post-processing step after the
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Figure 4: Errors for components under different relative interaction strength αs.

algorithm stops. The corresponding RCEs are reported in the last row. The RCE reported in the

second-to-last row are obtained using Algorithm 2′ without the final ALS step. These larger RCEs

(comparing to those reported in the last row of the “A-2” panel reveal that the redundant third

and/or fourth configurations lead to an overfit. On the other hand, for Algorithm 2 (“A-2” panel),

not only the correct number of Kronecker products is selected, but also the reconstruction error is

much reduced, as seen in the last row of the upper panel “A-2”.

23



t
α = 0.0 α = 0.5 α = 1.0 α = 1.5 α = 2.0

(m̂, n̂) λ̂ (m̂, n̂) λ̂ (m̂, n̂) λ̂ (m̂, n̂) λ̂ (m̂, n̂) λ̂

A-2

1 (4, 4) 1.003 (5, 5) 1.125 (5, 5) 1.251 (5, 5) 1.319 (5, 5) 1.354

2 (5, 5) 1.002 (4, 4) 0.900 (4, 4) 0.713 (4, 4) 0.561 (4, 4) 0.455

RCE 0.00475 0.00475 0.00475 0.00475 0.00476

A-2′

1 (4, 4) 1.003 (5, 5) 1.113 (5, 5) 1.243 (5, 5) 1.314 (5, 5) 1.351

2 (5, 5) 1.002 (4, 4) 0.860 (4, 4) 0.662 (4, 4) 0.515 (4, 4) 0.415

3 - - (5, 5) 0.186 (5, 5) 0.176 (4, 5) 0.117 - -

4 - - - - - - (4, 5) 0.110 - -

RCE 0.00475 0.00737 0.00725 0.00982 0.01049

RCE

(Post-ALS) 0.00475 0.00905 0.00891 0.01242 0.00476

Table 1: The selected configurations (m̂t, n̂t) and the coefficients λ̂t at each iteration for different

values of α. The “A-2” and “A-2′” panels correspond to Algorithm 2 and Algorithm 2′ respectively.

5.2 Real Image Example

In this section, we demonstrate the performance of hKoPA on real image examples, and compare

with the existing methods including SVD and KoPA. We present one example here, and leave the

presentation of the other on the cameraman’s image to Appendix B.

The left panel of Figure 5 is a 300×400 grayscaled image of column arcade from the Stoa of

Attalos in Ancient Agora of Athens1. We denote this original image in grayscale by Y0, whose

elements are real numbers on [0, 1] with 0 standing for black and 1 for white. We observe that

there exist three major patterns in the image: (a) a repeated patterns for the columns; (b) a

repeated patterns for the beams and shadows and (c) repeated regions for the surface textures.

Specifically, pattern (a) suggests that there is a component of Y0 that can be written as Aa ⊗Ba,

with Ba being the repeated vertical pattern (e.g. a matrix with a few (or one) columns and many

rows for a vertical image) and Aa (a matrix with many columns and a few rows) represents its

signal strength (mainly across all columns). A zero in Aa indicates that the vertical image is not

present at that location.

Similarly, pattern (b) suggests a component Ab ⊗ Bb, where Bb is the horizontal pattern to

1The original image in color and in higher resolution is credited to Ian Kershaw on Flicker

https://www.flickr.com/photos/moonboots/10927753/
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be repeated and Ab is the repeating strength. Pattern (c) gives a Kronecker product Ac ⊗ Bc,

where Bc is the repeated local texture and Ac is the repeating amplitude across the whole image.

One can anticipate, from above observations, that hKoPA is more capable than SVD and KoPA in

describing the hybrid patterns, where as the latter two methods can only utilize one configuration.

Figure 5: The grayscaled image of Stoa of Attalos and a noisy image with additive Gaussian noise

(σ = 0.3).

We consider a denoising problem, in which the original grayscaled image is corrupted with an

additive noise of size σ = 0.3. Specifically, the image on the right panel of Figure 5, denoted by Y ,

is generated as

Y = Y0 + σE,

where E is a matrix of i.i.d. standard Gaussian random variables with standard deviation σ. The

goal of denoising of Y is to find a matrix Ŷ that can ideally reveal the unknown original matrix

Y0. A performance measure of Ŷ is the reconstruction error (similar to the one defined in (16))

RCE =
∥Ŷ − Y0∥2F

∥Y0∥2F
.

In this example, we examine three methods: hKoPA, KoPA and SVD. All of them yield a Ŷ as a

“low-rank” approximation of Y : SVD decomposes Y0 through singular value decomposition, KoPA

represents Y0 with respect to the Kronecker product decomposition with identical configurations,

and hKoPA further allows the configurations of terms in KoPA to be different. Specifically, in

hKoPA method, we apply Algorithm 2′ proposed in Section 4 with κ = log(300× 400) (BIC). For

KoPA, (p̂1, q̂1) is found in the same way as in Algorithm 2′ and (p̂k, q̂k) ≡ (p̂1, q̂1) is forced for all

further terms k ≥ 2. The SVD approach can be viewed as a special case of KoPA, where (p̂k, q̂k)

are fixed at (P, 1) (or (1, Q)) for all terms k ≥ 1.
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k
hKoPA KoPA SVD

(p̂k, q̂k) c.p.v. RCE(%) (p̂k, q̂k) c.p.v. RCE(%) (p̂k, q̂k) c.p.v. RCE(%)

1 (25, 25) 73.66 5.21 (25, 25) 73.66 5.21 (300, 1) 70.82 8.73

2 (1, 400) 74.92 3.86 (25, 25) 74.76 4.20 (300, 1) 73.48 5.75

3 (25, 16) 75.72 3.23 (25, 25) 75.49 3.74 (300, 1) 74.42 4.88

4 (25, 16) 76.30 2.90 (25, 25) 76.10 3.42 (300, 1) 75.22 4.23

5 (15, 25) 76.67 2.91 (25, 25) 76.66 3.15 (300, 1) 75.84 3.80

6 (3, 100) 76.97 2.94 (25, 25) 77.03 3.19 (300, 1) 76.37 3.55

7 (25, 16) 77.28 3.06 (25, 25) 77.39 3.23 (300, 1) 76.78 3.50

8 (4, 80) 77.95 3.35 (25, 25) 77.72 3.34 (300, 1) 77.14 3.50

9 (15, 25) 78.20 3.65 (25, 25) 78.03 3.53 (300, 1) 77.44 3.71

10 (20, 16) 78.45 3.91 (25, 25) 78.32 3.38 (300, 1) 77.74 3.88

Table 2: The configurations, the cumulative percentage of variation (c.p.v.) explained, and the

reconstruction error by the first 10 iterations for hKoPA, KoPA and SVD approaches. The smallest

reconstruction error for each methods is highlighted.

Figure 6: Reconstruction error against number of parameters for the three methods. The optimal

hKoPA model selected by stopping rule (15) is marked by ⋆.

We report the configurations (p̂k, q̂k), the cumulative percentage of variation (∥Ŷ ∥2F /∥Y ∥2F ,

denoted by c.p.v.) explained and the reconstruction error (RCE) for the first 10 terms in Table 2.

From the cumulative percentage of variation explained, SVD is less capable of representing Y

compared to KoPA and hKoPA given the same number of terms. In terms of reconstruction error,
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for each method, the smallest error (highlighted) is obtained when the model is about to overfit,

i.e. when the c.p.v. is close to 76.99 = ∥Ŷ0∥2F /∥Y ∥2F , the c.p.v. of the original image. Among all

three methods, hKoPA achieves the smallest reconstruction error as it is capable of representing

the hybrid structures of the original image. Figure 6 plots the reconstruction error against the

number of parameters up to 20 terms for all three methods. It can be seen that hKoPA not only

has the smallest reconstruction error but also uses the least number of parameters. Of course, due

to its extra flexibility, when more-than-necessary number of terms are used, hKoPA is more likely

to overfit compared to KoPA and SVD, as seen from Figure 6 when the number of parameters is

greater than 6000. Such an over-fitting is prevented by the stopping rule (15).

The first 6 components fitted by hKoPA are plotted in Figure 7. It is seen that each additional

component adds more details to the reconstructed image. The first component constructs a thumb-

nail image with big pixels that recovers the local surfaces. The second component is a rank-one

matrix that recovers the repeated vertical patterns observed on the columns. The third and forth

components further supplement the details on the shaded floor. The sixth components recovers

the repeated horizontal patterns that appears on the ceiling and in the shadows. It is obvious that

KoPA cannot represent the patterns from the second and the sixth component and SVD cannot

capture the patterns given by components 1, 3, 4 and 5. We plot the best images reconstructed by

the three methods in Figure 8. It is quite evident that the hKoPA provides the best approximation

to the original image.

The computation time used for this example on a typical desktop2 is reported as follows. SVD

takes 9.7 milliseconds. KoPA involves one iteration of configuration selection loop and takes 0.53

seconds in total. hKoPA involves 20 iterations of configuration selection loops and spends 9.63

seconds, about 0.48 seconds per iteration on average.

The implementation of hKoPA for this example uses κ = log(300×400) for both ICκ and cICκ,

corresponding to the BIC. To compare the performance of AIC (i.e. κ = 2) and BIC, we report

the selected number of terms (K̂), the RCE without back-fitting and the RCE with back-fitting

in Table 3. In the top panel of Table 3, the number of terms K̂ is determined by the stopping

criterion (13). In the bottom panel, we report the “optimal number of terms” selected by an oracle

who knows the true image Y0 and hence is able to calculate the RCE for the calculation of cICκ

by replacing the observed Y with the true Y0 in (13). We see that the stopping criterion BIC

2System: Windows Subsystem for Linux version 2, CPU: 12900KF (16 cores/ 24 threads), RAM: 32GB@6000MHz,

interpreter: Intel distribution for Python 3.9.
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Figure 7: Components of hKoPA for the first 6 iterations. (Column 1) component Âk. (Column 2)

component B̂k. (Column 3) component Âk ⊗ B̂k. (Column 4) cumulative components
∑k

j=1 Âj ⊗

B̂j . Certain components are rescaled in dimensions for better presentation.
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Figure 8: The reconstructed image obtained from SVD (left), KoPA (middle), and hKoPA (right).

Number of terms are selected to minimize the RCE.

gives the same performance as the oracle for hKoPA. On the other hand, the performance of AIC

and BIC can be different for both KoPA and hKoPA, although they have been proven to have

the same asymptotic performance for KoPA, as shown by Cai et al. (2019). We would recommend

the use of BIC in practice, which gives a model with less complexity. We note that although it

seems that BIC selects more terms than AIC for both KoPA and hKoPA in Table 3, the selected

configurations involve less number of parameters, resulting in a smaller total number of parameters

(as reported in the row ”Selected # parameters”). A theoretical study and comparison of different

information criteria is important but also very challenging. It is also interesting to develop a

data-driven procedure for the selection of κ. More detailed investigation is needed.

Model KoPA hKoPA

Criterion AIC BIC AIC BIC

Selected # terms 1 4 2 4

Selected # parameters 3782 3268 4482 2917

RCE (w/o bf) 3.75 % 3.42 % 2.92 % 2.90%

RCE (w/ bf) 3.75 % 3.42 % 2.83 % 2.81%

Optimal # terms 2 5 3 4

Optimal # parameters 7564 4085 6062 2917

Optimal RCE (w/o bf) 3.69% 3.15% 2.88% 2.90%

Optimal RCE (w/ bf) 3.69% 3.15% 2.90% 2.81%

Table 3: Comparison of AIC and BIC.
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6 Conclusion and Discussion

In this paper, we extend the single-term KoPA model proposed in Cai et al. (2019) to a more flexible

setting, which allows multiple terms with different configurations and allows the configurations to

be unknown. Identifiability conditions are introduced to ensure unique representation of the model.

And we propose two iterative estimation algorithms.

With a given set of configurations, we propose a least squares backfitting algorithm that updates

the Kronecker product component iteratively. The simulation study shows the performance of the

algorithm and the impact of the linear dependency between the component matrices.

When the configurations are unknown, the extra flexibility of hKoPA allows for more parsi-

monious representation of the underlying matrix, though it brings the challenge of configuration

determination. An iterative greedy algorithm is proposed to jointly determine the configurations

and estimate each Kronecker product component. The algorithm adds one Kronecker product term

to the model at a time by finding the best one term KoPA to the residual matrix obtained from the

previous iteration, using the procedure proposed in Cai et al. (2019). By analyzing a benchmark

image example, we demonstrate that the proposed algorithm is able to obtain reasonable hKoPA

and the results are significantly superior over the direct low rank matrix approximation.

The matrix X is of dimension P × Q. The more factors P and Q have, the more possible

configurations there are, giving more leeway to find a better approximation. On the other hand,

when P and Q do not have many factors, the hKoPA loses much of its flexibility. We have

discussed some possible approaches (Remark 15) to allowing more choices of the configurations. A

comprehensive investigation of a more efficient model building process is still needed. It is also of

interest to provide theoretical guarantees of the model selection and estimation procedure.

As discussed in Section 3, the greedy algorithm for configuration determination is similar to the

forward stepwise selection. The theoretical properties of the proposed methods need to be further

investigated. For the stopping criterion of the greedy algorithm, existing methods on the rank

determination (Minka, 2001; Lam and Yao, 2012; Bai et al., 2018) may be extended for the hKoPA

model as well.
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Appendix

A Numerical Comparison of hKoPA, KoPA and SVD

In this experiment, we compare the performance of hKoPA to that of KoPA and SVD, based on

the following three-term hybrid Kronecker product model:

X = 1.5A1 ⊗B1 +A2 ⊗B2 + 0.5A3 ⊗B3,

Y = X +
2

2(M+N)/2
E,

where X, E and Y are of dimensions 2M × 2N with M = N = 9, E is the noise matrix with IID

standard Gaussian entries, and each term Ak ⊗Bk has the configuration (mk, nk) for k = 1, 2, 3.

The matrices Ak and Bk are generated through the normalization (to have Frobenius norm 1) of

the standard Gaussian ensemble with corresponding dimensions.

In this simulation, we consider the three scenarios listed in Table A.1. Scenario 1 corresponds

to an exact hybrid case (i.e. the configurations of the three terms are mutually different), where

both KoPA and SVD models would require a large number of terms to approximate it well. Under

Scenario 2, all three configurations are identical so that the hKoPA reduces to KoPA under the

correct configuration, while the SVD model would require a large number of terms (rank-one

matrices) to approximate well. Scenario 3 further assumes each Kronecker product is a rank-1

matrix such that all three models are correctly-specified.

(m1, n1) (m2, n2) (m3, n3) hKoPA KoPA SVD

Scenario 1 (6, 3) (4, 5) (9, 0) correctly-specified mis-specified

Scenario 2 (5, 4) (5, 4) (5, 4) correctly-specified mis-specified

Scenario 3 (9, 0) (9, 0) (9, 0) correctly-specified

Table A.1: Three Scenarios of simulation, with the configurations of the three terms, and indication

of correct specifications under the three models.

For each run of simulation, we apply hKoPA, KoPA and SVD to the same observed matrix

Y and record their reconstruction error (RCE) against the number of terms (up to 20 terms).

The information criterion used in hKoPA and KoPA is BIC with κ = log(2M+N ). Recall that the

reconstruction error (RCE) is defined as RCE = ∥X̂ −X∥2F /∥X∥2F , where X̂ is the reconstructed

matrix. For each scenario, the simulation is repeated 100 times, and we plot the average RCE
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against the number of terms in Figure A.1.

Figure A.1: Average reconstruction error vs the number of terms for hKoPA, KoPA and SVD under

the three scenarios listed in Table A.1.

Estimated Configuration hKoPA KoPA SVD

Scenario 1 (6, 3) (4, 5) (9, 0) (6, 3) (9, 0)

Scenario 2 (5, 4) (5, 4) (5, 4) (5, 4) (9, 0)

Scenario 3 (9, 0) (9, 0) (9, 0) (9, 0) (9, 0)

Table A.2: The selected configurations for hKoPA and KoPA methods, where the configurations

of the first 3 terms selected by hKoPA are reported. The SVD methods corresponds to the config-

uration (9, 0).

From Figure A.1, we see that when the true model is indeed hybrid with 3 different configu-

rations as in Scenario 1, hKoPA has lower reconstruction errors with a smaller optimal number

of terms. Due to the misspecification, KoPA and SVD needs more terms to represent the signal

part, and never reach the RCE as small as the hKoPA. For Scenario 2, the true model is indeed

a Kroncker product model with identical configurations, and hKoPA performs exactly the same as

KoPA, while SVD under-performs due to misspecification. In Scenario 3, both hKoPA and KoPA

reduces to SVD, thus all three models have identical reconstruction errors. We also report the

selected configurations for hKoPA and KoPA in Table A.2. In all 100 repetitions, hKoPA selects

identical configurations for the first three terms, which corresponds to those of the true model. The

configuration selected by KoPA is always the same as the first configuration of hKoPA as their first

iterations are the same. We choose not to report configurations of the fourth and further terms in

hKoPA, because these are basically the noise and each repetition results in different configurations.

To further inspect the configuration selection and estimated λ̂k (which code the signal strength

of each term), we report, in Table A.3, the selected configuration, λ̂k, and the running reconstruction
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error for the leading 20 terms under a single simulation of hKoPA. It is seen that hKoPA correctly

identifies the three true configurations in descending order of the signal strength, while KoPA

utilizes the configuration of the leading term (6, 3) and SVD always uses the configuration (9, 0)

by design. The benefits of adopting the hybrid structure in this case is obvious: the true modelhas

3 terms, and hKoPA correctly estimates the three-term model and its configurations while KoPA

reaches its minimum RCE with 17 terms and its minimum RCE is 10 times larger than that of

hKoPA. SVD is clearly the wrong approach for this model.

k
hKoPA KoPA SVD

(m̂k, n̂k) λ̂k RCE (m̂k, n̂k) λ̂k RCE (m̂k, n̂k) λ̂k RCE

1 (6, 3) 1.5139 0.3603 (6, 3) 1.5139 0.3603 (9, 0) 0.5273 0.9281

2 (4, 5) 1.0084 0.0809 (6, 3) 0.3278 0.3390 (9, 0) 0.3512 0.9040

3 (9, 0) 0.5078 0.0153 (6, 3) 0.3170 0.3218 (9, 0) 0.3447 0.8818

4 (2, 7) 0.1764 0.0241 (6, 3) 0.3106 0.3050 (9, 0) 0.3257 0.8629

5 (4, 5) 0.1753 0.0329 (6, 3) 0.3049 0.2892 (9, 0) 0.3208 0.8447

6 (9, 0) 0.1742 0.0416 (6, 3) 0.2945 0.2750 (9, 0) 0.3107 0.8282

7 (2, 7) 0.1737 0.0501 (6, 3) 0.2904 0.2605 (9, 0) 0.3021 0.8136

8 (3, 6) 0.1727 0.0587 (6, 3) 0.2888 0.2461 (9, 0) 0.2942 0.8002

9 (1, 8) 0.1717 0.0672 (6, 3) 0.2833 0.2331 (9, 0) 0.2924 0.7871

10 (7, 2) 0.1708 0.0754 (6, 3) 0.2748 0.2203 (9, 0) 0.2855 0.7750

11 (4, 5) 0.1703 0.0837 (6, 3) 0.2725 0.2085 (9, 0) 0.2824 0.7641

12 (7, 2) 0.1700 0.0919 (6, 3) 0.2686 0.1980 (9, 0) 0.2792 0.7536

13 (2, 7) 0.1700 0.1000 (6, 3) 0.2659 0.1870 (9, 0) 0.2747 0.7436

14 (1, 8) 0.1683 0.1079 (6, 3) 0.2583 0.1776 (9, 0) 0.2734 0.7340

15 (2, 7) 0.1683 0.1159 (6, 3) 0.2547 0.1690 (9, 0) 0.2703 0.7231

16 (5, 4) 0.1669 0.1238 (6, 3) 0.2483 0.1597 (9, 0) 0.2647 0.7156

17 (6, 3) 0.1660 0.1316 (6, 3) 0.2389 0.1529 (9, 0) 0.2618 0.7081

18 (3, 6) 0.1650 0.1393 (6, 3) 0.1801 0.1594 (9, 0) 0.2601 0.7005

19 (4, 5) 0.1650 0.1470 (6, 3) 0.1794 0.1662 (9, 0) 0.2544 0.6925

20 (9, 0) 0.1638 0.1546 (6, 3) 0.1763 0.1728 (9, 0) 0.2520 0.6840

Table A.3: Configurations, λ̂k’s, and the running reconstruction errors for the first 20 terms of

hKoPA, KoPA and SVD. Results are presented for a single run.
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B Additional Example on Cameraman’s Image

In this section, we apply the hKoPA to analyze the cameraman’s image, which has been used

widely as a benchmark example in image processing3. The cameraman’s image shown in Figure

B.2 is a gray-scaled 512 × 512 picture, which is represented by a 512 × 512 (M = N = 9) real

matrix Y0. The elements of Y0 are real numbers between 0 and 1, where 0 represents black and

1 represents white. Besides the original image, in this example we also consider some artificially

corrupted images using

Y = Y0 + σE,

where E is a matrix of i.i.d. standard Gaussian random variables and σ denotes the noise level.

We consider three noise levels σ ∈ {0.1, 0.2, 0.3}. Note that the original image scale is [0, 1]. Hence

the image with noise level σ = 0.3 is considered to be heavily corrupted. The noisy images are

shown in Figure B.2.

Figure B.2: Original grayscaled Cameraman’s image, noisy image with σ = 0.1, noisy image with

σ = 0.2, and noisy image with σ = 0.3.

For this example, the configurations in the hKoPA model (3) are unknown. Therefore, we apply

Algorithm 2 proposed in Section 4, where the configuration in each iteration is determined by BIC,

using κ = logPQ in (14). We first consider fitting the image with at most 20 Kronecker product

terms (ignoring the stopping rule). The selected configurations (m̂k, n̂k), the estimated λ̂k and

the cumulative percentage of variation (∥Ŷ ∥2F /∥Y ∥2F , denoted by c.p.v.) explained for the first 10

iterations are reported in Table B.4. It is seen that for all noise levels σ, the first several Kronecker

products terms can explain most of the variation of Y . To check the possible overfitting, we report

the ratio ∥Y0∥2F /∥Y ∥2F in percentage at the bottom row of Table B.4. When σ = 0.3, the c.p.v.

exceeds this ratio after the seventh iteration, indicating the overfitting if more terms are added to

3The image can be found in the Python package scikit-image, available at https://scikit-image.org/
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k
σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3

(m̂k, n̂k) c.p.v. (m̂k, n̂k) c.p.v. (m̂k, n̂k) c.p.v. (m̂k, n̂k) c.p.v.

1 (7, 7) 95.43 (6, 6) 77.15 (5, 6) 52.18 (5, 5) 32.87

2 (5, 7) 96.70 (5, 6) 79.79 (5, 4) 53.57 (4, 5) 34.80

3 (7, 3) 97.14 (6, 4) 80.85 (3, 6) 54.62 (4, 5) 35.88

4 (5, 6) 97.64 (3, 6) 81.33 (5, 4) 55.38 (4, 5) 36.77

5 (5, 5) 97.85 (4, 5) 81.75 (3, 6) 56.07 (4, 5) 37.52

6 (5, 5) 98.00 (4, 5) 82.11 (5, 4) 56.69 (4, 5) 38.20

7 (5, 5) 98.14 (6, 3) 82.47 (4, 5) 57.29 (4, 5) 38.80

8 (5, 5) 98.28 (3, 6) 82.81 (5, 4) 57.81 (4, 5) 39.33

9 (5, 4) 98.37 (4, 5) 83.11 (4, 5) 58.31 (4, 5) 39.85

10 (5, 5) 98.49 (4, 5) 83.37 (5, 4) 58.74 (5, 4) 40.38

Y - 100 - 85.69 - 59.56 - 39.53

Table B.4: The selected configurations and the cumulative percentage of variation (c.p.v.) explained

by the first 10 iterations. The bottom row gives ∥Y0∥2F /∥Y ∥2F in percentage.

hKoPA. In the heavily corrupted cases, configurations close to the center such as (5, 4) are more

likely to be selected by BIC. These configurations correspond to Ak and Bk with aspect ratios

close to 1.

The recovered images using one, three and five Kronecker product terms at different noise levels

σ are given in Figure B.3. We see that hKoPA is able to recovered the true image with a small

number of terms. Even for the most noisy case σ = .3, the reconstructed image shows sufficient

amount of details.

Now we consider Algorithm 2 with the stopping rule in (15). The goal is to check whether the

stopping rule is able to select the optimal number of configurations in terms of the reconstruction

error (RCE). The definition of RCE given in (16) depends on the true X, which is not accessible

for the real data analysis. Here we re-define the RCE, replacing the X in (16) by Y0

RCE =
∥Ŷ − Y0∥2F

∥Y0∥2F
,

where Y0 is the original image without noise, and Ŷ is the denoised image obtained from the noisy

observation Y . The optimal K̃ ∈ {0, 1, 2, . . . 20} is chosen as the one minimizing the RCE. When

σ = 0, the stopping criterion is never met in the first 20 iterations, so we choose K̂ = 20. When
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Figure B.3: Fitted images in the first, third and fifth iterations. (Row 1) σ = 0.0. (Row 2) σ = 0.1.

(Row 3) σ = 0.2. (Row 4) σ = 0.3.
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σ = 0.1, a 17-term model is selected by the stopping rule. When σ = 0.2, a 9-term model is

selected, and when σ = 0.3, a 5-term model. All these selected number of terms are close to the

best model with minimum relative error. Table B.5 reports the RCE corresponding to the optimal

K̃ and the selected K̂ respectively. We see that the stopping rule (15) together with Algorithm 2

selects the optimal K in 3 out of 4 cases, and results in a RCE that is very close to the optimal

one (.0394 vs .0390) in the remaining case. On the other hand, Algorithm 2′ (without the ALS

refinement) is not able to do as well, leading to larger RCEs. This confirms again the superiority

of Algorithm 2 over Algorithm 2′, which has also been demonstrated in Section 5.1.4.

σ
Algorithm 2′ Algorithm 2

K̂ K̃ K̂ K̃

0.0 0.0097 0.0097 0.0083 0.0083

0.1 0.0439 0.0416 0.0394 0.0390

0.2 0.0910 0.0877 0.0856 0.0856

0.3 0.1293 0.1261 0.1254 0.1254

Table B.5: Reconstruction errors of the fitted image obtained by hKoPA via Algorithm 2 and

Algorithm 2′. The number of terms K̂ is determined by the stopping rule in (15), and K̃ is the

optimal one between 0 and 20.

Finally we compare hKoPA with the image reconstruction by low rank approximation, which

is based on

Ŷ =

K∑
i=1

λiuiv
T
i .

The complexity is controlled by K, the number of rank one matrices used. We remark that the

low rank approximation is a special case of hKoPA. It corresponds to the case that all Kronecker

products in (3) are of the same configuration (M, 0).

Figure B.4 displays the RCE against the number of parameters involved, for both hKoPA

(with Algorithm 3) and the low rank approximation. For each graph, the K̂ in hKoPA chosen

by the stopping criterion (15) is marked with a “⋆”. Figure B.4 reveals that with the same level

of model complexity (or the number of parameters), hKoPA is more accurate than the low rank

approximation. When the noise is heavy (σ = .2, .3), overfitting is observed for both hKoPA

and low rank approximation since the RCE curves show the U -shape. The stopping criterion (15)

prevents the model from significantly overfitting, leading to RCEs that are the same or very close
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Figure B.4: RCE against the number of parameters involved in hKoPA and SVD approaches, under

4 different noise levels. The optimal model determined by empirical stopping rule is marked by ‘⋆’.

to the optimal ones (also compare Table B.5).

C The General Gram-Schmidt Procedure

The general Gram-Schmidt procedure for orthogonalizing components of hybrid Kronecker repre-

sentation is shown in Algorithm 3 with two subroutines depicted separately in Algorithms 4 and

5.
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Algorithm 3 A General Gram-Schmidt Process for hKoPA Model

1: Sort the configurations {(pk, qk)}Kk=1 in ascending order such that (1) pi ⩽ pj for all i ⩽ j; (2)

qi ⩽ qj if pi = pj .

2: Set Γ = {k ∈ [K] : pk = P}.

3: for i = 1, . . . ,K do

4: Set Ωi = {k < i : (pk, qk) is strictly conformally smaller than (pi, qi)}

5: if qi = Q then

6: Orthogonalize (λi,Ai,Bi) using Algorithm 4 with argument (i,Ωi,Γ).

7: else

8: Orthogonalize (λi,Ai,Bi) using Algorithm 4 with argument (i,Ωi, ∅).

9: end if

10: end for

11: Set Ξ = {k ∈ [K] : qk = 1}.

12: for i ∈ {k ∈ [K] : pk = 1} do

13: Orthogonalize (λi,Ai,Bi) using Algorithm 5 with argument (i,Ξ).

14: end for

15: Partition {1, . . . ,K} into equivalent classes {Pj}Jj=1 by their Kronecker product configurations.

16: for j = 1, . . . , J do

17: Orthogonalize {(λi,Ai,Bi) : i ∈ Pj} through a Kronecker product decomposition.

18: end for
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Algorithm 4 Sub-routine A

Input: Index k, index set Ω, index set Γ.

1: Optimize {Ci}i∈Ω and {Dj}j∈Γ of conformable dimensions by

(C∗
l )i∈Ω, (D

∗
j )j∈Γ = argmin

{Ci}i∈Ω,(Dj)j∈Γ

∥∥∥∥∥∥Ak −
∑
i∈Ω

Ai ⊗Ci −
∑
j∈Γ

Dj ⊗Bj

∥∥∥∥∥∥
2

F

.

2: S0 = Ak −
∑

i∈ΩAi ⊗C∗
i −

∑
j∈ΓD

∗
j ⊗Bj ,

A∗
k = S0/∥S0∥F ,

λ∗
k = λk∥S0∥F .

3: for i ∈ Ω do

4: Si = Bi +C∗
i ⊗Bk,

B∗
i = Si/∥Si∥F ,

λ∗
i = λi∥Si∥F .

5: end for

6: for j ∈ Γ do

7: Sj = Aj +D∗
j ⊗Bk,

A∗
j = Sj/∥Sj∥F ,

λ∗
j = λj∥Sj∥F .

8: end for

Algorithm 5 Sub-routine B

Input: Index k, index set Ξ.

1: Optimize {Ci}i∈Ξ of conformable dimensions by

(C∗
l )i∈Ξ = argmin

{Ci}i∈Ξ

∥∥∥∥∥Bk −
∑
i∈Ξ

Ai ⊗Ci

∥∥∥∥∥
2

F

.

2: S0 = Bk −
∑

i∈ΞAi ⊗C∗
i ,

B∗
k = S0/∥S0∥F ,

λ∗
k = λk∥S0∥F .

3: for i ∈ Ξ do

4: Si = Bi +Ak ⊗C∗
i ,

B∗
i = Si/∥Si∥F ,

λ∗
i = λi∥Si∥F .

5: end for
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D Proofs

This appendix contains the proofs of Theorem 1, 2 and 3. The Kronecker product decomposition

(KPD) and the partial Kronecker product play important roles in the proofs, so we first present

their formal definitions.

Definition 3 (Kronecker Product Decomposition). Suppose X is a p × q matrix with p = m1m2

and q = n1n2 such that 1 < m1m2 < pq. Then X can be written as

X =
K∑
k=1

λkAk ⊗Bk, (17)

where Ak and Bk are of dimensions m1 × n1 and m2 × n2 respectively, K = min{m1n2,m2n2},

∥Ak∥F = ∥Bk∥F = 1, λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0, and tr(AT
kAl) = 0 and tr(BT

k Bl) = 0 for all

1 ≤ k ̸= l ≤ K. The decomposition (17) is called the Kronecker product decomposition of X with

respect to the configuration (m1, n1,m2, n2).

The KPD of a matrix may not be unique. However, if the λk’s are all distrinct, then Ak’s

and Bk’s are identified up to sign changes. For the proof and the connection of KPD to SVD, see

Van Loan and Pitsianis (1993) and Cai et al. (2019).

Definition 4 (Partial Kronecker Product). Let M1 ∈ Rp1×q1 and M2 ∈ Rp2×q2 are two real

matrices such that M1 ⋐ M2. If M2 has a Kronecker product decomposition with respect to

configuration (p1, q1, p2/p1, q2/q1) such that

M2 =
∑
k

µkCk ⊗Dk,

we define the left partial Kronecker product as

⟨M1 | M2 | :=
∑
k

µk · tr
(
MT

1 Ck

)
·Dk.

Similarly, if M2 has a Kronecker product decomposition with respect to configuration (p2/p1, q2/q1, p1, q1)

such that

M2 =
∑
k

νkGk ⊗Hk,

we define the right partial Kronecker product as

| M2 | M1⟩ :=
∑
k

νk · tr
(
MT

1 Hk

)
·Gk.
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D.1 Proof of Theorem 1

We start from the following observations

(O1) Algorithm 4 does not change the values of Ai, i ∈ Ω.

(O2) Algorithm 4 does not change the values of Bj , j ∈ Γ.

(O3) After Algorithm 4, A∗
k is g-orthogonal to all Ai, i ∈ Ω and is b-orthogonal to all Bj , j ∈ Γ.

(O4) Algorithm 3 does not change the value of Ak after k-th iteration in the for-loop in step 3.

(O5) Γ = {k : K − |Γ|+ 1 ⩽ k ⩽ K}.

(O1) and (O2) are obvious by looking at step 4 and 7 in Algorithm 4. (O3) is a direct consequence

of linear least square estimation.

Now we show (O4) is valid. For k ̸∈ Γ, for any l > k such that k ∈ Ωl, the orthogonalization for

(λl,Al,Bl) does not change the value of Ak according to (O1). For k ∈ Γ, if index k is involved in

the orthogonalization step for term l, then it is either k ∈ Ωl or ql = Q. If k ∈ Ωl, (O1) gives that

value of Ak does not change. If ql = Q, we must have pl < P = pk, which implies l < k, that is,

term l must be orthogonalized before term k. As a result, (O4) holds for all k.

(O5) says that indices in Γ have the largest orders according to the rule in step 1. For any i ̸∈ Γ

and j ∈ Γ, we must have pi < P = pj . Therefore, (O5) is valid.

It is easy to verify that at each step Assumption 1 is maintained. Now we show that the Assump-

tion 3 and 4(i) hold for the updated components after step 10 in Algorithm 3.

For any 1 ⩽ k < l ⩽ K such that Ak is strictly conformally smaller than Al. After the orthog-

onalization step for term l, Al and Ak are g-orthogonal according to (O3). By (O4), the values

of Ak and Al do not change afterwards. Therefore, after all terms are orthogonalized, Ak and Al

remains g-orthogonal.

Since for any i ∈ Γ, i ∈ Ωj for some j implies j ∈ Γ as well. The values of Bi, i ∈ Γ are not

updated until the min(Γ)-th iteration. Therefore, for any K such that Bk is a column vector, after

iteration k, A∗
k is b-orthogonal to each Bi, i ∈ Γ. In other words, the row space of A∗

k is orthogonal

to

M = span
{
e1,qk1,j ⊗Bk : j ∈ [qk], k ∈ Γ

}
⊆ R1×Q.

Similarly, we define

M∗ = span
{
e1,qk1,j ⊗B∗

k : j ∈ [qk], k ∈ Γ
}
⊆ R1×Q
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as a similar linear space but with updated values of B∗
k’s. According to the step 4 in Algorithm 4,

after orthogonalization, each e1,qk1,j ⊗ B∗
k ∈ M. Therefore, M∗ ⊆ M and the row space of A∗

k is

orthogonal to M implies orthogonality to M∗ as well. Hence, after K iterations, A∗
k is b-orthogonal

to each B∗
i , i ∈ Γ.

Next we show that Assumption 4 (ii) is satisfied after step 14. Similar to (O1) and (O2), Algorithm 5

does not alter the values of Ak and Ai, i ∈ Ξ. In addition, Bk cannot be a row vector when Ak is

a column vector since we will re-write Ak ⊗ Bk to Bk ⊗ Ak. None of Bi, i ∈ Xi is a row vector

as pi = 1. Therefore, after the orthogonalizations with Algorithm 5, the values of the matrices

involved in Assumptions 3 and 4(i) remain the same. Hence after step 14, Assumptions 3 and 4

hold.

The KPD procedure in step 13 ensures the second part of Assumption 3 holds. Since this step

does not change the space spanned byA’s andB’s within the same equivalent class. Assumptions 1,

4 and 3 hold after the whole procedure is done.

D.2 Proof of Theorem 2

We first give a few technical lemmas which are used in the proof of Theorem 2.

Lemma 1 (two-way distinguishability). Let X be a P ×Q real matrix. Suppose X has two distinct

rank-one Kronecker product representation with respect to configuration (p1, q1) and (p2, q2) such

that

X = A1 ⊗B1 = A2 ⊗B2,

where A1 is p1 × q1 and A2 is p2 × q2 correspondingly. Then

A1 = A0 ⊗C1, B1 = D1 ⊗B0,

A2 = A0 ⊗C2, B2 = D2 ⊗B0,

where A0 ∈ Rdp×dq , B0 ∈ Rd∗p×d∗q for dp = gcd(p1, p2), dq = gcd(q1, q2), d∗p = gcd(p∗1, p
∗
2) and

d∗q = gcd(q∗1, q
∗
2). C1,C2,D1,D2 are of corresponding conformal dimensions.

Furthermore,

(i) If p1 is a factor of p2 and q1 is a factor of q2, then C1 and D2 are scalars and there exists a

scalar γ such that

D1 = γC2.
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(ii) If p1 is a factor of p2 and q2 is a factor of q1, then C1,D2 are row vectors and D1,C2 are

column vectors such that there exist a scalar γ such that

C1 = γD2, C2 = γD1.

(iii) If p1 is a factor of p2 and q1, q2 are not a factor of each other, then

C1 = gT
1 , D1 = u⊗ gT

2 ,

C2 = u⊗ gT
3 , D2 = gT

4 ,

for some u ∈ Rp2/p1, g1 ∈ Gq1/dq ,1, g2 ∈ Gq∗1/d
∗
q ,1

, g3 ∈ Gq2/dq ,1, g4 ∈ Gq∗2/d
∗
q ,1

such that

g1 ⊗ g2 = g3 ⊗ g4 ∈ GQ/(dqd∗q),1
.

(iv) If p1, p2 are not a factor of each other and q1, q2 are not a factor of each other, then all of

C1,D1,C2,D2 are geometric matrices such that

C1 ⊗D1 = C2 ⊗D2 ∈ GP/(dpd∗p),Q/(dqd∗q)
.

Proof. Case (i) follows immediately from the uniqueness of SVD.

Note that since X = A1⊗B1, Rp1,q1 [X] is a rank one matrix. We observe the following relationship

between the indices

[Rp1,q1 [X]]i,j = [X]r−1
p1,q1

(i,j) = [Rp2,q2 [X]]rp2,q2 (r
−1
p1,q1

(i,j)).

With Lemma 2, we have

rp2,q2(r
−1
p1,q1(i, j)) = rp2,q2(rp1,p∗1(i, j))

=



⌊
i−1
q1

⌋
p∗1 +

⌊
j−1
q∗1

⌋
p∗2

 q2 +


i− 1

q1
q∗1 +

j − 1

q∗1
q∗2

+ 1,

⌊
i−1
q1

⌋
p∗1 +

⌊
j−1
q∗1

⌋
p∗2

q∗2 +

i− 1

q1
q∗1 +

j − 1

q∗1

q∗2
+ 1


Since Rp,q[X] is of rank one, any sub-matrix of Rp,q[X] is of rank at most one. Consider the index

set for i, Im· = {mq1 + i′ : i′ ∈ [q1]}, and the index set for j, Jn· = {nq∗1 + j′ : j′ ∈ [q∗1]}. We have

[[Rp1,q1 [X]]Im·,Jn· ]i′,j′ = [Rp2,q2 [X]]⌊
mp∗1+n

p∗2

⌋
q2+

⌊
(i′−1)q∗1+j′−1

q∗2

⌋
+1,

mp∗1+n

p∗2
q∗2+

(i′−1)q∗1+(j′−1)

q∗2
+1

.

47



Therefore,

vec[[Rp1,q1 [X]]Im·,Jn· ] = vec



[A2]a,1

...

[A2]a,q2

[[B2]b,1 · · · [A2]b,q∗2

] = vec
[
[A2]a·[B2]

T
b·
]
,

where

a =

⌊
mp∗1 + n

p∗2

⌋
, b =

mp∗1+n

p∗2
.

According to Lemma 3, based on the dimensions, the rows of A2 or B2 have a corresponding further

decomposition. Similarly, consider the index set for i, I·m = {(i′ − 1)q1 + m : i′ ∈ [q∗1]}, and the

index set for j, J·n = {(j′ − 1)q∗1 + n : j′ ∈ [q1]}. We have

vec[[Rp1,q1 [X]]I·m,J·n = vec[[A2]·a′ ][A2]
T
·b′ ],

where

a′ =

⌊
(m− 1)q∗1 + (n− 1)

q∗2

⌋
+ 1, b′ =

(m− 1)q∗1 + (n− 1)

q∗2
+ 1.

Applying Lemma 3 again, the columns of A2 or B2 can be further decomposed accordingly. The

lemma now follows immediately.

Corollary 2. If both A1 and A2 are non-vectors and neither of them has a further rank-one

Kronecker product decomposition, then there does not exists non-trivial B1 and B2 such that

A1 ⊗B1 +A2 ⊗B2 = 0.

Proof. In case (i), one of A1 and A2 is a vector. In cases (ii) − (v), at least one of A1 and A2

has a further decomposition. By ruling out all the necessary conditions, none of case (i) − (v) is

possible. The only solution is B1 = 0 and B2 = 0.

Lemma 2 (index mapping of rearrangement). Define rp,q(i, j) : [P ] × [Q] → [pq] × [p∗q∗] be the

mapping of indices of elements after the rearrangement operator Rp,q on a P ×Q matrix M such

that

[M ]i,j = [Rp,q[M ]]rp,q(i,j), ∀(i, j) ∈ [P ]× [Q].

Then we have

(i) rp,p∗ = r−1
p,q such that

Rp,p∗ [Rp,q[M ]] = M .
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(ii)

rp,q(i, j) =

(⌊
i− 1

p∗

⌋
q +

⌊
j − 1

q∗

⌋
+ 1,

i− 1

p∗
q∗ +

j − 1

q∗
+ 1

)
,

where ⌊x⌋ is the largest integer no greater than x and x
y is the remainder of the division.

Proof. The proof of this lemma is skipped as the results can be verified by direct calculation.

Lemma 3. Let u ∈ Rq2 and v ∈ Rq∗2 be two real vectors such that

rank
(
vec−1

q1,q∗1

[
vec
[
uvT

]])
= 1,

for some q1q
∗
1 = q2q

∗
2 and q1 ̸= q2. Then

(i) if q∗2 is a factor of q∗1, we have

u = u1 ⊗ u2,

for some u1 ∈ Rq1 and u2 ∈ Rq2/q1.

(ii) if q∗1 is a factor of q∗2, we have

v = v1 ⊗ v2,

for some v1 ∈ Rq∗2/q
∗
1 and v2 ∈ Rq∗1 .

(iii) q∗1, q
∗
2 are not factor of each other, we have

u = u0 ⊗ gu, v = gv ⊗ v0,

for some u0 ∈ Rd, v0 ∈ Rd∗, gu ∈ Gq2/d,1 and gv ∈ Gq∗2/d
∗,1 such that

gu ⊗ gv ∈ GQ/(dd∗),1,

and d = gcd(q1, q2), d
∗ = gcd(q∗1, q

∗
2).

Proof. For case (i), we have

vec−1
q1,q∗1

[
vec
[
uvT

]]
= vecq1,q2/q1 [u]⊗ vT .

As the result,

rank
(
vecq1,q2/q1 [u]

)
= 1,

and the decomposition of u follows immediately. Case (ii) is similar.

For case (iii), without loss of generality, assume d = d∗ = 1 such that q∗1 and q∗2 are co-primal. For
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general d, d∗, one only need to add a Kronecker operator u0⊗ on the left and ×v0 on the right.

The conditions suggests the vector u ⊗ v is rank one under de-vectorization with respect to both

(q1, q
∗
1) and (q2, q

∗
2). Since q1 and q2 are co-primal, the only solution is that u ⊗ v is a geometric

series. The lemma follows immediately.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Suppose the dimensions of A1 and B1 are (p1, q1) and (p∗1, q
∗
1) correspondingly

and the dimensions of A2 and B2 are (p2, q2) and (p∗2, q
∗
2) accordingly.

Let A := {A1k}Kk=0, K = p1q1−1, be a set of orthonormal basis for the vector space of Rp1×q1 such

that

A10 = A1 and tr[AT
1kA1k′ ] = 1{k=k′} ∀k, k′ = 0, 1, . . . ,K.

Similarly, an orthonormal basis for Rp∗2×q∗2 , B := {B2l}Ll=0, can be constructed with B20 = B2.

Suppose there exists another decomposition of X with exactly the same configuration such that

X = λ̃1Ã1 ⊗ B̃1 + λ̃2Ã2 ⊗ B̃2. (18)

Then the components have unique decomposition with respect to the basis A and B such that

Ã1 = u0A1 +

K∑
k=1

ukA1k, (19)

Ã2 = A1 ⊗C10 +
K∑
k=1

A1k ⊗C1k, (20)

B̃1 = C20 ⊗B2 +

L∑
l=1

C2l ⊗B2l, (21)

B̃2 = v0B2 +
L∑
l=1

vlB2l, (22)

where the coefficients satisfy the normalization conditions that

K∑
k=0

u2k =
L∑
l=0

v2l =
K∑
k=0

∥C1k∥2F =
L∑
l=0

∥C2l∥2F = 1. (23)

The uniqueness of (19) and (22) comes from the completeness of A and B. The decompositions

in (20) and (21) are unique by observing that {A1k⊗Er}k=0,...,K;r=1,...,R ({Er⊗B2l}l=0,...,L;r=1,...,R

respectively) is an orthonormal basis for Rp2×q2 (Rp∗1×q∗1 respectively) given any orthonormal basis
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{Er}Rr=1 of Rp2/p1×q2/q1 .

By substituting components in (18) by the decompositions (19)-(22), we have

X =

K∑
k=0

L∑
l=0

A1k ⊗ (λ̃1ukC2l + λ̃2vlC1k)⊗B2l. (24)

Comparing (24) with the original decomposition X = λ1A1 ⊗B1 + λ2A2 ⊗B2, we have

λ1B1 = λ̃1u0

L∑
l=0

C2l ⊗B2l + λ̃2C10 ⊗
L∑
l=0

vlB2l, (25)

λ2A2 = λ̃1

K∑
k=1

ukA1k ⊗C20 + λ̃2v0

K∑
k=1

A1k ⊗C1k, (26)

0 = λ̃1ukC2l + λ̃2vlC1k, ∀k = 1, . . . ,K, l = 1, . . . , L. (27)

The equation (27) is of particular interest. We continue our proof by discussing the following three

cases on the number of non-zero elements in {u1, · · · , uK} and {v1, · · · , vL}. Specifically, we are

about to show that under Case (1), the alternative decomposition (18) must coincide with the

original one; and under Cases (2) and (3), at least one of the assumptions are violated.

Case (1): If uk = 0, ∀k = 1, . . . ,K and vk = 0, ∀l = 1, . . . , L, (27) is satisfied. Furthermore, from

(23), we have u0 = v0 = 1 and Ã1 = A1, B̃2 = B2, which gives

A1 ⊗ (λ1B1 − λ̃1B̃1) + (λ2A2 − λ̃2Ã2)⊗B2 = 0.

According to Lemma 1 and Corollary 2, the only solution is

λ1B1 − λ̃1B̃1 = λ2A2 − λ̃2Ã2 = 0,

yielding an identical alternative decomposition (18).

Case (2): If uk = 0, ∀k = 1, . . . ,K and vl ̸= 0 for some 1 ⩽ l ⩽ L, without loss of generality, we

assume v1 ̸= 0. (27) requires

C1k = 0, ∀k = 1, . . . ,K,

by fixing l = 1. (19) and (20) are now

Ã1 = A1 Ã2 = A1 ⊗C10,

which violates the orthogonality assumption on Ã1 and Ã2. Similar argument holds for the case

that vl = 0, ∀l = 1, . . . , L and uk ̸= 0 for some 1 ⩽ k ⩽ K.
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Case (3): If uk ̸= 0 for some 1 ⩽ k ⩽ K and vl ̸= 0 for some 1 ⩽ l ⩽ L, then (27) guarantees the

existence of such a matrix M that

C1k = λ̃1ukM , C2l = −λ̃2vlM , ∀k = 1, . . . ,K, l = 1, . . . , L. (28)

It is obvious that (28) holds on the set {(k, l) : uk ̸= 0, vl ̸= 0, 1 ⩽ k ⩽ K, 1 ⩽ l ⩽ L}, by observing

from (27) that
C1k

λ̃1uk
= − C2l

λ̃2vl
=: M .

By fixing on uk ̸= 0, (27) shows that vl = 0 implies C2l = 0. Therefore, (28) holds for all

l = 1, . . . , L. Similarly, by fixing on vl ̸= 0 in (27), (28) holds for all k = 1, . . . ,K as well.

Plugging (28) in (26) gives

λ2A2 = λ̃1

(
K∑
k=1

ukA1k

)
⊗
(
C20 + λ̃2v0M

)
,

which contradicts the assumption that A2 has no further decomposition.

D.3 Proof of Theorem 3

Before presenting the proof, we first discuss how the identifiability can fail for the non-conformal

two-term model when X has 16 entries. We follow the notations set up in Theorem 3. Since all

dimensions are powers of 2, we use (mk, nk) instead of (2mk , 2nk) to denote the configuration of

Ak ⊗Bk, for notational simplicity.

Example 1. Consider the two term representation

A⊗B +α⊗ βT , (29)

where both A and B are 2× 2 non-singular matrices, and both α and β are 4-dimensional vectors.

We will show how the identifiability can fail and how to find Ã, B̃, α̃ and β̃ such that

A⊗B +α⊗ βT = Ã⊗ B̃ + α̃⊗ β̃T .

Without loss of generality, we may assume that both A and B are identity matrices, and the

preceding identity becomes

I4 +α⊗ βT = Ã⊗ B̃ + α̃⊗ β̃T .

Let A2 be the 2 × 2 matrix whose two columns are top and bottom halves of α, and define B2

similarly from β. Assume that

AT
2 B2 has two distinct real eigenvalues, both not equal to -1. (30)
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Denote these two eigenvalues by e and g, and set c = (1 + e)/(1 + g). Let P be such that

PAT
2 B2P

−1 = diag{e, g}, and let Q = (A2P
T )−1. It is straightforward to verify that

QA2P
T = I2, and (Q−1)TB2P

−1 = diag{e, g},

and it follows that

(P ⊗Q)α = (1, 0, 0, 1)T and (P−1 ⊗Q−1)Tβ = (e, 0, 0, g)T .

It can also be verified that

diag{1− c, 0, 0, 1− 1/c}+ (1, 0, 0, 1)T (e, 0, 0, g) = (gc, 0, 0, e)T (1, 0, 0, 1/c),

which implies that

I4 + (1, 0, 0, 1)T (e, 0, 0, g) = diag{c, 1, 1, 1/c}+ (gc, 0, 0, e)T (1, 0, 0, 1/c)

= diag{c, 1} ⊗ diag{1, 1/c}+ (gc, 0, 0, e)T (1, 0, 0, 1/c).

Multiply the preceding equation from left by P−1 ⊗Q−1 and from right by P ⊗Q, we have

I4 +αβT = (P−1diag{c, 1}P )⊗ (Q−1diag{1, 1/c}Q)

+ (P−1 ⊗Q−1)(gc, 0, 0, e)T (1, 0, 0, 1/c)(P ⊗Q)

= Ã⊗ B̃ + α̃⊗ β̃T .

Note that when α and β are randomly generated, say with IID N(0, 1) entries, the condition (30)

is satisfied with a positive probability, so the identifiability can fail for the two term representation

(29) with a positive probability when A,B,α,β are randomly generated.

Example 2. Consider the two term representation

X = A⊗ β +α⊗B, (31)

where both A and B are 2× 2 non-singular matrices, and both α and β are 4-dimensional vectors.

Note that X in (31) is 8 × 2, and the two configurations are {(1, 1)} and {(2, 0)}. Now consider

the operation of moving the bottom half of X to the right of the top half, thus resulting in a 4× 4

matrix. After this operation, the configuration of A ⊗ β changes from (1, 1) to (2, 0), and the

configuration of α⊗B changes from (2, 0) to (1, 1). Since the dimension of X, after the operation,

is 4× 4, we can apply Example 1 to show that (31) is not identifiable even when A,B,α,β are in

generic positions.

When X is 2 × 8, the only non-conformal two-term model has configurations {(1, 1), (0, 2)}.

The unidentifiability of such a model can be shown similarly.
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Proof of Theorem 3. When the two configurations are conformal, the uniqueness is guaranteed by

Theorem 1. So we only need to consider the non-conformal case here. Without loss of generality,

assume that m1 < m2 and n1 > n2. Consequently, it holds that m∗
1 > m∗

2 and n∗
1 < n∗

2. To

simplify the notations, assume that λi is absorbed into Bi so that we can omit λi and write

X = A1 ⊗B1 +A2 ⊗B2. Write Ai and Bi in terms of their KPD

A1 =

s∑
j=1

λjCj ⊗Dj , B1 =

s∗∑
k=1

λ∗
kHk ⊗Gk,

where all λk and λ∗
j are strictly positive, and the dimensions of the involved matrices are listed in

the table below.

Cj Dj Gk Hk

2m1 × 2n2 1× 2n1−n2 2m
∗
2 × 2n

∗
1 2m

∗
1−m∗

2 × 1

Under the assumption that none of Ai are row vectors, and none of Bi are column vectors, it

holds that m1 + n2 > 0 and m∗
2 + n∗

1 > 0. Without loss of generality, assume that all the entries

of Ai and Bi are IID N(0, 1). The with probability one, s1 = min{2m1+n2 , 2n1−n2} and s∗ =

min{2m∗
2+n∗

1 , 2m
∗
1−m∗

2}. Since the Kronecker product of a column vector and a row vector commutes,

the KPD of A1 and B1 implies that

A1 ⊗B1 =
s∑

j=1

s∗∑
k=1

λjλ
∗
k(Cj ⊗Hk)⊗ (Dj ⊗Gk).

Note that Cj ⊗Hk has the same dimension as A2, and Dj ⊗Gk has the same dimension as B2.

In fact, this representation corresponds to the singular value decomposition of Rm∗
1,n

∗
1
(A1 ⊗B1).

We prove the following claim, which implies Theorem 3.

Claim. With probability one, the equality

A1 ⊗B1 +A2 ⊗B2 = Ã1 ⊗ B̃1 + Ã2 ⊗ B̃2. (32)

implies that Ai ⊗Bi = Ãi ⊗ B̃i, i = 1, 2.

We divide the proof of this claim into a few steps.

Step 1. We first prove the claim when any of Ãi or B̃i equals the corresponding Ai or Bi. Without

loss of generality, assume A1 = Ã1. Suppose B1 ̸= B̃1, and let B1 − B̃1 =
∑s′

k=1 ηkLk ⊗Mk be

the KPD, where all ηk > 0. If s′ > 1, the matrix

A1 ⊗ (B1 − B̃1) =

s∑
j=1

s′∑
k=1

λjηk(Cj ⊗Lk)⊗ (Dj ⊗Mk)

54



has rank at least 4 after the rearrangement Rm2,n2 , and must not equal to Ã2 ⊗ B̃2 − A2 ⊗ B2,

which has rank at most 2 after the same rearrangement. When s′ = 1, since all Ai and Bi are

random, with probability one, the matrix

A1 ⊗ (B1 − B̃1) +A2 ⊗B2 =
s∑

j=1

λjη1(Cj ⊗L1)⊗ (Dj ⊗M1) +A2 ⊗B2

has rank at least 2 after Rm2,n2 , and must not equal to Ã2 ⊗ B̃2, which has rank at most 1 after

Rm2,n2 . We therefore conclude that if Ã1 = A1, then B̃1 = B1, and Ãi ⊗ B̃i = Ai ⊗Bi.

Step 2. We can write down the KPD of Ã1 and B̃1 similarly.

Ã1 =
s̃∑

j=1

λ̃jC̃j ⊗ D̃j , B̃1 =
s̃∗∑
k=1

λ̃∗
kH̃k ⊗ G̃k,

where all the λ̃j and λ̃∗
k are strictly positive. It must hold that s̃ ≤ s. We show that with probability

one, the linear spaces span{vec(C1), . . . , vec(Cs)} and span{vec(C̃1), . . . , vec(C̃s̃)} are the same.

If not, since s̃ ≤ s, there exist a matrix C0 such that tr(CT
0 C̃j) = 0 for all 1 ≤ j ≤ s̃, and

tr(CT
0 Cj) ̸= 0 for some 1 ≤ j ≤ s and tr(CT

0 Cj) ̸= 0 for all other j. For convenience, assume that

tr(CT
0 C1) ̸= 0, and tr(CT

0 Cj) = 0 for 2 ≤ j ≤ s. The left partial kronecker product with C0 gives

⟨C0 | A1 ⊗B1 | +⟨C0 | (A2 ⊗B2) | =
s∗∑
k=1

λ1λ
∗
ktr(C

T
0 C1) ·Hk ⊗ (D1 ⊗Gk) + (⟨C0 | A2 |)⊗B2

= ⟨C0 | Ã1 ⊗ B̃1 | + ⟨C0 | (Ã2 ⊗ B̃2) |

= (⟨C0 | Ã2 |)⊗ B̃2.

Since Ai and Bi are random, with probability one, the matrix on the right hand side of the first

line after rearrangement Rm∗
1−m∗

2,0
has rank at least s∗ ≥ 2. The matrix in the last line is rank 1

after the rearrangement Rm∗
1−m∗

2,0
, leading to a contradiction.

We conclude that with probability one, the two linear spaces span{vec(C1), . . . , vec(Cs)} and

span{vec(C̃1), . . . , vec(C̃s̃)} are the same, which also implies that s = s̃. We call these two spaces

the C-space and C̃-space based on (32). Similarly, it can be shown that with probability one, the

D-space and D̃-space are the same, and so are the H- and H̃-spaces, and the G- and G̃-spaces. It

also holds that s∗ = s̃∗ with probability one.

Step 3. We prove the claim when either m1 + n2 ̸= n1 − n2 or m∗
2 + n∗

1 ̸= m∗
1 − m∗

2. We shall

only consider the case n1 − n2 < m1 + n2 here. All other cases can be proved similarly. When

n1 − n2 < m1 + n2, it holds that s = 2n1−n2 , . According to Step 1, we know that the C- and
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C̃-spaces are the same with probability one. Let A2 =
∑t

j=1Lj ⊗Mj be the KPD of A2, where

Lj and Mj have the same dimensions as Cj and Hk respectively. Denote by PC the orthogonal

projection to the linear subspace spanned by {C1, . . . ,Cs}. We can write A2 as

A2 =
t∑

j=1

Lj ⊗Mj =
t∑

j=1

(PCLj)⊗Mj +
t∑

j=1

(Lj − PCLj)⊗Mj := (A3 +A4).

Since s = 2n1−n2 < 2m1+n2 , and A2 is random, with probability one, each Lj − PCLj is nonzero,

and A4 ̸= 0. Similarly, write Ã2 = Ã3 + Ã4. Now it must hold that A4 ⊗B2 = Ã4 ⊗ B̃2, which

implies B2 = B̃2. But according to Step 1, with probability one, B2 = B̃2 implies that Ai ⊗Bi =

Ãi ⊗ B̃i, leading to a contradiction. Therefore, the claim holds when either m1 + n2 ̸= n1 − n2 or

m∗
2 + n∗

1 ̸= m∗
1 −m∗

2.

Note that the preceding argument of Step 3 starts with the KPD of A1 and B1, and the

associates C-space. On the other hand, if m1 + n2 = n1 − n2 or m∗
2 + n∗

1 = m∗
1 − m∗

2, but

m1+n2 ̸= m∗
2+n∗

1, the claim can be proved by the same argument reversing A1⊗B1 and A2⊗B2,

i.e. starting from the KPD of A2 and B2.

Step 4. It remains to prove the claim when m1 + n2 = n1 − n2 = m∗
2 + n∗

1 = m∗
1 −m∗

2. Since we

assume that m1+n1+m∗
1+n∗

1 ≥ 5, it must hold that m1+n2 ≥ 2. Also s = s∗ = 2m1+n2 ≥ 4 with

probability one. According to Step 2, with probability one, the C- and C̃-spaces are both full, and

so are the H- and H̃-spaces, which we assume to hold from now on. Under this condition, we can

write Ã1 =
∑s

j=1Cj ⊗ D̄j and B̃1 =
∑s

k=1Hk ⊗ Ḡk. The identity (32) implies that

A1 ⊗B1 − Ã1 ⊗ B̃1 =
s∑

j,k=1

(Cj ⊗Hk)⊗ (λjλ
∗
kDj ⊗Gk − D̄j ⊗ Ḡk) = Ã2 ⊗ B̃2 −A2 ⊗B2.

We now prove D̄j ∝ Dj and Ḡk ∝ Gk for all 1 ≤ j, k ≤ s with probability one. If not, say

D1 ̸∝ D1, then the matrices {λ1λ
∗
kD1 ⊗Gk − D̄1 ⊗ Ḡk, 1 ≤ k ≤ s} are linearly independent. The

left partial Kronecker product of the preceding identity with C1 gives

⟨C1 | (A1 ⊗B1) | − ⟨C1 | (Ã1 ⊗ B̃1) | =
s∑

k=1

Hk ⊗ (λ1λ
∗
kD1 ⊗Gk − D̄1 ⊗ Ḡk)

= ⟨C1 | Ã2 | ⊗B̃2 − ⟨C1 | A2 | ⊗B2.

The matrix on the right hand side of the first line has rank s ≥ 4 after the rearrangement

Rm1+n2,m1+n2 , and the matrix in the second line has rank at most 2 after the same rearrange-

ment, leading to a contradiction.
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We have shown that with probability one, D̄j ∝ Dj and Ḡk ∝ Gk for all 1 ≤ j, k ≤ s, and

therefore can write the KPD of Ã1 and Ã2 as

Ã1 =
s∑

j=1

λ̃jCj ⊗Dj , B̃1 =
s∑

k=1

λ̃∗
kHk ⊗Gk,

where all λ̃j and λ̃∗
k are nonzero. Let λ = (λ1, . . . , λs)

T , and define λ∗, λ̃ and λ̃∗ similarly. If

λ ∝ λ̃, then after rescaling by a constant it holds that A1 = Ã1, and the claim can be proved

by Step 1. Similarly if λ∗ ∝ λ̃∗, the claim also holds. If λ ̸∝ λ̃ and λ∗ ̸∝ λ̃∗, then the matrix

λ∗λT − λ̃∗λ̃T has at least 3 nonzero entries. The identity (32) can be rewritten as

A1 ⊗B1 − Ã1 ⊗ B̃1 =

s∑
j,k=1

(λjλ
∗
k − λ̃j λ̃

∗
k)(Cj ⊗Hk)⊗ (Dj ⊗Gk) = Ã2 ⊗ B̃2 −A2 ⊗B2.

The matrix in the middle has rank at least 3 after the rearrangement Rm2,n2 , but the matrix on

the right hand side has rank at most 2 after the same rearrangement, leading to contradiction. The

proof is now complete.
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