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Abstract Let X(n) = (Xij ) be a p × n data matrix, where the n columns form
a random sample of size n from a certain p-dimensional distribution. Let R(n) =
(ρij ) be the p × p sample correlation coefficient matrix of X(n), and S(n) =
(1/n)X(n)(X(n))∗ − X̄X̄∗ be the sample covariance matrix of X(n), where X̄ is the
mean vector of the n observations. Assuming that Xij are independent and identically
distributed with finite fourth moment, we show that the smallest eigenvalue of R(n)

converges almost surely to the limit (1 − √
c )2 as n → ∞ and p/n → c ∈ (0,∞).

We accomplish this by showing that the smallest eigenvalue of S(n) converges almost
surely to (1 − √

c )2.

Keywords Random matrix · Sample correlation coefficient matrix · Sample
covariance matrix · Smallest eigenvalue
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1 Introduction

Suppose that X(n) = (Xij ) is a p×n data matrix, where the n columns form a random
sample of size n from a certain p-dimensional distribution. Let R(n) = (ρij ) be the
p × p sample correlation coefficient matrix of X(n), where ρij is the usual Pearson
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correlation coefficient between the ith and j th rows of X(n). We are interested in
the strong limits of the extreme eigenvalues of this matrix as its dimensions tend to
infinity.

There are two random matrices which are closely related with the sample correla-
tion matrix. One is the sample covariance matrix S(n) defined by

S(n) = (
S

(n)
ij

) = 1

n
X(n)

(
X(n)

)∗ − X̄X̄∗,

where X̄ is the mean vector of the n observations. Let

D(n) = diag
{√

S
(n)
11 ,

√
S

(n)
22 , . . . ,

√
S

(n)
pp

}
.

Then R(n) can be expressed as

R(n) = (
D(n)

)−1
S(n)

(
D(n)

)−1
. (1.1)

The other one is the simplified version of the sample covariance matrix given by

S
(n) = (1/n)X(n)

(
X(n)

)∗
.

Remarks (1) For notational economy, we will omit the superindex (n) from now
on when there is no confusion. (2) In the literature, S is often referred under the
name “sample covariance matrix.” However, in this paper, we rename it by simplified
sample covariance matrix to avoid confusion.

Suppose that λ1(S), λ2(S), . . . , λp(S) are the p eigenvalues of S in increasing or-
der. While the definition of the largest eigenvalue is clear, one needs to examine that
of the smallest one.

Since rank(S) ≤ n when p ≥ n, the (p − n) smallest eigenvalues are all zero.
Hence we define the smallest eigenvalue of the matrix S as

λmin(S) =
{

λ1(S) if p < n,

λp−n+1(S) if p ≥ n.
(1.2)

Since the empirical spectral distribution F S of S almost surely converges to the
Marčenko–Pastur law Fc with the density

F ′
c(x) =

{
1

2πcx

√
(b − x)(x − a) if a ≤ x ≤ b,

0 otherwise,
(1.3)

and the point mass 1 − 1/c at the origin if c > 1, where a = (1 − √
c )2 and b =

(1 + √
c )2 (see Chap. 3 of Bai and Silverstein [3]), we have

lim infλmax(S) ≥ b = (1 + √
c )2 a.s.,

lim supλmin(S) ≤ a = (1 − √
c )2 a.s.
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However, the converse assertions

lim supλmax(S) ≤ b = (1 + √
c )2 a.s., (1.4)

lim infλmin(S) ≥ a = (1 − √
c )2 a.s. (1.5)

are not trivial.
Yin et al. [9] established (1.4). The following modified version is an immediate

consequence of their original result.

Theorem 1.1 Let X be the up-left p × n corner of a double array {Xuv : u,v =
1,2, . . .} of independent and identically distributed (i.i.d.) complex random variables
(r.v.s.) with zero mean and unit variance. If E|X11|4 < ∞, then, as n → ∞ and
p/n → c ∈ (0,∞),

limλmax(S) = b = (1 + √
c )2 a.s.

It is much more difficult to establish (1.5) than (1.4). Bai and Yin [4] devised a uni-
fied approach to prove (1.4) and (1.5) at the same time. As an immediate consequence
of their result, we have the following theorem.

Theorem 1.2 Under the conditions of Theorem 1.1,

limλmin(S) = a = (1 − √
c )2 a.s.

More than ten years later, Jiang [6] proved that the largest eigenvalue of the sample
correlation matrix R converges to the limit (1+√

c )2 with probability one as n → ∞
and p/n → c ∈ (0,∞). Jiang [6] also conjectured that the smallest eigenvalue of R

converges to (1 − √
c )2 a.s.

Since rank(R) ≤ n − 1, the smallest eigenvalue of the matrix R can be defined as

λmin(R) =
{

λ1(R) if p < n,

λp−n+2(R) if p ≥ n.
(1.6)

In this paper, we prove Jiang’s conjecture.

Theorem 1.3 Let X be the up-left p × n corner of a double array {Xuv : u,v =
1,2, . . .} of i.i.d. complex r.v.s. with unit variance. If E|X11|4 < ∞, then, as n → ∞
and p/n → c ∈ (0,∞),

limλmin(R) = a = (1 − √
c )2 a.s.

We accomplish the proof of Theorem 1.3 by establishing the following result on
the sample covariance matrix S. Note that the definition of the smallest eigenvalue of
S is given by replacing R in (1.6) by S.

Theorem 1.4 Under the conditions of Theorem 1.3,

limλmin(S) = a = (1 − √
c )2 a.s.
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The paper is organized as follows. In Sect. 2, we show how Theorem 1.4 implies
Theorem 1.3. The proof of Theorem 1.4 will be completed in Sect. 3. The auxiliary
lemmas are collected in the last section.

2 From Sample Covariance Matrix to Sample Correlation Matrix

Our task in this section is to prove Theorem 1.3 by Theorem 1.4. Actually the argu-
ment here parallels that in [6]. We repeat it for the completeness of the whole proof.

Since we are interested in the sample covariance matrix and sample correlation
matrix, we can assume that EX11 = 0. According to Theorem 1.4, it suffices to show
that

∣∣
√

λmin(R) − √
λmin(S)

∣∣ → 0 a.s. (2.1)

Note that the sample covariance matrix S could be written as S = n−1XPX∗, where
P is the n×n projection matrix defined as I − 1

n
11T , and 1 is the n×1 vector whose

entries are all 1’s. Since R = D−1SD−1 (see (1.1)), by Lemma 4.1 we have

∣∣
√

λmin(R) − √
λmin(S)

∣∣ ≤
∥∥∥
∥D−1 1√

n
XP − 1√

n
XP

∥∥∥
∥

≤ ∥∥D−1 − I
∥∥ ·

∥
∥∥∥

1√
n
X

∥
∥∥∥. (2.2)

Since E|X11|4 < ∞, due to Lemma 4.4, we know that

max
1≤i≤p

∣∣∣∣

∑n
j=1 X2

ij

n
− 1

∣∣∣∣ → 0 a.s. (2.3)

and

max
1≤i≤p

X̄i → 0 a.s., (2.4)

where X̄i is the ith entry of the mean vector X̄. Combining (2.3) and (2.4), we have

max
1≤i≤p

∣∣∣∣

∑n
j=1(Xij − X̄i)

2

n
− 1

∣∣∣∣ ≤ max
1≤i≤p

∣∣∣∣

∑n
j=1 X2

ij

n
− 1

∣∣∣∣ + max
1≤i≤p

X̄2
i → 0 a.s.,

and this implies that

∥∥D−1 − I
∥∥ = max

1≤i≤p

∣∣∣∣

√
n

√∑n
j=1(Xij − X̄i)2

− 1

∣∣∣∣ → 0 a.s. (2.5)

By Theorem 1.1,
∥∥∥∥

1√
n
X

∥∥∥∥ = √
λmax(S) → 1 + √

c a.s.

This, together with (2.2) and (2.5), proves (2.1).
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3 Proof of Theorem 1.4

We first derive the limiting spectral distribution of S. Since S = S − X̄X̄∗, by
Lemma 4.2, we know that

∥∥FS − F S
∥∥ ≤ 1

p
rank

(
X̄X̄∗) = 1

p
.

Since the convergence of the distribution functions in the sup norm implies their weak
convergence, we know that FS also converges to the Marčenko–Pastur law, and hence

lim supλmin(S) ≤ a = (1 − √
c )2 a.s.

Therefore, in order to prove Theorem 1.4, it suffices to show that

lim infλmin(S) ≥ a = (1 − √
c)2 a.s. (3.1)

Note that when c = 1, the situation is trivial. When c > 1, p is larger than n when
n is very large. In this case we will consider λmin(S) = λp−n+2(S), which is the
(p − n + 2)th smallest eigenvalue of S. According to Theorem 4.3.4 of Horn and
Johnson [5], we have

λp−n+2(S) ≥ λp−n+1(S).

As an immediate consequence of this fact and Theorem 1.2, we know that (3.1) holds
when c > 1. Now we shall prove (3.1) when 0 < c < 1, and the long proof will be
divided into several steps.

3.1 Truncation

We use the truncation technique given in [2] to bound the underlying variables. For
C > 0, let Yij = Xij I{|Xij |≤C} −EXij I{|Xij |≤C}, Y = (Yij ), and S̃ = (1/n)YPY ∗. De-

note the eigenvalues of S and S̃ by λk and λ̃k (in increasing order). Since these are
the squares of the kth smallest singular values of (1

√
n)XP and (1

√
n)YP (respec-

tively), it follows from Lemma 4.1 that

max
k≤n

∣∣λ1/2
k − λ̃

1/2
k

∣∣ ≤ 1√
n
‖X − Y‖.

Since Xij − Yij = Xij I{|Xij |>C} − EXij I{|Xij |>C}, from Theorem 1.1 we have, with
probability one,

lim sup
n→∞

max
k≤n

∣∣λ1/2
k − λ̃

1/2
k

∣∣ ≤ (1 + √
c)E1/2|X11|2I{|Xij |>C}.

Since E|X11|2 = 1, we can make the above bound arbitrarily small by choosing C

sufficiently large. Thus, in the following investigation, we can assume that the un-
derlying variables are uniformly bounded. It is easy to verify that we can rescale the
variables so that the assumption E|X11|2 = 1 still holds.
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3.2 An Equivalent Problem

There exists a nonzero vector β such that

Sβ = (
S − X̄X̄∗)β = λmin(S)β,

which is equivalent to
(
S − λmin(S)I

)
β = X̄X̄∗β. (3.2)

Suppose that lim infλmin(S) is smaller than a = (1−√
c)2. Then we can imagine that

λmin(S) is not an eigenvalue of S as n gets large, since λmin(S) converges to a (see
(1.2)). In this case the matrix (S − λmin(S)I ) is nonsingular, and hence (3.2) can be
inverted to give

β = (
S − λmin(S)I

)−1
X̄X̄∗β.

If we multiply both sides of the above equation by X̄∗, we will get

X̄∗β = X̄∗(
S − λmin(S)I

)−1
X̄X̄∗β.

Since X̄∗β �= 0, we can obtain that

X̄∗(
S − λmin(S)I

)−1
X̄ = 1. (3.3)

The above arguments (especially (3.3)) provide the basic idea that we will make
use of to state the current problem in an equivalent form given by the following
lemma.

Lemma 3.1 If P(lim infλmin(S) < a) > 0, then for some 0 < λ < a,

P
(
lim sup X̄∗(S − λI)−1X̄ ≥ 1

)
> 0.

In other words, if

lim sup X̄∗(S − λI)−1X̄ < 1 a.s. ∀0 < λ < a, (3.4)

then we have the desirable property

lim infλmin(S) ≥ a a.s.

Proof If P(lim infλmin(S) < a) > 0, then there exists a small ε > 0 such that
P(lim infλmin(S) < a − 3ε) > 0. For simplicity, we denote the event
{lim infλmin(S) < a − 3ε} by E0. Let Bn denote the event {λmin(S) ≤ a − ε}. From
Lemma 4.5 we know that P(Bn) = o(n−l) for any l > 0. Hence it is easy to see that
for some N large enough, P(E0 \ ⋃∞

n=N Bn) > 0. We use E to denote the event
E0 \ ⋃∞

n=N Bn. For each ω ∈ E, the following two properties hold:

lim infλmin(S(ω)) < a − 3ε, λmin(S(ω)) > a − ε, ∀n ≥ N.
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Since lim infλmin(S(ω)) < a − 3ε, we can find a subsequence nk such that

lim infλ(nk)
min

(
S(ω)

) → λ(ω) < a − 3ε.

When k is large enough, λ
(nk)
min (S(ω)) < a − 2ε, and hence from (3.3) and from the

fact that X̄∗(S − λI)−1X̄ is an increasing function of λ we have

[
X̄∗(

S
(nk) − (a − 2ε)I

)−1
X̄

]∣∣
ω

≥ 1,

and this means that

lim sup
[
X̄∗(

S
(n) − (a − 2ε)I

)−1
X̄

]∣∣
ω

≥ 1.

Therefore, we know that for λ = a − 2ε,

P
(
lim sup X̄∗(S − λI)−1X̄ ≥ 1

) ≥ P(E) > 0,

which completes the proof. �

Now our target is to prove (3.4) when 0 < c < 1. Suppose 0 < λ < a, and let
2ε = a − λ. We expand X̄∗(S − λI)−1X̄ as

X̄∗(S − λI)−1X̄ = 1

n
(X1 + · · · + Xn)

∗(S − λI)−1 1

n
(X1 + · · · + Xn)

= 1

n2

n∑

i=1

X∗
i (S − λI)−1Xi + 1

n2

∑

i �=j

X∗
i (S − λI)−1Xj .

Let

T1 = 1

n2

n∑

i=1

X∗
i (S − λI)−1Xi, (3.5)

T2 = 1

n2

∑

i �=j

X∗
i (S − λI)−1Xj . (3.6)

We will consider T1 and T2 respectively. For the time being, let us define T1 = T2 = 0
when the matrix (S − λI) is singular. Actually Assumption (i) provides justification
of this definition.

3.3 Nonnegative Terms

Let Si = S − (1/n)XiX
∗
i . Using Lemma 4.3, we may write T1 as

T1 = 1

n2

n∑

i=1

X∗
i (Si − λI)−1Xi

1 + 1
n
X∗

i (Si − λI)−1Xi

= 1

n

n∑

i=1

1
n
X∗

i (Si − λI)−1Xi

1 + 1
n
X∗

i (Si − λI)−1Xi

.
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We use Ei to denote the event {λmin(Si) > a − ε}, and let E = ⋂n
i=1 Ei . Again from

Lemma 4.5 we know that P(Ec
i ) = o(n−l) for any l > 0, and hence P(Ec) = o(n−l)

for any l > 0. On the event E, ‖(Si − λI)−1‖ ≤ 1/ε, and the matrix (Si − λI)−1

is nonnegative definite. Since all the entries of X are bounded by a constant C,
we have

∣∣∣∣
1

n
X∗

i (Si − λI)−1Xi

∣∣∣∣ ≤ 1

n

∥∥X∗
i

∥∥∥∥(Si − λI)−1
∥∥‖Xi‖ ≤ C2

ε
.

Therefore we know that on the event E,

T1 ≤
C2

ε

1 + C2

ε

< 1.

Since P(Ec) = o(n−l) for any l > 0, by the Borel–Cantelli lemma we know
that

lim supT1 ≤
C2

ε

1 + C2

ε

< 1 a.s. (3.7)

3.4 Cross Terms

Now we will focus on T2, and it suffices to show that

limT2 = 0 a.s. (3.8)

Let Sij = S − (1/n)XiX
∗
i − (1/n)XjX

∗
j . By Lemma 4.3, we can write T2 as

T2 = 1

n2

∑

i �=j

X∗
i (Sij − λI)−1Xj

[1 + 1
n
X∗

i (Si − λI)−1Xi][1 + 1
n
X∗

j (Sij − λI)−1Xj ]
.

This expression plays the central role in our investigation.
Previously, we have defined the matrices Si and Sij . Similarly, we can define

such matrices with additional subindices, such as Si1i2j1 , Si1i2j1j2 , etc. In general,
let � ⊂ [n] be a finite index set, then S� is defined as

S� = S − 1

n

∑

i∈�

XiX
∗
i .

For simplicity, we use the notation A� to denote the matrix

A� = (S� − λI)−1.
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3.4.1 Change Si to Sij in the Denominator

Motivated by the symmetry, we first change Si in the denominator of T2 to Sij and
denote the new term by T3:

T3 = 1

n2

∑

i �=j

X∗
i (Sij − λI)−1Xj

[1 + 1
n
X∗

i (Sij − λI)−1Xi][1 + 1
n
X∗

j (Sij − λI)−1Xj ]

= 1

n2

∑

i �=j

X∗
i AijXj

(1 + 1
n
X∗

i AijXi)(1 + 1
n
X∗

j AijXj )
.

Our task in this step is to show that

D23 = T2 − T3 → 0 a.s. (3.9)

According to Lemma 4.3, we can write D23 as

D23 = 1

n2

∑

i �=j

X∗
i AijXj (

1
n
X∗

i AijXi − 1
n
X∗

i AiXi)

(1 + 1
n
X∗

i AiXi)(1 + 1
n
X∗

i AijXi)(1 + 1
n
X∗

j AijXj )

= 1

n4

∑

i �=j

X∗
i AijXjX

∗
i AijXjX

∗
j AijXi

(1 + 1
n
X∗

i AiXi)(1 + 1
n
X∗

i AijXi)(1 + 1
n
X∗

j AijXj )2
.

In order to control the norm of the matrix Aij , we restrict it on the event Eij =
{λmin(Sij ) > a − ε} and consider

D̄23 = 1

n4

∑

i �=j

X∗
i AijXjX

∗
i AijXjX

∗
j AijXi

(1 + 1
n
X∗

i AiXi)(1 + 1
n
X∗

i AijXi)(1 + 1
n
X∗

j AijXj )2
Iij ,

where Iij stands for the indicator function of the event Eij . By the Borel–Cantelli
lemma and Lemma 4.5, it is not difficult to see that, with probability one, D23 = D̄23

for all n large enough. Hence it suffices to consider D̄23 in the sequel. On the event
Eij , Ai and Aij are positive definite, and hence

(
1 + 1

n
X∗

i AiXi

)(
1 + 1

n
X∗

i AijXi

)(
1 + 1

n
X∗

j AijXj

)2

≥ 1;

so in order to prove (3.9), it is enough to show that

D′
23 = 1

n4

∑

i �=j

∣∣X∗
i AijXjX

∗
i AijXjX

∗
j AijXi

∣∣Iij → 0 a.s. (3.10)

Since on the event Eij , the norm of Aij is bounded by 1/ε, due to Lemma 4.6, we
know that
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E
∣∣X∗

i Aij IijXj

∣∣r = E
[
E

(∣∣X∗
i Aij IijXj

∣∣r ∣∣ Aij

)]

≤ Krn
r/2 for any r ≥ 2,

and similarly

E
∣
∣X∗

j Aij IijXi

∣
∣r ≤ Krn

r/2 for any r ≥ 2,

where Kr is a constant only depending on r . Making use of these orders, together
with Hölder inequality, we can compute the third absolute moment of D′

23, and the
result is given by

E
∣∣D′

23

∣∣3 = O
(
n−3/2).

Therefore, (3.10) follows from the Borel–Cantelli lemma.

Remark When we move from D23 to D̄23, we restrict the matrix Aij on the event
Eij = {λmin(Sij ) > a − ε} so that its norm could be controlled by 1/ε. Note that
Aij Iij is still independent of Xi and Xj . In general, for any index set � ⊂ [n], we
could restrict the matrix A� on the event E� = {λmin(S�) > a − ε} to control its
norm. In the subsequent investigation, we need to use this kind of restriction again
and again. Fortunately, due to Lemma 4.5 and the Borel–Cantelli lemma, none of
these restrictions will change the strong limit under consideration. Instead of writing
down A�IE� every time, we will use A� and make the following assumptions:

Assumption (i). A� is nonnegative definite, and 0 < ‖A�‖ ≤ (1/ε) for any finite
index set �;

Assumption (ii). A� and {Xi, i ∈ �} are independent.

3.4.2 Remove Xi and Xj in the Denominator

We first show that in the denominator, X∗
i AijXi can be replaced by trAij . Let

T4 = 1

n2

∑

i �=j

X∗
i AijXj

(1 + 1
n

trAij )(1 + 1
n
X∗

j AijXj )
.

Our task is to show that

D43 = T4 − T3 → 0 a.s.

We write D43 as

D43 = 1

n2

∑

i �=j

X∗
i AijXj (

1
n
X∗

i AijXi − 1
n

trAij )

(1 + 1
n

trAij )(1 + 1
n
X∗

i AijXi)(1 + 1
n
X∗

j AijXj )
.

It is convenient to consider

D̄43 = 1

n2

∑

i �=j

X∗
i AijXj (

1
n
X∗

i AijXi − 1
n

trAij )

(1 + 1
n

trAij )(1 + 1
n

trAij )(1 + 1
n
X∗

j AijXj )
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instead of D43. The reason is that by computation (again due to Lemma 4.6 and the
Hölder inequality) we can find that

E|D43 − D̄43|3 = O
(
n−3/2),

and hence D43 − D̄43 → 0 almost surely. For similar reasons, we can consider simply

D̃43 = 1

n2

∑

i �=j

X∗
i AijXj (

1
n
X∗

i AijXi − 1
n

trAij )

(1 + 1
n

trAij )3
.

For simplicity, we use S(i, j) to denote

S(i, j) = X∗
i AijXj (

1
n
X∗

i AijXi − 1
n

trAij )

(1 + 1
n

trAij )3
.

Now we will compute the fourth absolute moment of D̃43, and we first expand
E|D̃43|4 as

E|D̃43|4 = 1

n8

∑

i1 �=j1
i2 �=j2
i3 �=j3
i4 �=j4

E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]
,

where S̄(i, j) is the complex conjugate of S(i, j). Totally, we need to use eight
subindices here, although some of them may have the same value. According to As-
sumption (i), the Hölder inequality, and Lemma 4.6, we know that

E
∣∣S(i, j)

∣∣r ≤ (
E

(
X∗

i AijXj

)2r)1/2
(

E

(
1

n
X∗

i AijXi − 1

n
trAij

)2r)1/2

≤ Krn
r/2n−r/2 = O(1) for any r ≥ 2. (3.11)

Now it is easy to verify that the contribution of those terms with less than or equal to
six different subindices in E|D̃43|4 is of order O(n−2), which is summable. There-
fore, in order to show that

D̃43 → 0 a.s., (3.12)

we only need to consider the following two cases.

Case 1: Seven different indices

When there are seven different indices, the summand has finite different forms
depending on which two indices are the same. We only deal with the following kind
of summands here:

E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i3, j4)

]
. (3.13)

The other forms of the summand can be treated similarly.
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Now, for convenience, we define a useful operator 	i . Let f (A�) be a function
which involves the matrix A�, and assume that i /∈ �. 	i is defined as

	i

(
f (A�)

) = f (A�) − f (A�∪{i}).

For the term in (3.13), in the ideal situation, if Xj1 is independent of other parts,
then the conditional expectation of Xj1 , given all the other observations, is zero,
which means that the expectation in (3.13) is zero. Unfortunately, this is not the case,
because Xj1 is involved in the matrices Ai2j2 , Ai3j3 , and Ai3j4 . However, motivated
by this idea, we can consider the following term:

E

(
X∗

i1
Ai1j1Xj1(

1
n
X∗

i1
Ai1j1Xi1 − 1

n
trAi1j1)

(1 + 1
n

trAi1j1)
3

× X∗
j2

Ai2j1j2Xi2(
1
n
X∗

i2
Ai2j1j2Xi2 − 1

n
trAi2j1j2)

(1 + 1
n

trAi2j1j2)
3

× X∗
i3
Ai3j1j3Xj3(

1
n
X∗

i3
Ai3j1j3Xi3 − 1

n
trAi3j1j3)

(1 + 1
n

trAi3j1j3)
3

× X∗
j4

Ai3j1j4Xi3(
1
n
X∗

i3
Ai3j1j4Xi3 − 1

n
trAi3j1j4)

(1 + 1
n

trAi3j1j4)
3

)
. (3.14)

For simplicity, we introduce the notation Sk(i, j):

Sk(i, j) = X∗
i AijkXj (

1
n
X∗

i AijkXi − 1
n

trAijk)

(1 + 1
n

trAijk)3
,

and (3.14) can be written as

E
[
S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i3, j4)

]
.

Note that now all the matrices involved in (3.14) are independent of Xj1 , so the ex-
pectation in (3.14) is zero, and hence subtracting (3.14) from (3.13) will not change
the expectation in (3.13). This leads us to consider

S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i3, j4) − S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)S̄j1(i3, j4)

= S(i1, j1)
[
	j1 S̄(i2, j2)

]
S(i3, j3)S̄(i3, j4)

+ S(i1, j1)S̄j1(i2, j2)
[
	j1S(i3, j3)

]
S̄(i3, j4)

+ S(i1, j1)S̄j1(i2, j2)Sj1(i3, j3)
[
	j1 S̄(i3, j4)

]
. (3.15)

The explicit formula of [	j1S(i2, j2)] can be expressed as
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	j1S(i2, j2) = S(i2, j2) − Sj1(i2, j2)

= [−	j1(1 + 1
n

trAi2j2)
3]X∗

i2
Ai2j2Xj2(

1
n
X∗

i2
Ai2j2Xi2 − 1

n
trAi2j2)

(1 + 1
n

trAi2j2)
3(1 + 1

n
trAi2j1j2)

3

+ [	j1(X
∗
i2
Ai2j2Xj2)]( 1

n
X∗

i2
Ai2j2Xi2 − 1

n
trAi2j2)

(1 + 1
n

trAi2j1j2)
3

+ X∗
i2
Ai2j1j2Xj2[	j1(

1
n
X∗

i2
Ai2j2Xi2 − 1

n
trAi2j2)]

(1 + 1
n

trAi2j1j2)
3

, (3.16)

where

	j1

(
1 + 1

n
trAi2j2

)3

=
[
	j1

(
1 + 1

n
trAi2j2

)](
1 + 1

n
trAi2j2

)2

+
(

1 + 1

n
trAi2j1j2

)[
	j1

(
1 + 1

n
trAi2j2

)]

×
(

1 + 1

n
trAi2j2

)

+
(

1 + 1

n
trAi2j1j2

)2[
	j1(1 + 1

n
trAi2j2)

]
, (3.17)

	j1

(
1 + 1

n
trAi2j2

)
= −1

n

1
n
X∗

j1
A2

i2j1j2
Xj1

1 + 1
n
X∗

j1
Ai2j1j2Xj1

, (3.18)

	j1

(
X∗

i2
Ai2j2Xj2

) = −1

n

X∗
i2
Ai2j1j2Xj1X

∗
j1

Ai2j1j2Xj2

1 + 1
n
X∗

j1
Ai2j1j2Xj1

, (3.19)

	j1

(
1

n
X∗

i2
Ai2j2Xi2 − 1

n
trAi2j2

)
= 1

n

1
n
X∗

j1
A2

i2j1j2
Xj1

1 + 1
n
X∗

j1
Ai2j1j2Xj1

− 1

n2

X∗
i2
Ai2j1j2Xj1X

∗
j1

Ai2j1j2Xi2

1 + 1
n
X∗

j1
Ai2j1j2Xj1

. (3.20)

Combining (3.16) to (3.20), again by Lemma 4.6 and the Hölder inequality, we find
that

E
∣∣	j1S(i2, j2)

∣∣r = O
(
n−r/2) for any r ≥ 2. (3.21)

We can verify that E|	j1S(i3, j3)|r and E|	j1S(i3, j4)|r also have the above order.
Therefore, by (3.11) and (3.15), the order of (3.13) is O(n−1/2). Furthermore, the
same order can be verified for all the other terms with seven different subindices.
Since the number of the terms with seven different sub-indices is at most O(n7), we
know that the contribution of these terms in E|D̃43|4 is of order O(n−3/2), which is
summable.
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Note that if we compute the order of (3.13) directly by Lemma 4.6 and the Hölder
inequality, the result will be O(1). By taking the difference between (3.13) and (3.14),
the order is reduced by n1/2. Since this order reduction method will be used fre-
quently in the subsequent discussions, we present it in a slightly more general form
than that in Lemma 3.2.

In order to simplify the long expressions, we introduce another operator 
i and
extend the definition of 	i . Let f (A�1 ,A�2, . . . ,A�m) be a function which involves
the matrix A�1,A�2, . . . ,A�m ; 
i is defined as


i

(
f (A�1 ,A�2, . . . ,A�m)

) = f (A�′
1
,A�′

2
, . . . ,A�′

m
),

where

�′
k = �k ∪ {i}, k = 1,2, . . . ,m.

As an example of this operator, note that 
kS(i, j) = Sk(i, j). 	i is defined as

	if = f − 
if.

Consider the following typical expressions:

X∗
i A�Xj with i, j ∈ �, (3.22)

1

n

(
X∗

i A�Xi − trA�

)
with i ∈ �, (3.23)

1

1 + 1
n

trA�

, (3.24)

1

1 + 1
n
X∗

i A�Xi

with i ∈ �, (3.25)

X∗
i A�1A�2Xi with i ∈ �1 ∩ �2, (3.26)

X∗
i A�1A�2Xj with i ∈ �1, j ∈ �1 ∩ �2, (3.27)

where i �= j . The orders of (3.22)–(3.26) can be easily computed by Lemma 4.6. For
(3.27), we use the following inequality about the operator norm:

E
∣∣X∗

i A�1A�2Xj

∣∣r ≤ E
(∥∥X∗

i

∥∥‖A�1‖‖A�2‖‖Xj‖
)r

≤
(

C
√

n · 1

ε2
· C√

n

)r

= O
(
nr

)

for r ≥ 1, because the entries of Xi and Xj are uniformly bounded. Now we pick
some index k �= i, j and apply the operator 	k to them. For (3.22)–(3.24), the results
can be found from (3.18)–(3.20). The other results are the following:

	k

(
1

1 + 1
n
X∗

i A�Xi

)
= 1

n2

X∗
i A�∪{k}XkX

∗
kA�∪{k}Xi

(1 + 1
n
X∗

i A�Xi)(1 + 1
n
X∗

i A�∪{k}Xi)
I{k /∈�}, (3.28)
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	k

(
X∗

i A�1A�2Xj

)

= X∗
i (A�1 − A�1∪{k})A�2Xj + X∗

i A�1∪{k}(A�2 − A�2∪{k})Xj

= −
1
n
X∗

i A�1∪{k}XkX
∗
kA�1∪{k}A�2Xj

1 + 1
n
X∗

kA�1∪{k}Xk

I{k /∈�1}

−
1
n
X∗

i A�1∪{k}A�2∪{k}XkX
∗
kA�2∪{k}Xj

1 + 1
n
X∗

kA�2∪{k}Xk

I{k /∈�2}, (3.29)

where Ik /∈� is 1 when k /∈ � and 0 otherwise. The one for (3.26) is very similar with
(3.29). We can also compute the orders of these differences and summarize the results
in the following table. For r ≥ 2,

C E|C|r E|	kC|r

(3.22) O(nr/2) O(1)

(3.23) O(n−r/2) O(n−r )

(3.24) O(1) O(n−r )

(3.25) O(1) O(n−r )

(3.26) O(nr) O(nr/2)

(3.27) O(nr) O(nr/2)

Now we are ready to present the lemma.

Lemma 3.2 Let X be the up-left p × n corner of a double array {Xuv : u,v =
1,2, . . .} of i.i.d. bounded complex r.v.s with zero mean and unit variance. Assume
that Assumptions (i) and (ii) hold. We consider a typical product,

m∏

k=1

Ck, (3.30)

which satisfies

(i) each Ck is (or the conjugate of) one of (3.22)–(3.27), so there are at most two
indices ik, jk and at most two index sets �k1,�k2 corresponding to i, j and
�1,�2 in (3.22)–(3.27) for each Ck ;

(ii) there is an index, say j1, which satisfies
(a) j1 comes from C1, and C1 has the form (3.22): X∗

i1
A�1Xj1 ;

(b) j1 appears only once among {ik, jk, k = 1,2, . . . ,m}.
Then the order of |E ∏m

k=1 Ck| can be reduced by n1/2 from the one computed by
Lemma 4.6 directly.

Proof Because of (ii), we know that

E

[
m∏

k=1


j1Ck

]

= 0.
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Therefore, we can express the expectation as the following telescoping sum:

E

m∏

k=1

Ck = E

(
m∏

k=1

Ck −
m∏

k=1


j1Ck

)

= E

[
m∑

k=1

(∏

l<k


j1Cl

)
	j1Ck

(∏

l>k

Cl

)]

. (3.31)

Let us consider the kth summand in (3.31). For l < k, we know that E|
j1Cl |r has
the same order with E|Cl |r . For the difference term 	j1Ck , if j1 ∈ �k1 ∩ �k2, it is 0
according to the definition of the operator 	j1 ; otherwise the orders are given in the
preceding table, which completes the proof together with the Hölder inequality. �

Remark Let us make two observations here. By applying 	k to (3.30), we get a sum
of several products.

Observation (i). Each product still satisfies condition (i) of Lemma 3.2.
Observation (ii). If there is another index, say j2, which also satisfies condition (ii),

then for each product, j2 still satisfies condition (ii).

Therefore, it is possible to apply Lemma 3.2 several times when computing
|E ∏m

k=1 Ck|.
Case 2: Eight different indices

Now we consider the terms with eight different indices which have the form

E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]
. (3.32)

Due to (3.11),

∣∣E
[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]∣∣ = O(1).

However, [S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)] satisfies condition (i) of Lemma 3.2,
and j1, j2, j3, j4 all satisfy condition (ii). Therefore, we can apply Lemma 3.2 four
times to obtain

∣
∣E

[
S(i1, j1)S̄(i2, j2)S(i3, j3)S̄(i4, j4)

]∣∣ = O
(
n−2). (3.33)

Now the contribution of all the terms with eight different indices in E|D̃43|4 is of
order O(n−2), which is summable.

With the results from the above two cases, we can complete the proof of (3.12),
which leads us to consider

T4 = 1

n2

∑

i �=j

X∗
i AijXj

(1 + 1
n

trAij )(1 + 1
n
X∗

j AijXj )
.
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Similarly, in the denominator of T4, X∗
j AijXj can also be replaced by trAij . In the

following parts, we will focus on

T5 = 1

n2

∑

i �=j

X∗
i AijXj

(1 + 1
n

trAij )2
, (3.34)

and our task is to show that

T5 → 0 a.s. (3.35)

3.4.3 Proof of (3.35)

Let

T (i, j) = X∗
i AijXj

(1 + 1
n

trAij )2
.

Then we can simplify the expression of T5:

T5 = 1

n2

∑

i �=j

T (i, j).

Since T5 is real, in order to prove (3.35), it suffices to show that E(T 4
5 ) is summable.

We expand T 4
5 as

T 4
5 = 1

n8

∑

i1 �=j1
i2 �=j2
i3 �=j3
i4 �=j4

T (i1, j1)T (i2, j2)T (i3, j3)T (i4, j4).

By Lemma 4.6, we know that

E|T (i, j)|4 = O
(
n2);

then by the Hölder inequality, we have

∣∣ET (i1, j1)T (i2, j2)T (i3, j3)T (i4, j4)
∣∣ = O

(
n2). (3.36)

This means that the contribution by terms with less than or equal to 4 indices is of
order O(n−2), which is summable. Now we consider the following 4 cases.

• When there are 5 different indices, there are at least two of them which appear only
once. So we can apply Lemma 3.2 two times to reduce the order of (3.4.3) to be
O(n). Then the contribution of terms with 5 different indices are of order O(n−2),
which is summable.

• When there are 6 different indices, there are at least four of them which appear
only once, so the order of (3.4.3) can be reduced to O(1), and the contribution of
these terms is of order O(n−2).
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• When there are 7 different indices, there are six of them which appear only once,
so the order of (3.4.3) can be reduced to O(n−1), and the contribution of these
terms is of order O(n−2).

• When there are 8 different indices, we can apply Lemma 3.2 eight times to reduce
the order of (3.4.3) to O(n−2), and the contribution of these terms is also of order
O(n−2).

Therefore, we have proved (3.35)
Now we are in the position to conclude the proof of Theorem 1.4. By the discus-

sion in Sects. 3.4.1 and 3.4.2, we know that (3.35) leads to (3.8), which is

limT2 = 0 a.s.

In Sect. 3.3, we show that (see (3.7))

lim supT1 < 1 a.s.

Combining these two results, we have succeeded in proving (3.4), that is,

lim sup X̄∗(S − λI)−1X̄ < 1 a.s. ∀0 < λ < a

when 0 < c < 1. As a result of Lemma 3.1, this means that we have established (3.1),
that is,

lim infλmin(S) ≥ a = (1 − √
c)2 a.s.

when 0 < c < 1. The proof of Theorem 1.4 is now completed.

4 Some Lemmas

We first introduce a classical result in linear algebra. In fact, it is Corollary 7.3.8 of
Horn and Johnson [5].

Lemma 4.1 Suppose that A and B are m × n complex matrices, and let q =
min{m,n}. If σ1 ≥ σ2 ≥ · · · ≥ σq are the singular values of A and τ1 ≥ τ2 ≥ · · · ≥ τq

are the singular values of B , then

|σi − τi | ≤ ‖A − B‖ for all i = 1,2, . . . , q,

where ‖A‖ denotes the spectrum norm of the complex matrix A, which is defined as
the largest singular value of A.

The following rank inequality, which helps us to measure the difference between
two empirical distributions, was proved in Silverstein and Bai [8].

Lemma 4.2 For n × n Hermitian matrices A and B ,

∥∥FA − FB
∥∥ ≤ 1

n
rank(A − B),

where ‖f ‖ = supx |f (x)|.
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In the subsequent lemma, we list three equalities, which are used frequently in our
proof. They can be proved by simple linear algebra.

Lemma 4.3 Suppose that A is an n × n complex matrix and β ∈ C
n, where C is the

complex plane. If both A and (A + ββ∗) are nonsingular, then 1 + β∗A−1β �= 0, and

(
A + ββ∗)−1

β = A−1β

1 + β∗A−1β
, (4.1)

β∗(A + ββ∗)−1 = β∗A−1

1 + β∗A−1β
, (4.2)

A−1 − (
A + ββ∗)−1 = A−1ββ∗A−1

1 + β∗A−1β
. (4.3)

The following lemma, which could be viewed as a generalization of the Marcin-
kiewicz strong law of large numbers (see [7], pp. 242–243), was proved in [4].

Lemma 4.4 Let {Xij , i, j = 1,2, . . .} be a double array of i.i.d. complex r.v.s. Let
α > 1/2, β ≥ 0, and M > 0 be constants. Then, as n → ∞,

max
j≤Mnβ

∣∣∣∣∣
n−α

n∑

i=1

(Xij − c)

∣∣∣∣∣
→ 0 a.s.

if and only if the following conditions are true:

(i) E|X11|(1+β)/α < ∞;

(ii) c =
{

EX11 if α ≤ 1,

any value in C if α > 1.

The next result was proved in [1] (see (1.9b) and the theorem in the Appendix).

Lemma 4.5 Under the conditions of Theorem 1.1, if the underlying variables are
uniformly bounded, then we have, for c ∈ (0,1),

P
(
λmin(S) ≤ η

) = o
(
n−l

)

for any 0 < η < (1 − √
c)2 and any positive l.

The first two inequalities in the following lemma were originally proved in [2]
(Lemma 2.7 and Lemma A.1) by martingale inequalities. We also state some simple
consequences for our purpose.

Lemma 4.6 Let Y = (Y1, Y2, . . . , Yn)
T be a random vector containing i.i.d. stan-

dardized complex entries, B be an n × n nonnegative definite Hermitian matrix, and
C be an n × n complex matrix. Then

E
∣∣Y ∗BY

∣∣p ≤ Kp

(
(trB)p + E|Y1|2p trBp

)
for any p ≥ 1, (4.4)
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E
∣∣Y ∗CY − trC

∣∣p ≤ Kp

((
E|Y1|4 trCC∗)p/2

+ E|Y1|2p tr
(
CC∗)p/2)

for any p ≥ 2. (4.5)

In addition, if all the entries of Y are bounded by a constant M1 and the norm of B

and C are bounded by another constant M2, then we have the following immediate
consequences:

E
∣∣Y ∗AY

∣∣p ≤ Kpnp for any p ≥ 1, (4.6)

E
∣∣Y ∗AY − trA

∣∣p ≤ Kpnp/2 for any p ≥ 2, (4.7)

E
∣∣Y ∗CY

∣∣p ≤ Kpnp for any p ≥ 1, (4.8)

and if Z is i.i.d. with Y , then

E
∣∣Y ∗CZ

∣∣p ≤ Kpnp/2 for any p ≥ 2. (4.9)

These Kp are constants only depending on p, and they do not need to have the same
value.
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