
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Analysis of Tensor Time Series: tensorTS

Rong Chen
Rutgers University

Yuefeng Han
Rutgers University

Zebang Li
Rutgers University

Han Xiao
Rutgers University

Dan Yang
The University of Hong Kong

Ruofan Yu
Rutgers University

Abstract

Tensor and matrix time series data have been amassed more and more from many areas
in recent years, calling for new statistical models, methods and algorithms for analyzing
such data. Statistical tools for tensor time series have been developed in two major direc-
tions: autoregressive modeling and factor modeling. In both directions, a key idea is to
make use of the tensor structure and adopt a multi-linear form in the model formulation.
The corresponding models have advantages in terms of dimension reduction, interpretabil-
ity and computing. This paper introduces a R package tensorTS which implements the
methodologies proposed in a series of recent papers, including functions for estimation,
model selection, prediction and visualization for both tensor autoregressive models and
dynamic tensor factor models. The usage of the functions and the effectiveness of the
proposed models are demonstrated by an example of the NYC taxi data.

Keywords: autoregressive models, factor models, model selection, number of factors, reduced
rank, Tucker decomposition.

1. Introduction

Due to the advancement of computing power in the past decade, large amount of complex
data are generated and collected over time in a wide range of fields such as economics, finance,
biology, engineering, social science, among others. Often, at each time point, the observations
routinely and naturally arise in the form of multi-dimensional arrays, or tensors, when there
are multiple classifications for each observation. Such tensor observations are often observed
over time, forming tensor time series, which is an extension of the classical mutilvariate
time series (in vector form). For instance, a set of economic indicators of a group of countries

https://doi.org/10.18637/jss.v000.i00

2 Analysis of Tensor Time Seires

result in a matrix (order-2 tensor) time series (Wang, Liu, and Chen 2019), the import-export
volume of multiple categories among several countries generate an order-3 tensor time series
(Chen, Yang, and Zhang 2022b), the evolution of social network in different pathways yields
an order-3 tensor time series (Goldenberg, Zheng, Fienberg, Airoldi et al. 2010; Hanneke, Fu,
and Xing 2010; Snijders 2001; Kolaczyk and Csárdi 2014; Ji and Jin 2016; Zhao, Levina, and
Zhu 2012; Phan and Airoldi 2015), and many more.

The omnipresence of tensor time series poses pressing need to develop state-of-the-art method-
ologies and software/package to analyze such data, explore the dependency of observations
over time, understand the dynamic of the underlying process, and make accurate predictions.
The new R package tensorTS is created timely for this purpose. It is available from the
Comprehensive R Archive Network at https://CRAN.R-project.org/package=tensorTS.

The study of tensors with independent and identically distributed (iid) assumption has been
demonstrated to be powerful and versatile at the confluence of statistics, computer science,
machine learning, and signal processing. Research areas range from tensor completion (Liu,
Musialski, Wonka, and Ye 2012; Yuan and Zhang 2016; Zhang 2019; Xia, Yuan, and Zhang
2021; Yuan and Zhang 2017; Xia and Yuan 2019), tensor decomposition (Kolda and Bader
2009; Sun, Lu, Liu, and Cheng 2017; Anandkumar, Ge, and Janzamin 2014; Sidiropoulos,
De Lathauwer, Fu, Huang, Papalexakis, and Faloutsos 2017; Liu, Shang, Fan, Cheng, and
Cheng 2014; Liu, Yuan, and Zhao 2022), tensor denoise (Xia and Zhou 2019), tensor regression
(Lock 2018; Zhang, Luo, Raskutti, and Yuan 2020; Raskutti, Yuan, and Chen 2019; Chen,
Raskutti, and Yuan 2019; Zhou, Li, and Zhu 2013; Hoff 2015).

There are many statistical software/packages available to analyze tensor data under various
models and objectives. The R packages rTensor (Li, Bien, and Wells 2021, 2018) and tensor
(Rougier 2012) provide tensor operations and decomposition methods. PTAk (Leibovici 2021,
2010) supports CANDECOMP/PARAFAC(CP) and Tucker decompositions, and generalizes
singular value decomposition (SVD) of matrices to tensors. Package tensorr (Zamora 2019)
provides methods to manipulate and store sparse tensors. Package tensorA (van den Boogaart
2020) provides Einstein and Riemann summation conventions as well as some tensor algebra.
Package nnTensor (Tsuyuzaki, Ishii, and Nikaido 2021; Cichocki, Zdunek, Phan, and Amari
2009) is for non-negative matrix factorization, non-negative CP and Tucker decompositions.
Package tensorBF (Khan et al. 2016) deals with Bayesian tensor factorization. Package tensr
(Gerard and Hoff 2018) contains a collection of functions for the estimation and testing of
covariance with Kronecker structure as well as the manipulation and decomposition of tensor
data. MultiwayRegression performs tensor-on-tensor regression (Lock 2019, 2018).

Conventional multivariate time series analysis has also been studied extensively, with a rising
focus on high-dimensional time series. Recent research on high dimensional time series can be
roughly divided into two categories: vector auto-regressive (VAR) models with regularization
(Basu and Michailidis 2015; Davis, Zang, and Zheng 2016; Han, Lu, and Liu 2015; Kock
and Callot 2015; Lin and Michailidis 2017; Loh and Wainwright 2011; Melnyk and Banerjee
2016; Nicholson, Matteson, and Bien 2017) and dynamic vector factor models (VFM) (Tiao
and Tsay 1989; Engle and Kroner 1995; Forni, Hallin, Lippi, and Reichlin 2000; Stock and
Watson 2016; Fan, Liao, and Mincheva 2013; Pena and Box 1987; Lam and Yao 2012). Both
categories can achieve effective dimension reduction: VAR with regularization results in sparse
coefficient matrix of a smaller number of parameters; VFM assumes low rank structure to
extract common information embedded in a small number of factors.

https://CRAN.R-project.org/package=tensorTS

Journal of Statistical Software 3

To analyze multivariate time series analysis in low dimensions, there exist many statisti-
cal software/packages with classical autoregressive and moving average approaches. MTS
(Tsay and Wood 2021) is a comprehensive package for analyzing multivariate linear time
series, including functions for VAR and vector autoregressive and integrated moving aver-
age (VARIMA) models, co-integration analysis, multivariate volatility models, factor models,
among many other functions; see Tsay (2013) for more detail. For VAR models, mAr (Barbosa
2012) provides step-wise least squares estimation. Package sparsevar (Vazzoler 2021; Basu
and Michailidis 2015) implements the sparse VAR and sparse vector error correction models
(VECM). BigVAR (Nicholson, Matteson, and Bien 2019; Nicholson, Wilms, Bien, and Matte-
son 2020) and bigtime (Wilms, Matteson, Bien, Basu, Nicholson, and Wegner 2021b; Wilms,
Basu, Bien, and Matteson 2021a) consider VAR and vector autoregressive with exogenous
variable (VARX) models with structured Lasso penalties. Package svars (Lange, Dalheimer,
Herwartz, Maxand, and Riebl 2022; Lange, Dalheimer, Herwartz, and Maxand 2021) imple-
ments data-driven model specifications for structural VAR models. VARshrink (Lee, Yang,
and Kim 2019) provides shrinkage methods for VAR models, and dse (Gilbert 2020) focuses
on VARIMA models and state space models. VECM is also available through the packages
urca (Pfaff, Zivot, and Stigler 2016; Pfaff 2008), ecm (Bansal 2021), vars (Pfaff and Stigler
2021; Pfaff 2008), and tsDyn (Fabio Di Narzo, Aznarte, and Stigler 2009). Network time
series analysis is carried out by GNAR (Leeming, Nason, Nunes, and Knight 2020; Knight,
Leeming, Nason, and Nunes 2020), and graphical models are implemented by graphicalVAR
(Epskamp and Asena 2021; Epskamp, Waldorp, Mõttus, and Borsboom 2018) and mgm
(Haslbeck 2021; Haslbeck and Waldorp 2020). Functions for Bayesian VAR models (Chan,
Koop, Poirier, and Tobias 2019; Koop and Korobilis 2010; Lütkepohl 2005) are provided
in bvartools (Mohr 2022), and BMTAR (Salcedo, Villanueva, and Torres 2021) implements
Baysian multivariate threshold AR models with missing data. Package mfbvar (Ankargren,
Yang, and Kastner 2021) includes tools for estimating mixed-frequency Bayesian and state
space-based VAR models. BVAR (Kuschnig, Vashold, McCracken, and Ng 2022; Kuschnig
and Vashold 2021) provides a toolkit for hierarchical Bayesian VAR models. BGVAR (Böck,
Feldkircher, and Huber 2021) implements Bayesian Global VAR models.

To analyze multivariate time series analysis in high dimensions, many statistical software and
packages have been developed via factor models, principal component analysis (PCA), or state
space models. For example, ForeCA (Goerg 2020), PCA4TS (Chang, Guo, and Yao 2015)
and HDTSA (Lin, Cheng, Chang, and Yao 2021) provide various methods for PCA on vector
time series, including estimation, rank determination and several inferential tools. Package
odpc (Peña, Smucler, and Yohai 2022) computes one-sided dynamic PCA, freqdom (S. and L.
2022) implements dynamic PCA in frequency domain, tsBSS (Matilainen, Croux, Miettinen,
Nordhausen, Oja, Taskinen, and Virta 2021) provides blind source separation and supervised
dimension reduction. State space models are available via the packages KFAS (Helske 2021,
2017), FKF (Luethi, Erb, Otziger, McDonald, and Smith 2021), FKF.SP (Aspinall, Gepp,
Harris, Kelly, Southam, Vanstone, Luethi, Erb, Otziger, and Smith 2021), dlm (Petris and
Gilks 2018; Petris 2010), mssm (Christoffersen and Williams 2022), MARSS (Holmes, Ward,
Scheuerell, and Wills 2021; Holmes, Ward, and Wills 2012), and mbsts (Qiu and Ning 2021).

However, there have been no packages available to study autoregressive or factor models for
tensor-valued time series in either low or high dimensions. The analysis of tensor time series
is very different from the traditional tensor analysis with iid observations, and is also very
different from vector time series analysis. There are two ad hoc ways to convert tensor time

4 Analysis of Tensor Time Seires

series into something that can be analyzed via existing methods. The first one is to treat time
as an additional mode of the tensor, i.e. combine all observations from different time points
to form a single tensor with one extra mode, and then apply standard tensor analysis tools.
Such an approach does not reveal the dynamic nature of the time series, and does not in
general meet the objectives of time series analysis. The second one is to vectorize the tensor
observation at each time point into a long vector, and use the standard tools of vector time
series analysis. But such an approach does not fully utilize the grouping information (each
mode corresponds to a grouping of the individual series) provided in the tensor structure.
Moreover, it is much more difficult to interpret the results from such an approach.
The recent development of analyzing tensor time series that preserves both the tensor struc-
ture and the time series structure includes two approaches: tensor auto-regressive (TenAR)
models and dynamic tensor factor models (TenFM). The commonality of the proposed models
in these two approaches is the adoption of the multilinear form, which can achieve substantial
dimension reduction and admit interpretations adherent to each mode of the tensor. Such a
multilinear form is also frequently utilized for statistical tensor analysis under iid assumptions.
Regarding TenAR models, Hoff (2015) and Chen, Xiao, and Yang (2021) pioneer the study of
autoregressive model for matrix time series (MAR) by introducing the bilinear autoregression.
Xiao, Han, Chen, and Liu (2021) considers the MAR model with low rank coefficient matrices.
Li and Xiao (2021) extends Chen et al. (2021) to tensor time series, also allowing multiple lags
and multiple terms for each lag in the autoregression. Wang, Zheng, and Li (2021) considers
a full tensor autoregressive model which is equivalent to the VAR (after the vectorization),
and simplifies the model by imposing low rank constraint on the coefficient tensor.
For TenFM model under the assumption that the noise process is white, Wang et al. (2019)
initiates the research of matrix factor model using SVD of the outer product of the lagged
matrix columns/rows. In a recent breakthrough, Chen et al. (2022b) considers the tensor
factor models and proposes two non-iterative estimators based on the inner and outer prod-
ucts, named TIPUP and TOPUP estimation procedures, respectively. Han, Chen, Yang, and
Zhang (2020) further improves the two estimators through iterative projections. Han, Chen,
and Zhang (2022) proposes two methods for the determination of the number of factors, which
is a fundamental problem in factor analysis.
There are other works on extensions and other aspects of matrix and tensor time series models,
including, among others, Chen, Tsay, and Chen (2020a), Chen, Xia, Cai, and Fan (2020b)
and Yu, He, Kong, and Zhang (2022), though these methods are not covered by the package
tensorTS.
The goal of this article is to introduce the R package tensorTS, which implements the mod-
els/methods/algorithms proposed in the authors’ series of recent works on TenAR and TenFM,
including Chen et al. (2021); Li and Xiao (2021); Xiao et al. (2021); Chen et al. (2022b); Han
et al. (2020), and Han et al. (2022). It highlights the capability of the software, and demon-
strates its usage with a case study. Some major functions in package tensorTS are listed
in Table 1. The complete list of functions and their brief descriptions can be found in Ap-
pendix A. For more details of each function, see the online manual of the package also available
at https://cran.r-project.org/package=tensorTS.
The rest of this article is organized as follows. Section 2 introduces the TenAR models, the
reduced rank matrix autoregressive model, their model estimation and model selection meth-
ods, and demonstrates the usage of the associated functions in the package tensorTS with

https://cran.r-project.org/package=tensorTS

Journal of Statistical Software 5

Function Name Usage Section

tenAR.est Estimation of the tensor autoregressive model 2.2
matAR.RR.est Estimation of the matrix reduced rank autoregressive model 2.3
tenFM.est Estimation of the tensor factor model 3.4
tenFM.rank Rank determination of the tensor factor model 3.4

Table 1: Major functions in package tensorTS for the autoregressive and factor models for
tensor time series.

examples. Section 3 introduces the TenFM model, the methods for its estimation and rank
determination, and the relevant functions in tensorTS with examples. Section 4 summarizes.
Appendix A provides the complete list of functions in tensorTS with short descriptions. The
code to download and pre-process the taxi data used in the examples is given in Appendix B.
The collection of all the code in Sections 2 and 3 for the analysis of the taxi data is given in
Appendix C.

Notation. Throughout this article, we make the convention that uppercase letters in boldface
denote matrices, lowercase letters in boldface are vectors, and script letters symbolize tensors
of order 3 or higher. We use b to denote the tensor product, d the Kronecker product, and
ˆk the product of a tensor and a matrix along mode-k. For definitions of these products and
other basic tensor operations (vectorization, unfolding etc), we refer the readers to Kolda and
Bader (2009).

2. Tensor Autoregressive Models

2.1. Tensor Autoregressive Models

Chen et al. (2021) considers the matrix autoregressive models of order 1, denoted by MAR(1),
in the following bilinear form

Xt “ A1Xt´1AJ
2 `Et, (1)

where Xt is a d1 ˆ d2 matrix observed at time t, A1 and A2 are d1 ˆ d1 and d2 ˆ d2
autoregressive coefficient matrices respectively, and Et is a d1 ˆ d2 matrix white noise.
Tensors are multi-dimensional arrays, naturally extending and including matrices as a special
case. Li and Xiao (2021) extends the MAR(1) model to multi-linear tensor autoregressive
models. Consider a tensor time series tXtu, where at each time t, an order-K tensor Xt P

Rd1ˆd2ˆ¨¨¨ˆdK is observed. The tensor autoregressive model of order p, denoted by TenAR(p)
(or more precisely TenARpp,R1, . . . , Rpq, indicating there are Ri multilinear terms for lag i),
has the form

Xt “

p
ÿ

i“1

Ri
ÿ

r“1
Xt´i ˆ1 A

pirq
1 ˆ2 ¨ ¨ ¨ ˆK A

pirq
K ` Et. (2)

where A
pirq
k P Rdkˆdk is the coefficient matrix associated with mode k for the r-th term at

lag i, Et P Rd1ˆd2ˆ¨¨¨ˆdK is a tensor white noise process satisfying CovpEt, Esq “ 0 whenever

6 Analysis of Tensor Time Seires

s ‰ t, and p is the autoregressive order. After vectorization by stacking all mode-1 fibers,
model (2) becomes

vecpXtq “

p
ÿ

i“1
ΦivecpXt´iq ` vecpEtq, (3)

where

Φi “

Ri
ÿ

r“1

”

d1
k“KA

pirq
k

ı

. (4)

Here, d denotes the Kronecker product of two matrices, andd1
k“KA

pirq
k :“ A

pirq
K dA

pirq
K´1d¨ ¨ ¨d

A
pirq
1 . In view of (3), the TenAR model can be perceived as a VAR whose coefficient matrices

bear the form of the sum of a few Kronecker products. We note that after rearrangement
of the entries, (4) corresponds to a tensor CP decomposition of rearranged Φ, see Li and
Xiao (2021) for more details. In fact, if Ri is sufficiently large, the sum in (4) can represent
any dˆ d matrix, and the model (3) will become a VAR model without any restriction. On
the other hand, when Ri are small, significant dimension reduction is achieved by model (2),
compared with the unrestricted VAR model. The TenAR model allows the user to specify
the Ri, and thus provides flexibility and capability of capturing the dynamics. We will refer
to Ri as the Kronecker rank of Φi in the sequel.
In the R package tensorTS, estimation for TenAR models is carried out by the function
tenAR.est, with options to use one of three estimation methods: projection (PROJ), least
squares (LSE), and maximum likelihood (MLE).
The projection method first estimates the coefficient matrices Φi’s in the vectorized AR model
(3) without restrictions, and then estimates A

pirq
k by projecting Φ̂i onto the space of sums of

Kronecker products (see (4)) under the Frobenius norm. After rearrangement of entries, this
boils down to finding the best rank-Ri approximation of the rearranged Φ̂i. Again, see Li and
Xiao (2021) for more details. PROJ is less efficient than LSE and MLE and requires a larger
sample size to obtain Φ̂i, but it can be used as an initial value for the other two methods.
The least squares estimators are the solutions of the least squares problem

´

Â
p11q
1 , ¨ ¨ ¨ , Â

ppRpq

K

¯

“ arg min
A
p11q
1 ,¨¨¨ ,A

ppRpq

K

ÿ

t

›

›

›

›

›

Xt ´

p
ÿ

i“1

Ri
ÿ

r“1
Xt´i ˆ1 A

pirq
1 ˆ2 ¨ ¨ ¨ ˆK A

pirq
K

›

›

›

›

›

2

F

.

An iterative procedure is used. It updates one of the coefficient matrices while holding the
others fixed in each iteration, using the PROJ estimators as the initial values.
The maximum likelihood method is based on the additional assumption that Et is normal
with a separable covariance structure CovpvecpEtqq “ ΣK d ΣK´1 d ¨ ¨ ¨ d Σ1. Each Σk is
a dk ˆ dk symmetric positive definite matrix, corresponding to the covariance matrix along
mode k of Et. In this case, the error tensor process can be represented equivalently as

Et “ Zt ˆ1 Σ1{2
1 . . .ˆK Σ1{2

K , (5)

where Zt has iid standard normal elements. Under such an assumption, the corresponding log
likelihood can be maximized through an alternating algorithm. Specifically, the algorithms
updates one matrix of the set tApirq

k ,Σk : 1 ď i ď p, 1 ď r ď Ri, 1 ď k ď Ku while holding
others fixed, and iterates until convergence. We skip the formula of the log likelihood and

Journal of Statistical Software 7

the details of the algorithm which are quite complicated for tensor data. For more technical
details, including theoretical properties of the estimators, see Li and Xiao (2021).
In tensorTS, an extended Bayesian information criterion (EBIC) is provided to facilitate
model selection of the AR order p and the Kronecker ranks Ri, i “ 1, . . . , p. Specifically, for
any given order p and Rp :“ pR1, . . . , Rpq, define the information criterion as

EBICpp; Rpq :“ 1
2 log

¨

˝

1
dT

ÿ

t

›

›

›

›

›

Xt ´

p
ÿ

i“1

Ri
ÿ

r“1
Xt´i ˆ1 Â

pirq
1 ˆ2 ¨ ¨ ¨ ˆK Â

pirq
K

›

›

›

›

›

2

F

˛

‚` gpd, T q
p
ÿ

i“1
Ri,

(6)
where Â

pirq
k are the estimates obtained with given p and Rp, and gpd, T q is the penalty

function. It is shown in Li and Xiao (2021) that this criterion selects the p and Rp consistently
under both fixed and diverging dimension setups, as long as gpd, T q Ñ 0 and T

d gpd, T q Ñ 8

as T Ñ8. In tensorTS, the penalty function gpd, T q is chosen as logpT q{T .
The function tenAR.est allows users to specify other parameters, including the maximum
number of iterations (default: niter=150), the error tolerance in terms of the Frobenius norm
(default: tol=1e-4), and whether to print the number of iterations (default: print.true=FALSE).
The components of the output list of the function tenAR.est are summarized in Table 2.

Value Details

A a list of estimated coefficient matrices Â
pirq
k , such that A[[i]][[r]][[k]] “ Â

pirq
k .

SIGMA only if method=MLE, a list of estimated Σ̂1, . . . , Σ̂K .
res residuals.
Sig sample covariance matrix of the residuals vecpÊtq.
cov grand covariance matrix of all entries of all Â

pirq
k .

sd standard errors of Â
pirq
k , returned as a list aligned with A.

niter number of iterations.
BIC value of extended Bayesian information criterion.

Table 2: Components of the output list of the function tenAR.est.

Prediction under a TenAR model is similar to the univariate and vector AR models. Specifi-
cally, the best linear h step prediction of Xt`h, based on X1, . . . ,Xt, can be obtained recursively
using

X̂tphq “
p
ÿ

i“1

Ri
ÿ

r“1
X̂tph´ iq ˆ1 Â

pirq
1 ˆ2 ¨ ¨ ¨ ˆK Â

pirq
K ,

where X̂tph ´ iq “ Xt`h´i if h ď i. The prediction standard errors can also be calculated
recursively based on the estimated model parameters. In the package tensorTS, the pre-
dictions are implemented by the function tenAR.predict, which also provides rolling fore-
casts if rolling=TRUE (default: rolling=FALSE). Users can specify the prediction horizon
n.ahead “ h (default: n.ahead=1), and the starting point of rolling forecast n0 if rolling
forecasting is requested.

2.2. An Example for Tensor Autoregressive Model

8 Analysis of Tensor Time Seires

We use New York taxi traffic data, maintained by the Taxi & Limousine Commission of New
York City (available at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page) to demonstrate the main functions of the package tensorTS, especially about how to
understand and visualize the output. In this example, each Xt “ tXt,ijku is an order-three
tensor for day t, with element Xt,ijk representing the number of taxi rides from pick-up region
i to drop-off region j, during hour k. We select five pick-up and drop-off regions around
Midtown Center, Midtown East, Midtown North, Penn Station and Times Square, and seven
hours between 9am to 4pm (these are business hours between the morning and afternoon
traffic peaks), on the business days from January 1, 2017 to December 31, 2019. Thus, the
data is a tensor time series of length T “ 754 and each Xt is a 5 ˆ 5 ˆ 7 tensor. Due to the
impact of the emergence of shared ride programs such as Uber and LYft after 2015, the original
data exhibit persistent downward trend. So we estimate the trend of each individual series by
exponential smoothing and then remove it from the original series. Data after prepossessing
can be obtained using the code in Appendix B and is directly loaded here by the following
command:

R> xx = load(’tenAR_taxi.RData’)
R> dim(xx)
[1] 754 5 5 7

It can be seen that the tensor data xx is a order-4 ‘array’ object. Note that the functions
in tensorTS assume that the first mode of the input data is the time mode. The observed
tensor time series can be visualized using the function mplot which plots a matrix slice of
the tensor-valued time series. For example, the first 100 observations of the taxi traffic data
among the five locations and in the last hour (3pm - 4pm) can be plotted using

R> mplot(xx[1:100,,,7])

The resulting figure is shown in Figure 1. The pi, jq-th sub-figure shows the univariate time
series of taxi traffic volume from region i to region j during 3pm–4pm for the first 100 business
days. It can be seen that the de-trended time series are relatively stationary, but of different
scales at different locations.
The command

R> set.seed(123)
R> est = tenAR.est(xx, R=2, P=1, method="MLE")
R> ## The following line fits a TenAR(2) with R1 = 2, R2 = 3.
R> ## est = tenAR.est(xx, R=c(2,3), P=2, method="MLE")

estimates a TenAR(1) model with two terms (R1 “ 2), using MLE method. The function can
fit any TenAR(p) model with number of terms Rp “ pR1, . . . , Rpq. For example, a TenAR(2)
model with R2 “ p2, 3q can be fitted using the last line above. The returned object est is
a list containing many output components. In particular, the estimated coefficient matrices
can be extracted by

R> A = est$A

The object A is a multi-layer list containing the estimated coefficients Â
pirq
k , the first layer for

the AR lag 1 ď i ď P , the second for the term 1 ď r ď Ri, and the third for the tensor mode
1 ď k ď K. In this example, we have P “ 1, R1 “ 2 and K “ 3. The following commands
(with output) display the values of P, R1, K:

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Journal of Statistical Software 9
−

40
0

20
40

time

xx
[,

i,
j]

time
xx

[,
i,

j]
time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

−
30

−
10

10

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

−
30

−
10

10
30

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time
xx

[,
i,

j]
time

xx
[,

i,
j]

time

xx
[,

i,
j]

−
30

−
10

10

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

time

xx
[,

i,
j]

0 20 40 60 80 100

−
30

0
20

time

xx
[,

i,
j]

0 20 40 60 80 100

time

xx
[,

i,
j]

0 20 40 60 80 100

time

xx
[,

i,
j]

0 20 40 60 80 100

time
xx

[,
i,

j]

0 20 40 60 80 100

time

xx
[,

i,
j]

Figure 1: Time series plot by the function mplot for the first 100 observations of the taxi data
among five pick-up and drop-off locations during 3pm - 4pm of business days from January
1, 2017 to December 31, 2019.

R> length(A) == 1 # order P = 1
[1] TRUE
R> length(A[[1]]) == 2 # number of terms R = 2
[1] TRUE
R> length(A[[1]][[1]]) == 3 # mode K = 3
[1] TRUE

The estimated coefficient matrix Â
pirq
k is therefore the [[i]][[r]][[k]]-th element of the

list. For example, Â
p12q
3 , which is a matrix of size d3 ˆ d3, where d3 “ 7, can be obtained by

R> A[[1]][[2]][[3]]
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -1.005974 -0.119605 0.033134 -0.062632 -0.089681 0.006976 -0.045493
[2,] -0.143052 -0.781482 -0.080859 -0.072773 -0.127773 -0.066241 -0.249055
[3,] -0.063311 -0.157130 -0.627007 -0.115772 -0.052147 -0.100399 -0.332964
[4,] -0.225480 -0.079807 -0.096239 -0.413157 -0.104122 -0.084577 -0.343035
[5,] -0.067741 -0.076032 -0.098737 -0.088475 -0.486144 -0.122372 -0.303149
[6,] -0.082926 -0.042373 -0.099061 0.006823 -0.044823 -0.476063 -0.369031
[7,] 0.005552 -0.065352 -0.021277 -0.013186 -0.139197 -0.116763 -0.604108

The element-wise standard errors of the estimated coefficient matrices Â
pirq
k are also included

in the output of the function tenAR.est. For example, the standard errors of the Â
p12q
3 shown

above are,

R> sd = est$sd
R> sd[[1]][[2]][[3]]

10 Analysis of Tensor Time Seires

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.112137 0.116964 0.267138 0.175703 0.074884 0.093301 0.090958
[2,] 0.082195 0.116622 0.171140 0.150899 0.067578 0.152612 0.125235
[3,] 0.124765 0.101260 0.151318 0.169161 0.068641 0.154194 0.111107
[4,] 0.154409 0.145163 0.156418 0.182069 0.108255 0.138389 0.082096
[5,] 0.195911 0.208182 0.125951 0.155391 0.094502 0.188283 0.097203
[6,] 0.173500 0.279382 0.138692 0.123278 0.103372 0.213234 0.102576
[7,] 0.193864 0.195102 0.152109 0.173321 0.083526 0.190937 0.164743

When the error process Et is assumed to have the separable structure (5) and the option
method="MLE" is used in tenAR.est, its output object also contains estimated Σ̂i, i “ 1, . . . ,K
in the list SIGMA. For example, the Σ̂2 is given by,

R> Sigma = est$SIGMA
R> Sigma[[2]]

[,1] [,2] [,3] [,4] [,5]
[1,] 0.805917 0.158538 0.128962 0.049164 0.147387
[2,] 0.158538 0.469409 0.080079 0.023978 0.084042
[3,] 0.128962 0.080079 0.403256 0.029937 0.093488
[4,] 0.049164 0.023978 0.029937 0.368991 0.031961
[5,] 0.147387 0.084042 0.093488 0.031961 0.545927

The residuals of the estimated model, a tensor of the same dimension as the input data, is
also reported by tenAR.est. Residual-based diagnostics can then be performed for model
selection and validation. In our example, the residuals are given by

R> residuals = est$res
R> dim(residuals)
[1] 753 5 5 7

The function mplot.acf provides the ACF plot of a matrix slice of the tensor-valued time
series. For example, the ACF plot of the last hour of the residuals can be plotted using

R> mplot.acf(residuals[,,,7])

and is given in Figure 2. It is seen that the two-term TenAR(1) model is able to capture the
serial correlations and leads to relatively clean ACF plots of the residuals.
The pd1 . . . dKq ˆ pd1 . . . dKq sample covariance matrix of the vectorized residual process (in
this example, a 175ˆ175 matrix, where 175 “ 5ˆ5ˆ7) is reported as est$Sig. The est$cov
is the grand covariance matrix of

!?
T ¨ vec

”

Â
pirq
k ´A

pirq
k

ı

: 1 ď i ď p, 1 ď r ď Ri, 1 ď k ď K
)

,

where the ordering over the triplet pi, r, kq is lexicographic. For this example, est$cov is a
198ˆ 198 matrix, where 198 “ 2 ¨ p52 ` 52 ` 72q. They can be used to make joint inference,
or to obtain prediction intervals if needed.
The value of the extended Bayesian information criterion (6) with gpd, T q “ log T {T is also
part of the tenAR.est output:

R> est$BIC
[1] 2.016997

Journal of Statistical Software 11

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag
A

C
F

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag
A

C
F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

A
C

F

Series xx[, i, j]

0 5 10 15 20 25

0.
0

0.
4

0.
8

A
C

F

Series xx[, i, j]

Figure 2: ACF plot by the function mplot.acf for the last hour (3pm-4pm) of the residuals
after fitting a two-term TenAR(1) model using MLE.

After we fit the model with tenAR.est, predictions can be made based on the estimated
model, using the function tenAR.predict. It takes the estimation output from tenAR.est
as input, with the specified prediction horizon n.ahead. By default, it makes prediction of
the next n.ahead “ h observations XT`1, ...,XT`h, based on X1, . . . ,XT . For example, the
prediction of the next three days after the end of original observed data using the fitted
two-term TenAR(1) model can be obtained by

R> pred = tenAR.predict(est, n.ahead = 3)
R> dim(pred)
[1] 3 5 5 7

The output of the function tenAR.predict is the predicted values. If rolling=FALSE, the
output is a tensor time series of length n.ahead“ h, containing the predicted values of
XT`1, ...,XT`h, based on X1, . . . ,XT . If rolling=TRUE, the output is a tensor series of length
T-n0-n.ahead+1, giving the rolling forecasts of Xn0`h, ¨ ¨ ¨ ,XT . Based on the rolling forecasts,
one can obtain the mean squared rolling forecast error

1
dpT ´ h´ n0 ` 1q

T´h
ÿ

t“n0

}X̂tphq ´ Xt`h}
2
F .

For example, the 1-step rolling forecasts of the last 150 days and the corresponding mean
squared forecast error in our example can be obtained with

R> T = dim(xx)[1]
R> t0 = T - 150
R> pred.rolling = tenAR.predict(est, n.ahead = 1, rolling=TRUE, n0=t0)
R> sum((pred.rolling - xx[(t0+1):T,,,])^2)/(7*5*5*(T-t0))
[1] 45.38606

12 Analysis of Tensor Time Seires

The mean rolling forecast errors can be used for the evaluation of prediction performance,
and the comparison of different models. Table 3 reports the mean rolling forecast errors
with n0 “ 604 and h “ 1 of the two-term TenAR(1) model (R1 “ 2), one-term TenAR(2)
model (R1 “ R2 “ 1), and the VAR model (after vectorizing the tensor observations). It
is evident that for this example, the TenAR models produce better out-of-sample prediction
performance than the VAR model.

TenAR VARLSE MLE

p “ 1 45.72 45.39 58.27
p “ 2 45.21 46.87 84.41

Table 3: Mean squared rolling forecast errors of the TenAR(1) model (R1 “ 2), TenAR(2)
model (R1 “ R2 “ 1), and VAR model, for the taxi data. Here, p stands for the autoregressive
order of the TenAR and VAR.

2.3. Reduced Rank Matrix Autoregressive Models

Xiao et al. (2021) introduces the reduced rank matrix autoregressive model (RRMAR), which
bears the same form of the MAR(1) model in (1), but with the additional rank constraints
rankpAiq “ ki ď di for i “ 1, 2. Let Ai “ U iDiV

J
i be the SVD of Ai, the RRMAR model

can then be rewritten as

Xt “ U1D1 V J
1 Xt´1V 2 D2UJ

2 `Et. (7)

Since U i and V i are both di ˆ ki tall matrices, the boxed part in the preceding equation
F t :“ V J

1 Xt´1V 2 can be interpreted as a composite factor which summarizes the impact
of Xt´1 on Xt through a smaller k1 ˆ k2 matrix, and U1 and U2 play the role of loading
matrices on F t.
Two estimation methods, least squares (RRLSE) and MLE (RRMLE), have been proposed
and studied. RRLSE is obtained by an alternating algorithm which updates one of A1 and A2
when holding the other fixed. Specifically, the coefficient matrix A1 is updated by minimizing
the sum of squares (with A2 given)

min
A1: rankpA1q“k1

T
ÿ

t“2
}Xt ´A1Xt´1AJ

2 }
2
F .

The coefficient matrix A2 can be updated similarly under the rank constraint, given A1. The
algorithm starts with initial estimates of A1 and A2 (e.g. the estimates of MAR(1) model
without the rank constraints), and then iterates until convergence. Since each step reduces
the residual sum of squares, the convergence is guaranteed.
RRMLE is obtained under the assumption that Et are iid normal, and the covariance matrix
Σe of vecpEtq is separable of the form

CovpvecpEtqq “ Σ2 d Σ1, or equivalently, Et “ Σ1{2
1 ZtΣ1{2

2 , (8)

where Σ1 and Σ2 are d1ˆd1 and d2ˆd2 positive definite matrices respectively, corresponding
to the row-wise and column-wise covariances among the entries of Et, and all the entries of

Journal of Statistical Software 13

Zt are iid standard normal. The log likelihood of the RRMAR model is (up to some additive
constants)

´d2pT´1q log |Σ1|´d1pT´1q log |Σ2|´
T
ÿ

t“2
tr
”

Σ´1
1

`

Xt ´A1XtA
J
2
˘

Σ´1
2

`

Xt ´A1XtA
J
2
˘J

ı

.

The algorithm updates one of the pairs pA1, Σ1q and pA2, Σ2q when holding the other fixed,
and iterates until convergence. In the R package tensorTS, the initial values can be specified,
and the default is the MLE of the unrestricted MAR(1). For more details of the methods and
their theoretical properties, see Xiao et al. (2021). Once Âi are obtained, the U i and V i in
(7) can be estimated through the SVD of Âi.
The extended Bayesian information ceriterion (EBIC) of the estimated model is defined as

EBICpr1, r2q “ log
«

1
Td1d2

T
ÿ

t“2
}Xt ´ Â1Xt´1ÂJ

2 }
2
F

ff

`
1

Td1d2
¨ rlogpTd2q ¨ k1p2d1 ´ k1q ` logpTd1q ¨ k2p2d2 ´ k2qs,

(9)

where we plug in the RRMLE estimates Âi.
The estimation of the RRMAR model is implemented through the function matAR.RR.est in
tensorTS, with the method="RRLSE" or method="RRMLE" options. The ranks of A1 and A2 are
specified by the parameters k1 and k2, respectively. The output of the function matAR.RR.est
is a list containing the values summarized in Table 4. In particular, it includes the estimated
Ai, U i, V i and their corresponding element-wise standard errors. Note that the current
version of the function can only handle one-term RRMAR model of order 1. Extension of
capability to estimate the general multi-term TenAR(p) model with reduced rank structure
is still on-going.

2.4. An Example for the RRMAR Model
To demonstrate the estimation procedure and make a comparison with the MAR(1) model
without rank constraints, we consider as an example the last hour (3–4pm) of the taxi data
used in Section 2.2, which gives a 5ˆ 5 matrix observation for each day.

R> xmat = xx[,,,7]
R> dim(xmat)
[1] 754 5 5

We consider the estimation of the RRMAR model under the constraints that both 5 ˆ 5
coefficient matrices A1 and A2 are of rank 2. The MLE (RRMLE) is obtained by

R> est.rr = matAR.RR.est(xmat, method="RRMLE", k1=2, k2=2)

The estimated coefficient matrix Â1 and the corresponding standard errors are:

R> est.rr$A1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.411344 0.356790 0.078945 -0.006701 -0.297310
[2,] 0.347516 0.309272 0.095708 0.057926 -0.189495
[3,] 0.140406 0.140739 0.097044 0.151341 0.047543
[4,] -0.047092 -0.016871 0.079626 0.195087 0.222534
[5,] 0.071043 0.097537 0.146460 0.289951 0.231037

14 Analysis of Tensor Time Seires

Value Details

A1, A2 estimate of A1 and A2, d1 ˆ d1 and d2 ˆ d2 matrices.
loading a list of estimated di ˆ ki matrices U i, V i,

where Ai “ U iDiV
J
i is the SVD of Ai, i “ 1, 2.

SIGMA1, SIGMA2 estimate of Σ1 and Σ2, where CovpvecpEtqq “ Σ2 d Σ1,
available only if method=RRMLE.

res residuals Êt.
Sig sample covariance matrix of the residuals vecpÊtq.
cov a list containing

Sigma, asymptotic covariance matrix of
´

vecpÂ1q, vecpÂ
J

2 q
¯

.
Theta1.u, Theta1.v, asymptotic covariance matrices of vecpÛ1q, vecpV̂ 1q.
Theta2.u, Theta2.v, asymptotic covariance matrices of vecpÛ2q, vecpV̂ 2q.

sd.A1 element-wise standard errors of Â1, aligned with A1.
sd.A2 element-wise standard errors of Â2, aligned with A2.
niter number of iterations.
BIC value of the extended Bayesian information criterion.

Table 4: Components of the output list of the function matAR.RR.est.

R> est.rr$sd.A1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.051055 0.058019 0.070266 0.065060 0.060357
[2,] 0.042054 0.045389 0.052925 0.049396 0.049284
[3,] 0.034772 0.036308 0.037757 0.038703 0.045868
[4,] 0.036678 0.038879 0.037760 0.040169 0.046735
[5,] 0.042952 0.048954 0.053089 0.047464 0.056643

The estimates Û i and V̂ i (see (7)) are reported in the list est.rr$loading. The list
est.rr$cov contains the asymptotic covariance matrices of pvecpÂ1q, vecpÂ

J

2 qq (cov$Sigma),
Û i (cov$Theta1.u, cov$Theta2.u) and V̂ i (cov$Theta1.v, cov$Theta2.v).
With the option method="RRMLE", the output also contains the estimated covariance matrices
Σ̂1 (est.rr$SIGMA1) and Σ̂2 (est.rr$SIGMA2), as well as the residual sample covariance
matrix (est.rr$Sig).
As the RRMAR model is a special case of the TenAR model, its prediction procedure is the
same. The output of matAR.RR.est can be directly plugged into the function tenAR.predict
for prediction. For example, the prediction of the taxi traffic volume matrices of next three
days after the observation period can be obtained using

R> pred.rr = tenAR.predict(est.rr, n.ahead = 3)

Similarly, rolling forecast can be made so that the mean squared rolling prediction error can
be calculated.

R> t0 = T - 150
R> pred.rolling = tenAR.predict(est.rr, n.ahead = 1, rolling=TRUE, n0=t0)
R> sum((pred.rolling - xmat[(t0+1):T,,])^2)/(5*5*(T-t0))
[1] 44.42103

Journal of Statistical Software 15

Table 5 summarizes the rolling forecast performance of VAR, MAR, and RRMAR models,
all of order 1, on this matrix series of taxi data. It can be seen that the RRMAR model
produces similar forecasts as the unrestricted MAR model, both much better than the VAR
model. On the other hand, with k1 “ k2 “ 2, the RRMAR model involves significantly less
number of parameters than other models.

MAR.LSE MAR.MLE RRMAR.LSE RRMAR.MLE VAR

44.29 43.88 44.16 44.42 44.74

Table 5: Mean squared rolling forecast errors of various models for the taxi data during
3-4pm.

3. Tensor Factor Model

3.1. Introduction to the Tensor Factor Model

Chen et al. (2022b) proposes a factor analysis approach for analyzing high dimensional tensor
time series, and introduces the tensor factor model (TenFM) in a Tucker decomposition form

Xt “ Mt ` Et “ Ft ˆ1 A1 ˆ2 . . .ˆK AK ` Et, (10)

where X1, ...,XT P Rd1ˆ¨¨¨ˆdK are the observed tensor time series, Et is the noise component
of Xt which is white across time, Ak is the deterministic loading matrix of size dk ˆ rk with
rk ! dk, and the core tensor Ft itself is a latent tensor factor process of dimension r1ˆ. . .ˆrK .
The core tensor Ft is usually much smaller than Xt in dimension. This structure provides
an effective dimension reduction, as all the co-movements of individual time series in Xt are
driven by Ft. It should be noted that vector and matrix factor models can be viewed as
special cases of the tensor factor model, since both vectors and matrices are tensors, with
K “ 1 and K “ 2 respectively.

3.2. Estimation of the Tensor Factor Model

Because of the non-identifiability of Model (10), only the linear space Pk spanned by the
column vectors of Ak, k “ 1, . . . ,K, can be estimated. Chen et al. (2022b) proposes two
non-iterative estimation procedures, namely TOPUP and TIPUP, to estimate the loading
spaces. Han et al. (2020) further proposes two iterative algorithms, iTOPUP and iTIPUP,
based on the TOPUP and TIPUP respectively, and achieves sharper convergence rates. The
following two subsections will cover the non-iterative and iterative methods consecutively.

The Non-iterative Estimation Methods: TIPUP and TOPUP

TOPUP and TIPUP are two methods for estimating the column space spanned by the loading
matrix Ak, for k “ 1, . . . ,K. The two procedures are based on different auto-cross-product
operations of the observed tensors Xt to accumulate information.

16 Analysis of Tensor Time Seires

(i). Time series Outer-Product Unfolding Procedure (TOPUP):
Let pΣh be the sample auto-cross-product of the data X1:T “ pX1, . . . ,XT q,

pΣh “
pΣhpX1:T q “

T
ÿ

t“h`1

Xt´h b Xt

T ´ h
P Rd1ˆ¨¨¨ˆdKˆd1ˆ¨¨¨ˆdK , (11)

where b stands for the tensor product. Let d “ d1d2 ¨ ¨ ¨ dK and d´k “ d{dk. The TOPUP
method organizes all lag-h cross-outer-products of the mode-k matrix unfolding matkpXtq to
a dk ˆ pdd´kh0q matrix

TOPUPkpX1:T q “ mat1

˜

T
ÿ

t“h`1

matkpXt´hq bmatkpXtq

T ´ h
, h “ 1, ..., h0

¸

“

´

matk
`

pΣh

˘

, h “ 1, ..., h0

¯

.

(12)

Theoretically, any h0 can be used to estimate the loading spaces. However, a relatively small
h0 is usually adopted, since the autocorrelations are often stronger at small time lags, and a
larger h0 might introduce more noises. It can be easily seen that ErTOPUPkpX1:T qs “ Akr‹s,
where ‹ is a rk ˆ pdd´kh0q matrix, under the assumption that the error tensor process Et is
white.
The TOPUP method performs SVD of TOPUPkpX1:T q to obtain an orthonormal representa-
tion of the linear space spanned by the columns of Ak

pUTOPUPk,rk
pX1:T q “ LSVDrk

pTOPUPkpX1:T qq ,

where LSVDm stands for the left singular matrix composed of the first m left singular vectors
corresponding to the largest m singular values.
(ii). Time series Inner-Product Unfolding Procedure (TIPUP):
Similar to (12), define a dk ˆ pdkh0q matrix as

TIPUPkpX1:T q “

˜

T
ÿ

t“h`1

matkpXt´hqmatJk pXtq

T ´ h
, h “ 1, ..., h0

¸

, (13)

which replaces the tensor product in (12) with the inner product. The TIPUP method
performs SVD on TIPUPkpX1:T q: to obtain an orthonormal representation of the column
space of Ak,

pUTIPUPk,rk
pX1:T q “ LSVDrk

pTIPUPkpX1:T qq , k “ 1, 2, . . . ,K.

In the sequel, with an abuse of notation, we also refer to the Ûk,rk
returned by TIPUP,

TOPUP, the iTIPUP and iTOPUP to be introduced in the next subsection as Âk.
The theoretical properties of both TOPUP and TIPUP estimators are studied in detail in
Chen et al. (2022b), along with their comparisons. Both theoretical and empirical studies show
that either TOPUP or TIPUP can be better than the other in terms of convergence rates,
under different circumstances. For details, see Chen et al. (2022b) and its accompanying
discussions. In practice, when the signal is strong, TOPUP is recommended. Otherwise,
TIPUP can be better.

Journal of Statistical Software 17

The Iterative Estimation Methods: iTOPUP and iTIPUP

Han et al. (2020) proposes to use iterative projections to improve the TOPUP and TIPUP
estimators for TenFM model in the Tucker form. The basic idea comes from the following
observation. For illustration, assume that the loading matrices Ak are orthonormal such that
AJ
k Ak “ I. Suppose A2, . . . ,AK are given, let

Zt “ Xt ˆ2 AJ
2 ˆ3 ¨ ¨ ¨ ˆK AJ

K , and E˚t “ Et ˆ2 AJ
2 ˆ3 ¨ ¨ ¨ ˆK AJ

K .

Then (10) leads to
Zt “ Ft ˆ1 A1 ` E˚t ,

where Zt is a d1ˆ r2ˆ¨ ¨ ¨ˆ rK tensor. Since rk ! dk, the projected tensor Zt is much smaller
than Xt. Under proper conditions on the projected noise tensor E˚t , the estimation of the
loading space of A1 based on Zt can be significantly more accurate, as its convergence rate
now depends on d1r2 ¨ ¨ ¨ rK rather than d1d2 ¨ ¨ ¨ dK .
In practice, A2, . . . ,AK are unknown. Similar to backfitting algorithms, starting with some
initial values of the loading matrices that can be obtained using TOPUP or TIPUP estimators,
one can iteratively estimate the loading space of Ak at iteration j based on

Zpjqt,k “ Xt ˆ1 pA
pjqJ

1 ˆ2 . . .ˆk´1 pA
pjqJ

k´1 ˆk`1 pA
pj´1qJ
k`1 ˆk`2 . . .ˆK pA

pj´1qJ
K , (14)

using the estimates pA
pj´1q
k1 , k ă k1 ď K obtained in the previous iteration and the estimates

pA
pjq

k1 , 1 ď k1 ă k, obtained in the current iteration. The estimation can be done using either
TOPUP or TIPUP estimators on Zpjq1:T,k through iterations. After convergence, it results in
the iTOPUP and iTIPUP estimators respectively.
Han et al. (2020) shows that the iterative estimators significantly improve the convergence
rates over the corresponding non-iterative ones, and they are minimax optimal under certain
conditions.
In the R package tensorTS, estimation for TenFM model is carried out by the function
tenFM.est, with options to use one out of four estimation methods: TOPUP, TIPUP,
iTOPUP and iTIPUP. Two options are used to specify the estimation method: method can be
either TOPUP or TIPUP, and iter=TRUE/FALSE specifies whether to use the iterative approach
or not, where iter=TRUE is the default. The function tenFM.est also requires users to specify
the ranks r1, . . . , rK .
When the iterative procedures are used (which is the default), the users can also specify
other parameters, including, the maximum number of iterations (default: niter=100), the
error tolerance in terms of the Frobenius norm (default: tol=1e-4), and whether to print the
number of iterations (default: print.true=FALSE). The components of the output list of the
function tenFM.est are summarized in Table 6.

3.3. Rank Determination of the Tensor Factor Model

A critical step in building a factor model is to correctly specify the numbers of factors, which
correspond to ranks of Ak and the dimensions of the core tensor Ft in model (10). Estimation
procedures all depend on a pre-determined number of factors to be used in the model. In Han
et al. (2022), two rank determination procedures are proposed to estimate the dimensions rk

18 Analysis of Tensor Time Seires

Value Details

Ft estimated factor tensor time series.
Ft.all the factor tensor summed over time.
Q list of estimated loading matrices Ak.
x.hat estimated signal part Mt.
niter number of iterations before estimation stopped.
fnorm.resid proportion of residual Frobensius norm over that of the observed data.

Table 6: Components of the returned list of the function tenFM.est()

of the core tensor process Ft, based on the information criterion (IC) and eigenvalue ratio
(ER) respectively. The IC estimators aim at truncating eigenvalues to balance goodness-of-
fit and model complexity, and ER estimators are obtained by minimizing the ratio of two
adjacent eigenvalues arranged in descending order. Both criteria can be applied to determine
the ranks rk by properly constructing a corresponding semi-positive definite matrix xW , based
on the tensor unfolding of lagged cross-products in Section 3.2, namely TOPUP and TIPUP,
and their iterative versions.
Consider a general p ˆ p symmetric and non-negative definite matrix W with eigenvalues
λ1 ě . . . ě λr ą λr`1 “ . . . “ λp “ 0. Note that the rank of W is r. Let xW be a sample
version of W (also symmetric and non-negative definite matrix), and assume ExW “ W .
Also let λ̂1 ě λ̂2 ě . . . ě λ̂p be the eigenvalues of xW . Let m˚ ă p be a predefined upper
bound and functions GpxW q and HpxW q be some appropriate positive penalty functions.

The information criterion (IC) is defined as

ICpxW q “ arg min
0ďmďm˚

#

p
ÿ

l“m`1
λ̂l `mGpxW q

+

. (15)

It is similar to an information criterion since its first term mimics the residual sum of squares
of using a rank m matrix to approximate the matrix xW while the second term mGpxW q

penalizes the model complexity m.

The Eigen-ratio criterion (ER) is defined as

ERpxW q “ arg min
1ďmďm˚

λ̂m`1 `HpxW q

λ̂m `HpxW q
. (16)

It uses the ratio of two adjacent eigenvalues of xW , with a small penalty term HpxW q added to
both the numerator and denominator. The use of HpxW q is to ensure that, when m “ r (the
true rank), the ratio pλ̂m`1 `HpxW qq{pλ̂m `HpxW qq goes to zero, while for all other m ‰ r,
the ratios are asymptotically bounded from below. Note that all estimated eigenvalues λ̂l
(r ` 1 ď l ď p) should be relatively small, since they correspond to the zero eigenvalues of
W .
For either the IC (15) or the ER (16) estimator above, Han et al. (2022) proposes four choices

Journal of Statistical Software 19

of xW :
xW k :“ pTOPUPkpX1:T qqpTOPUPkpX1:T qq

J,

xW
˚

k :“ pTIPUPkpX1:T qqpTIPUPkpX1:T q
J,

xW
pjq

k :“ pTOPUPkpZ̃
pjq
1:T,kqqpTOPUPkpZ̃

pjq
1:T,kqq

J,

xW
˚pjq

k :“ pTIPUPkpZ̃
pjq
1:T,kqqpTIPUPkpZ̃

pjq
1:T,kqq

J.

(17)

This yields eight different rank determination methods, summarized in Table 7. The non-
iterative rank estimates can be obtained directly using xW k or xW

˚

k. The iterative method
proceeds as follows: the j-th iteration (j ě 1) uses the ranks trpj´1q

k ` 1, 1 ď k ď Ku and
the previous Â

pj´1q
k to get the updated Â

pjq
k , based on the Zpjq1:T,k “ pZ

pjq
1,k, . . . ,Z

pjq
T,kq defined

in (14). Then the xW
pjq

k or xW
˚pjq

k is calculated using Z̃pjq1:T,k “ pZ̃
pjq
1,k, . . . , Z̃

pjq
T,kq, where

Z̃pjqt,k “ Xt ˆ1 pA
pjqJ

1 ˆ2 . . .ˆk´1 pA
pjqJ

k´1 ˆk`1 pA
pjqJ

k`1 ˆk`2 . . .ˆK pA
pjqJ

K .

The rank estimates rpjqk are then updated using xW
pjq

k or xW
˚pjq

k , finishing the j-th iteration.
To start the iteration, the algorithm uses rp0qk ` 1, where rp0qk are rank estimates given the by
the corresponding non-iterative methods.

IC ER
non-iterative TOPUP r̂kpICq “ r̂

p0q
k pICq “ ICpxW kq r̂kpERq “ r̂

p0q
k pERq “ ERpxW kq

non-iterative TIPUP r̂˚kpICq “ r̂
˚p0q
k pICq “ ICpxW

˚

kq r̂˚kpERq “ r̂
˚p0q
k pERq “ ERpxW

˚

kq

j-th iteration of iTOPUP r̂
pjq
k pICq “ ICpxW

pjq

k q r̂
pjq
k pERq “ ERpxW

pjq

k q

j-th iteration of iTIPUP r̂
˚pjq
k pICq “ ICpxW

˚pjq

k q r̂
˚pjq
k pERq “ ERpxW

˚pjq

k q

Table 7: Rank determination criteria.

The choice of the penalty functions Gp¨q and Hp¨q: Both the IC and ER criteria essen-
tially try to distinguish the smallest (true) non-zero eigenvalue from the true zero eigenvalues
based on noisy estimation of the eigenvalues. Hence the penalty function is closely related to
the amount of error in the eigenvalue estimation and the strength of the smallest (true) non-
zero eigenvalue. Han et al. (2022) considers the following penalty functions Gp¨q “ gkpd, T q
for IC :

gk,1pd, T q “
h0d

2´2ν

T
log

ˆ

dT

d` T

˙

, gk,2pd, T q “ h0d
2´2ν

ˆ

1
T
`

1
d

˙

log
ˆ

dT

d` T

˙

,

gk,3pd, T q “
h0d

2´2ν

T
log pmintd, T uq , gk,4pd, T q “ h0d

2´2ν
ˆ

1
T
`

1
d

˙

log pmintd, T uq ,

gk,5pd, T q “ h0d
2´2ν

ˆ

1
T
`

1
d

˙

log pmintdk, T uq , (18)

where d “ ΠK
k“1dk and ν is a tuning parameter. The rank determination function in our

package uses delta1=0 as the default ν “ 0.

20 Analysis of Tensor Time Seires

For the ER criterion, Han et al. (2022) introduces the following penalty functions Hp¨q “
hkpd, T q:

hk,1pd, T q “ c0h0, hk,2pd, T q “
h0d

2

T 2 , hk,3pd, T q “
h0d

2

T 2d2
k

hk,4pd, T q “
h0d

2

T 2d2
k

`
h0d

2
k

T 2 , hk,5pd, T q “
h0d

2

T 2dk
`
h0ddk
T 2 , (19)

where c0 is a small constant, e.g. c0 “ 0.1. Note that the penalty functions scale with h0,
because the strength of divergent eigenvalues increases with h0.
In the R package tensorTS, the rank determination of the TenFM models is carried out by the
function tenFM.rank, using the original tensor time series as the input. The four methods
are again specified by method (with value TIPUP or TOPUP) and iter (with TRUE as the
default), corresponding to the four xW k matrices in (17). The choice of rank determination
criterion is given by rank, with two options: IC and ER. The penalty function is specified
via penalty, with values 1 to 5, corresponding to the five penalty functions listed in (18)
or (19). The function tenFM.rank returns a list containing two components: factor.num is
the estimated ranks r̂1, . . . , r̂K , and path records the intermediate results in each iteration,
when the iterative method is used. The first element in path is thus the non-iterative result
estimated by TIPUP or TOPUP.

3.4. An Example for the Tensor Factor Model

We use the the New York city taxi traffic data again to demonstrate the usage of the functions
in the tensonTS package for the TenFM model. Here we use different part of the data from
that used previously in building TenAR model and RRMAR model, for the purpose of better
illustration.
The taxi data is pre-processed into a tensor time series Xt “ tXt,ijku, where at each time a
high dimensional order-3 tensor is observed. We focus on the taxi data for business days.
The details of downloading and pre-processing the data can be found in Appendix A.

R> load('tenFM_taxi_manhattan_midtown.RData')
R> dim(y.midtown)
[1] 252 12 12 24
R> mplot(y.midtown[,,,8])

The first mode is the temporal mode that corresponds to 252 business days in the year of
2019, the second and third modes of the tensor correspond to the 12 pick-up and drop-off
regions in midtown Manhattan highlighted in blue in Figure 3, and the last mode stands for
the 24 hours in a day. One of the 12 regions is Penn Station, a heavy commuting hub serving
the surrounding tri-state area with heaving traffic in the morning for business days. A slice
of this data, for the morning rush hour from 7am to 8am, is shown in Figure 4.
The first step to build a TenFM model is to determine the number of factors to be used.
For example, using the ER criterion (rank=’ER’), iTIPUP estimation (method=’TIPUP’ and
iter=TRUE), the penalty function hk,1pd, T q in (19) (penalty=1), and default lag h0 “ 1, the
estimated ranks are 1 on every mode, i.e. r̂1 “ r̂2 “ r̂3 “ 1.

Journal of Statistical Software 21

Figure 3: 12 midtown regions in Manhattan are highlighted in blue.

We use IC criterion by specifying rank=’IC’, and display $path, giving the estimated ranks
in each iteration. The first row (iteration 1 4 4 6) is the the estimated ranks by
non-iterative method, the last row (iteration 7 4 4 3) is the estimated ranks by the
iterative procedure after convergence.

R> rank.ans = tenFM.rank(y.midtown,h0=1,rank='IC',iter=TRUE,method='TIPUP',penalty=1)
R> rank.ans$factor.num
[1] 4 4 3

R> rank.ans$path

22 Analysis of Tensor Time Seires

Figure 4: Time series plot of traffic volumes among 12 regions in middle town Manhattan
during 7am - 8am, for business days in 2019.

mode 1 mode 2 mode 3
iteration 0 4 4 6
iteration 1 1 4 4
iteration 2 4 4 3
iteration 3 4 4 4
iteration 4 4 4 3
iteration 5 4 4 3
iteration 6 4 4 3
iteration 7 4 4 3

Using a different penalty function may result in different answers. For example, with the
penalty function gk,5pd, T q in (18), we get

R> rank.ans2 = tenFM.rank(y.midtown,h0=1,rank='IC',iter=TRUE,method='TIPUP',penalty=5)
R> rank.ans2$factor.num
[1] 4 4 4

In the following we estimate the TenFM model with ranks p4, 4, 3q, h0 “ 1 and iTIPUP
method.

R> factor.ans = tenFM.est(y.midtown,r=rank.ans$factor.num,h0=1,iter=TRUE,method='TIPUP')

The estimated factor tensor factor.ans$Ft is a tensor time series of dimension 4 ˆ 4 ˆ 3,
and the estimated signal factor.ans$x.hat, where X̂t “ F̂t ˆ

K
k“1 Âk has the same dimen-

sion as the input tensor data Xt. The estimated loading matrices Ak are returned in a list
factor.ans$Q, where the dimension of each loading matrix is dk ˆ rk which matches the

Journal of Statistical Software 23

dimension of the input tensor and the chosen factor rank. In what follows, we provide inter-
pretations for the estimated loading matrices Â1, Â2, Â3 and the estimated factor process F̂t

in order.
As mentioned earlier, each estimate Âk obtained by the function tenFM.est is one specific
representation of the loading space spanned by the column vectors of Ak. Any orthogonal
(or non-orthogonal but full rank) rotation of the estimate is also a valid estimate. To assist
the interpretation of the typically large (dkˆrk) loading matrices, a varimax rotation (Kaiser
1958) can be used. We use the varimax function in the stats package to implement the
rotation and show the varimax-rotated Â1 and Â2 here, which correspond to the pick-up and
drop-off locations respectively.

R> A1.varimax=varimax(factor.ans$Q[[1]])$loadings
R> A1.varimax=A1.varimax %*% diag(apply(A1.varimax,2,function(x){sign(sum(x))}))
R> round(t(A1.varimax),2)

region index 224 107 234 90 68 246 186 164 100 170 137 233
factor 1 -0.02 0.52 0.77 -0.01 0.01 0.06 -0.07 0.21 0.16 -0.17 0.15 0.10
factor 2 -0.02 -0.30 0.19 0.49 0.60 0.46 0.00 0.09 0.10 0.17 -0.16 -0.07
factor 3 0.04 0.20 -0.13 0.04 0.13 -0.08 0.92 0.06 0.25 -0.05 0.04 -0.04
factor 4 0.05 0.15 -0.03 0.04 -0.09 -0.04 0.02 0.22 -0.05 0.89 0.24 0.27

R> A2.varimax=varimax(factor.ans$Q[[2]])$loadings
R> A2.varimax=A2.varimax %*% diag(apply(A2.varimax,2,function(x){sign(sum(x))}))
R> round(t(A2.varimax),2)

region index 224 107 234 90 68 246 186 164 100 170 137 233
factor 1 0.07 0.13 0.09 0.03 -0.15 -0.03 -0.09 0.13 -0.07 0.87 0.33 0.24
factor 2 0.01 -0.15 0.00 0.32 0.64 0.57 0.22 0.08 0.03 0.23 -0.10 -0.13
factor 3 0.19 0.30 -0.50 0.06 0.16 -0.41 0.65 -0.02 0.08 0.06 0.04 0.04
factor 4 -0.02 0.44 0.68 0.01 0.04 0.03 0.29 0.25 0.35 -0.18 0.10 0.17

To visualize the estimated (and varimax rotated) loading matrices Â1 and Â2, we align each
column of Âk with the regions on the spatial map and use heat-maps for the entries of the
column, as depicted in Figure 5. The four heat-maps in the top panel of Figure 5 correspond
to the four columns of the estimated loading matrix (after varimax rotation) of the pick-up
locations Â1. It can be seen that for the pick-up loading matrix, each factor is heavily loaded
on only one or few regions. The third and fourth factors are almost dominantly loaded on one
region, which are Penn Station and Murray Hills respectively, and both of them are regions
with busy traffic. The phenomenon is similar for the drop-off locations in the bottom panel
of the figure, and the heavily-loaded regions are almost the same for pick-up and drop-off
locations. This indicates that these regions are both busy departures and destinations on a
business day.
The third loading matrix Â3 of size 24 ˆ 3 corresponds to the hour of the day and contains
three columns. We again perform the varimax rotation on this loading matrix and show the
resulting matrix in Table 8. Each entry has been amplified by 100 for easier reading, and
the gray cells highlight the large values. It is seen that the first factor captures the morning
rush hours from 5am to 9am, the second summarizes the subsequent business hours in the
daytime, and the last factor represents the evening peak till midnight.

24 Analysis of Tensor Time Seires

Figure 5: Visualization of loading matrices of taxi pick-up and drop-off locations for business
days.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am
1 2 -1 -2 -3 1 12 57 66 25 9 8 -4 -11 -13 -13 -10 -5 -9 -15 0 4 15 16 9
2 -2 0 1 1 1 0 -3 5 44 53 35 31 30 25 19 15 9 12 19 6 -5 -12 -11 -7
3 11 6 3 2 1 2 3 5 -12 -16 -4 3 7 12 19 23 26 31 29 34 39 39 32 24

Table 8: Loading matrix that corresponds to the hour-of-the-day mode for business days.

The estimated factor process requires rotations as well if the loading matrices are rotated. It
can be obtained with the following commands.

A.varimax=list(A1.varimax,A2.varimax,A3.varimax)
Ft.varimax=rTensor::ttl(rTensor::as.tensor(y.midtown),lapply(A.varimax,t),c(2,3,4))@data
mplot(Ft.varimax[,,,1]) # For Figure 6

In Figure 6 we plot one slice of the rotated factor tensor process corresponding to the first
factor of the third mode (the time-of-the-day mode) – the morning rush hour slice. The
slice is a 252 ˆ 4 ˆ 4 matrix time series. The factor processes have different impacts on
the co-movement of the observed tensor time series. For example, it can been seen that the
factor process in the p3, 1q position of Figure 6 has large volume during the morning rush
hour period. It corresponds to the pick-up areas that are heavily loaded on the third pick-up
factor (the third column of the top row in Figure 5), which is mainly the area around Penn
Station, and the drop-off areas that are heavily loaded on the first drop-off factor (the first
column of the bottom row in Figure 5), which is mainly the area around Murray Hill.
Another useful way to jointly visualize the loading matrices and factor process in the TenFM
model is to produce the transport network plot, which is used in Chen and Chen (2019),
as Figure 7. Chen and Chen (2019) interprets the factors as ‘virtual transportation hubs’
that gather ‘incoming’ and ‘out-going’ traffic from individual areas. In our example, we can
imagine that the passengers from different regions are all first transported to one of the four
‘pick-up’ hubs (the pick-up factors), next transported to one of the four ‘drop-off’ hubs (the
drop-off factors), and eventually transported to their final destinations/regions.
We introduce a tensor G to summarize the information of the factor process by summa-
tion over time, Gijk “

ř

t F̂t,ijk. The tensor G is returned by the function tenFM.est in

Journal of Statistical Software 25

Figure 6: Time series plots of a slice of the varimax-rotated factor process, corresponding to
the first factor on the mode of the hour-of-the-day, i.e. the morning rush hour. Four rows
and four columns correspond to the four factors (recall r1 “ r2 “ 4) along the pick-up and
drop-off modes respectively. In other words, the time plot of the i-th row and j-th column is
for the univarite time series F̂t,ij1, i, j “ 1, . . . , 4.

factor.ans$Ft.all. The transport network plot can only illustrate the effect of two tensor
modes, so we again focus on the first factor along the third mode (the morning rush hour
factor, Gij1). The two middle columns of the nodes in Figure 7 represent the pick-up and
drop-off hubs respectively, and their sizes reflect the total numbers of passengers departing
from (

ř

j Gij1) or arriving at (
ř

i Gij1) the hubs respectively. The thickness of the line connect-
ing the hubs reflects the total volume (Gij1) of passengers transported from the i-th pick-up
hub to the j-th drop-off hub. It can be seen that pick-up Hub 3 has the most pick-up traffic
and its traffic mainly goes to drop-off Hubs 1 and 4. Drop-off Hub 3 has minimum traffic in
the morning rush hour period.
On the two sides of Figure 7, we visualize the two varimax-rotated loading matrices Â1 and
Â2. The numbers near these nodes on the sides are the indices of the 12 midtown areas in
Figure 3. The thickness of the lines linking the i-th area node on the left-hand side and the
j-th pick-up hub in the middle reflects how much the j-th pick-up factor is loaded on the i-th
area, i.e, Â1,ij . The size of the i-th area node reflects its total loading among all hubs, i.e.
ř4
j“1 Â1,ij . For example, Regions 170 and 186 are the main contributors to pick-up Hubs

4 and 3, respectively. Similarly, the right-hand side of the figure shows the drop-off loading
matrix Â2. For example, Regions 107 and 234 are the main areas for the drop-off volume
from drop-off Hub 4.
The function tenFM.est also provides the ratio of the squared residual Frobenius norm over
that of the original tensor data, in fnorm.resid. Hence 1-fnorm.resid measures how well

26 Analysis of Tensor Time Seires

Figure 7: Transport network for the morning rush hour, on business days.

the factor model fits the data, similar to in-sample R2 in regression analysis. In this taxi data
example, 1 ´ 11.5% “ 88.5% of the variation in the observed tensor time series is explained
by the TenFM model with ranks p4, 4, 3q.

R> factor.ans$fnorm.resid
[1] 0.1153

The number of iterations executed by the iterated algorithm is reported by niter, which
is important for monitoring the convergence and stability of the estimation process. This
particular example converges after 4 iterations.

R> factor.ans$niter
[1] 4

4. Summary and Conclusion
The fast development of technology has led to the explosion of tensor time series data, which
has its unique features that differ intrinsically and dramatically from iid tensor data and vector
time series data. The existing packages/software to analyze iid tensor data or vector time
series data fail to be applicable for tensor time series, because they ignore either the specialty
of the temporal mode of the tensor or the information embedded in different modes of the
tensor. Hence, they will produce inferior and less interpretable results. This accelerates the
urgent need for a package that targets at tensor time series by preserving the tensor structure
and treating the temporal mode with care.

Journal of Statistical Software 27

The R package tensorTS arrives timely for this purpose. There are two main lines of research
on tensor time series: TenAR and TenFM. Both of them have many model formulations,
various potential extensions, multiple estimation procedures, and several strategies for model
selection. The package tensorTS implements all of these state-of-the-art methodologies from
a sequence of recent developments. This article reviews the key materials from those works,
and offers a comprehensive and stand-alone instruction on the usage and understanding of the
main functions and outputs by illustration with a concrete taxi data example. Other models
and further extensions are being studied and will be incorporated into the package tensorTS
as new methodologies are developed.

Computational details
The results in this paper were obtained using R 4.0.5 with the tensorTS 1.0.0 package (Chen,
Han, Li, Xiao, Yang, and Yu 2022a), tensor 1.5 package (Rougier 2012), rTensor 1.4.8 pack-
age (Li et al. 2021), expm 0.999-6 package (Goulet, Dutang, Maechler, Firth, Shapira, and
Stadelmann 2021) MASS 7.3-57 package (Ripley, Venables, Bates, Hornik, Gebhardt, and
Firth 2022), abind 1.4-5 package, Matrix 1.4-1 package, pracma 2.3.8 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/.

Acknowledgments
Chen’s research is supported in part by National Science Foundation grants DMS-1503409,
DMS-1737857, IIS-1741390, CCF-1934924, DMS-2027855, and DMS-2052949. Xiao’s research
is supported in part by National Science Foundation grants DMS-1454817, DMS-2027855,
DMS-2052949, and a research grant from NEC Labs America. Yang’s research is supported
in part by National Science Foundation grant IIS-1741390, Hong Kong GRF 17301620 and
CRF C7162-20GF.

References

Anandkumar A, Ge R, Janzamin M (2014). “Guaranteed Non-Orthogonal Tensor Decompo-
sition via Alternating Rank-1 Updates.” arXiv preprint arXiv:1402.5180.

Ankargren S, Yang Y, Kastner G (2021). mfbvar: Mixed-Frequency Bayesian VAR Models.
R package version 0.5.6, URL https://CRAN.R-project.org/package=mfbvar.

Aspinall T, Gepp A, Harris G, Kelly S, Southam C, Vanstone B, Luethi D, Erb P, Otziger S,
Smith P (2021). FKF.SP: Fast Kalman Filtering Through Sequential Processing. R package
version 0.1.3, URL https://CRAN.R-project.org/package=FKF.SP.

Bansal G (2021). ecm: Build Error Correction Models. R package version 6.3.0, URL https:
//CRAN.R-project.org/package=ecm.

Barbosa SM (2012). mAr: Multivariate AutoRegressive Analysis. R package version 1.1-2,
URL https://CRAN.R-project.org/package=mAr.

https://CRAN.R-project.org/
https://CRAN.R-project.org/package=mfbvar
https://CRAN.R-project.org/package=FKF.SP
https://CRAN.R-project.org/package=ecm
https://CRAN.R-project.org/package=ecm
https://CRAN.R-project.org/package=mAr

28 Analysis of Tensor Time Seires

Basu S, Michailidis G (2015). “Regularized estimation in sparse high-dimensional time series
models.” The Annals of Statistics, 43(4), 1535–1567.

Böck M, Feldkircher M, Huber F (2021). BGVAR: Bayesian Global Vector Autoregressions.
R package version 2.4.3, URL https://CRAN.R-project.org/package=BGVAR.

Chan J, Koop G, Poirier DJ, Tobias JL (2019). Bayesian Econometrics Methods. Econometric
Exercises, 2 edition. Cambridge University Press.

Chang J, Guo B, Yao Q (2015). PCA4TS: Segmenting Multiple Time Series by Contempo-
raneous Linear Transformation. R package version 0.1, URL https://CRAN.R-project.
org/package=PCA4TS.

Chen EY, Chen R (2019). “Modeling dynamic transport network with matrix factor models:
with an application to international trade flow.” arXiv preprint arXiv:1901.00769.

Chen EY, Tsay RS, Chen R (2020a). “Constrained Factor Models for High-Dimensional
Matrix-Variate Time Series.” Journal of the American Statistical Association, 115(530),
775–793.

Chen EY, Xia D, Cai C, Fan J (2020b). “Semiparametric tensor factor analysis by iteratively
projected SVD.” arXiv preprint arXiv:2007.02404.

Chen H, Raskutti G, Yuan M (2019). “Non-convex projected gradient descent for generalized
low-rank tensor regression.” Journal of Machine Learning Research, 20(1), 172–208.

Chen R, Han Y, Li Z, Xiao H, Yang D, Yu R (2022a). tensorTS: Factor and Autoregressive
Models for Tensor Time Series. R package version 1.0.0, URL https://CRAN.R-project.
org/package=tensorTS.

Chen R, Xiao H, Yang D (2021). “Autoregressive models for matrix-valued time series.”
Journal of Econometrics, 222(1), 539–560.

Chen R, Yang D, Zhang CH (2022b). “Factor models for high-dimensional tensor time series.”
Journal of the American Statistical Association, 117(537), 94–116.

Christoffersen B, Williams A (2022). mssm: Multivariate State Space Models. R package
version 0.1.6, URL https://CRAN.R-project.org/package=mssm.

Cichocki A, Zdunek R, Phan AH, Amari Si (2009). Nonnegative Matrix and Tensor Factoriza-
tions: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation.
John Wiley & Sons.

Davis RA, Zang P, Zheng T (2016). “Sparse vector autoregressive modeling.” Journal of
Computational and Graphical Statistics, 25(4), 1077–1096.

Engle RF, Kroner KF (1995). “Multivariate simultaneous generalized ARCH.” Econometric
Theory, 11(1), 122–150.

Epskamp S, Asena E (2021). graphicalVAR: Graphical VAR for Experience Sampling Data.
R package version 0.3, URL https://CRAN.R-project.org/package=graphicalVAR.

https://CRAN.R-project.org/package=BGVAR
https://CRAN.R-project.org/package=PCA4TS
https://CRAN.R-project.org/package=PCA4TS
https://CRAN.R-project.org/package=tensorTS
https://CRAN.R-project.org/package=tensorTS
https://CRAN.R-project.org/package=mssm
https://CRAN.R-project.org/package=graphicalVAR

Journal of Statistical Software 29

Epskamp S, Waldorp LJ, Mõttus R, Borsboom D (2018). “The Gaussian graphical model in
cross-sectional and time-series data.” Multivariate behavioral research, 53(4), 453–480.

Fabio Di Narzo A, Aznarte JL, Stigler M (2009). tsDyn: Time series analysis based on
dynamical systems theory. R package version 0.7, URL https://CRAN.R-project.org/
package=tsDyn.

Fan J, Liao Y, Mincheva M (2013). “Large covariance estimation by thresholding principal
orthogonal complements.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 75(4), 603–680.

Forni M, Hallin M, Lippi M, Reichlin L (2000). “The generalized dynamic-factor model:
Identification and estimation.” Review of Economics and statistics, 82(4), 540–554.

Gerard D, Hoff P (2018). tensr: Covariance Inference and Decompositions for Tensor
Datasets. R package version 1.0.1, URL https://CRAN.R-project.org/package=tensr.

Gilbert P (2020). dse: Dynamic Systems Estimation (Time Series Package). R package
version 2020.2-1, URL https://CRAN.R-project.org/package=dse.

Goerg GM (2020). ForeCA: Forecastable Component Analysis. R package version 0.2.7, URL
https://CRAN.R-project.org/package=ForeCA.

Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM, et al. (2010). “A survey of statistical
network models.” Foundations and Trends in Machine Learning, 2(2), 129–233.

Goulet V, Dutang C, Maechler M, Firth D, Shapira M, Stadelmann M (2021). expm: Matrix
Exponential, Log, etc. R package version 0.999-6, URL https://CRAN.R-project.org/
package=expm.

Han F, Lu H, Liu H (2015). “A Direct Estimation of High Dimensional Stationary Vector
Autoregressions.” Journal of Machine Learning Research, 16(97), 3115–3150.

Han Y, Chen R, Yang D, Zhang CH (2020). “Tensor factor model estimation by iterative
projection.” arXiv preprint arXiv:2006.02611.

Han Y, Chen R, Zhang CH (2022). “Rank determination in tensor factor model.” Electronic
Journal of Statistics, 16(1), 1726–1803.

Hanneke S, Fu W, Xing EP (2010). “Discrete temporal models of social networks.” Electronic
Journal of Statistics, 4, 585–605.

Haslbeck J (2021). mgm: Estimating Time-Varying k-Order Mixed Graphical Models. R pack-
age version 1.2-12, URL https://CRAN.R-project.org/package=mgm.

Haslbeck JMB, Waldorp LJ (2020). “mgm: Estimating Time-Varying Mixed Graphical Mod-
els in High-Dimensional Data.” Journal of Statistical Software, 93(8), 1–46.

Helske J (2017). “KFAS: Exponential Family State Space Models in R.” Journal of Statistical
Software, 78(10), 1–39.

Helske J (2021). KFAS: Kalman Filter and Smoother for Exponential Family State Space
Models. R package version 1.4.6, URL https://CRAN.R-project.org/package=KFAS.

https://CRAN.R-project.org/package=tsDyn
https://CRAN.R-project.org/package=tsDyn
https://CRAN.R-project.org/package=tensr
https://CRAN.R-project.org/package=dse
https://CRAN.R-project.org/package=ForeCA
https://CRAN.R-project.org/package=expm
https://CRAN.R-project.org/package=expm
https://CRAN.R-project.org/package=mgm
https://CRAN.R-project.org/package=KFAS

30 Analysis of Tensor Time Seires

Hoff PD (2015). “Multilinear tensor regression for longitudinal relational data.” The Annals
of Applied Statistics, 9(3), 1169.

Holmes EE, Ward EJ, Scheuerell MD, Wills K (2021). MARSS: Multivariate Autoregressive
State-Space Modeling. R package version 3.11.4, URL https://CRAN.R-project.org/
package=MARSS.

Holmes EE, Ward EJ, Wills K (2012). “MARSS: multivariate autoregressive state-space
models for analyzing time-series data.” R journal, 4(1).

Ji P, Jin J (2016). “Coauthorship and citation networks for statisticians.” The Annals of
Applied Statistics, 10(4), 1779–1812.

Kaiser HF (1958). “The varimax criterion for analytic rotation in factor analysis.” Psychome-
trika, 23(3), 187–200.

Khan SA, et al. (2016). “tensorBF: an R package for Bayesian tensor factorization.” bioRxiv,
p. 097048.

Knight M, Leeming K, Nason G, Nunes M (2020). “Generalized Network Autoregressive
Processes and the GNAR Package.” Journal of Statistical Software, 96(5), 1–36.

Kock AB, Callot L (2015). “Oracle inequalities for high dimensional vector autoregressions.”
Journal of Econometrics, 186(2), 325–344.

Kolaczyk ED, Csárdi G (2014). Statistical analysis of network data with R, volume 65.
Springer.

Kolda TG, Bader BW (2009). “Tensor decompositions and applications.” SIAM review, 51(3),
455–500.

Koop G, Korobilis D (2010). Bayesian multivariate time series methods for empirical macroe-
conomics. Now Publishers Inc.

Kuschnig N, Vashold L (2021). “BVAR: Bayesian vector autoregressions with hierarchical
prior selection in R.” Journal of Statistical Software, 100(14), 1–27.

Kuschnig N, Vashold L, McCracken M, Ng S (2022). BVAR: Hierarchical Bayesian Vector
Autoregression. R package version 1.0.3, URL https://CRAN.R-project.org/package=
BVAR.

Lam C, Yao Q (2012). “Factor modeling for high-dimensional time series: inference for the
number of factors.” The Annals of Statistics, 40(2), 694–726.

Lange A, Dalheimer B, Herwartz H, Maxand S (2021). “svars: An R package for data-driven
identification in multivariate time series analysis.” Journal of Statistical Software, 97(5),
1–34.

Lange A, Dalheimer B, Herwartz H, Maxand S, Riebl H (2022). svars: Data-Driven Identi-
fication of SVAR Models. R package version 1.3.9, URL https://CRAN.R-project.org/
package=svars.

https://CRAN.R-project.org/package=MARSS
https://CRAN.R-project.org/package=MARSS
https://CRAN.R-project.org/package=BVAR
https://CRAN.R-project.org/package=BVAR
https://CRAN.R-project.org/package=svars
https://CRAN.R-project.org/package=svars

Journal of Statistical Software 31

Lee N, Yang HY, Kim SH (2019). VARshrink: Shrinkage Estimation Methods for Vec-
tor Autoregressive Models. R package version 0.3.1, URL https://CRAN.R-project.org/
package=VARshrink.

Leeming K, Nason G, Nunes M, Knight M (2020). GNAR: Methods for Fitting Network Time
Series Models. R package version 1.1.1, URL https://CRAN.R-project.org/package=
GNAR.

Leibovici DG (2010). “Spatio-temporal multiway data decomposition using principal tensor
analysis on k-modes: The R package PTAk.” Journal of Statistical Software, 34(10), 1–34.

Leibovici DG (2021). PTAk: Principal Tensor Analysis on k modes. R package version 1.4-0,
URL https://CRAN.R-project.org/package=PTAk.

Li J, Bien J, Wells M (2021). rTensor: Tools for Tensor Analysis and Decomposition. R pack-
age version 1.4.8, URL https://CRAN.R-project.org/package=rTensor.

Li J, Bien J, Wells MT (2018). “rTensor: An R package for multidimensional array (tensor)
unfolding, multiplication, and decomposition.” Journal of Statistical Software, 87(1), 1–31.

Li Z, Xiao H (2021). “Multi-linear Tensor Autoregressive Models.” arXiv preprint
arXiv:2110.00928.

Lin C, Cheng G, Chang J, Yao Q (2021). HDTSA: High Dimensional Time Series Analysis
Tools. R package version 1.0.1, URL https://CRAN.R-project.org/package=HDTSA.

Lin J, Michailidis G (2017). “Regularized estimation and testing for high-dimensional multi-
block vector-autoregressive models.” Journal of Machine Learning Research, 18(1), 4188–
4236.

Liu J, Musialski P, Wonka P, Ye J (2012). “Tensor completion for estimating missing values
in visual data.” IEEE transactions on pattern analysis and machine intelligence, 35(1),
208–220.

Liu T, Yuan M, Zhao H (2022). “Characterizing Spatiotemporal Transcriptome of the Human
Brain Via Low-Rank Tensor Decomposition.” Statistics in Biosciences, pp. 1–29.

Liu Y, Shang F, Fan W, Cheng J, Cheng H (2014). “Generalized higher-order orthogonal
iteration for tensor decomposition and completion.” Advances in Neural Information Pro-
cessing Systems, 27.

Lock EF (2018). “Tensor-on-tensor regression.” Journal of Computational and Graphical
Statistics, 27(3), 638–647.

Lock EF (2019). MultiwayRegression: Perform Tensor-on-Tensor Regression. R package
version 1.2, URL https://CRAN.R-project.org/package=MultiwayRegression.

Loh PL, Wainwright MJ (2011). “High-dimensional regression with noisy and missing data:
Provable guarantees with non-convexity.” Advances in Neural Information Processing Sys-
tems, 24.

Luethi D, Erb P, Otziger S, McDonald D, Smith P (2021). FKF: Fast Kalman Filter. R pack-
age version 0.2.3, URL https://CRAN.R-project.org/package=FKF.

https://CRAN.R-project.org/package=VARshrink
https://CRAN.R-project.org/package=VARshrink
https://CRAN.R-project.org/package=GNAR
https://CRAN.R-project.org/package=GNAR
https://CRAN.R-project.org/package=PTAk
https://CRAN.R-project.org/package=rTensor
https://CRAN.R-project.org/package=HDTSA
https://CRAN.R-project.org/package=MultiwayRegression
https://CRAN.R-project.org/package=FKF

32 Analysis of Tensor Time Seires

Lütkepohl H (2005). New introduction to multiple time series analysis. Springer Science &
Business Media.

Matilainen M, Croux C, Miettinen J, Nordhausen K, Oja H, Taskinen S, Virta J (2021). tsBSS:
Blind Source Separation and Supervised Dimension Reduction for Time Series. R package
version 1.0.0, URL https://CRAN.R-project.org/package=tsBSS.

Melnyk I, Banerjee A (2016). “Estimating structured vector autoregressive models.” In
International Conference on Machine Learning, pp. 830–839.

Mohr FX (2022). bvartools: Functions for Bayesian Inference of Vector Autoregressive Mod-
els. R package version 0.2.1, URL https://CRAN.R-project.org/package=bvartools.

Nicholson W, Matteson D, Bien J (2019). BigVAR: Dimension Reduction Methods for Mul-
tivariate Time Series. R package version 1.0.6, URL https://CRAN.R-project.org/
package=BigVAR.

Nicholson WB, Matteson DS, Bien J (2017). “VARX-L: Structured regularization for large
vector autoregressions with exogenous variables.” International Journal of Forecasting,
3(33), 627–651.

Nicholson WB, Wilms I, Bien J, Matteson DS (2020). “High Dimensional Forecasting via
Interpretable Vector Autoregression.” Journal of Machine Learning Research, 21(166), 1–
52.

Pena D, Box GE (1987). “Identifying a simplifying structure in time series.” Journal of the
American statistical Association, 82(399), 836–843.

Petris G (2010). “An R package for dynamic linear models.” Journal of Statistical Software,
36(12), 1–16.

Petris G, Gilks W (2018). dlm: Bayesian and Likelihood Analysis of Dynamic Linear Models.
R package version 1.1-5, URL https://CRAN.R-project.org/package=dlm.

Peña D, Smucler E, Yohai V (2022). odpc: One-Sided Dynamic Principal Components.
R package version 2.0.5, URL https://CRAN.R-project.org/package=odpc.

Pfaff B (2008). Analysis of integrated and cointegrated time series with R. Springer Science
& Business Media.

Pfaff B, Stigler M (2021). vars: VAR Modelling. R package version 1.5-6, URL https:
//CRAN.R-project.org/package=vars.

Pfaff B, Zivot E, Stigler M (2016). urca: Unit Root and Cointegration Tests for Time Series
Data. R package version 1.3-0, URL https://CRAN.R-project.org/package=urca.

Phan TQ, Airoldi EM (2015). “A natural experiment of social network formation and dy-
namics.” Proceedings of the National Academy of Sciences, 112(21), 6595–6600.

Qiu J, Ning N (2021). mbsts: Multivariate Bayesian Structural Time Series. R package
version 2.2, URL https://CRAN.R-project.org/package=mbsts.

https://CRAN.R-project.org/package=tsBSS
https://CRAN.R-project.org/package=bvartools
https://CRAN.R-project.org/package=BigVAR
https://CRAN.R-project.org/package=BigVAR
https://CRAN.R-project.org/package=dlm
https://CRAN.R-project.org/package=odpc
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=urca
https://CRAN.R-project.org/package=mbsts

Journal of Statistical Software 33

Raskutti G, Yuan M, Chen H (2019). “Convex regularization for high-dimensional multire-
sponse tensor regression.” The Annals of Statistics, 47(3), 1554–1584.

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2022). MASS: Matrix
Exponential, Log, etc. R package version 7.3-57, URL https://CRAN.R-project.org/
package=MASS.

Rougier J (2012). tensor: Tensor product of arrays. R package version 1.5, URL https:
//CRAN.R-project.org/package=tensor.

S H, L K (2022). freqdom: Frequency Domain Based Analysis: Dynamic PCA. R package
version 2.0.2, URL https://CRAN.R-project.org/package=freqdom.

Salcedo VB, Villanueva SAC, Torres ADR (2021). BMTAR: Bayesian Approach for MTAR
Models with Missing Data. R package version 0.1.1, URL https://CRAN.R-project.org/
package=BMTAR.

Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017).
“Tensor decomposition for signal processing and machine learning.” IEEE Transactions on
Signal Processing, 65(13), 3551–3582.

Snijders TA (2001). “The statistical evaluation of social network dynamics.” Sociological
methodology, 31(1), 361–395.

Stock JH, Watson MW (2016). “Dynamic factor models, factor-augmented vector autoregres-
sions, and structural vector autoregressions in macroeconomics.” In Handbook of Macroe-
conomics, volume 2, pp. 415–525. Elsevier.

Sun WW, Lu J, Liu H, Cheng G (2017). “Provable sparse tensor decomposition.” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 899–916.

Tiao GC, Tsay RS (1989). “Model specification in multivariate time series.” Journal of the
Royal Statistical Society: Series B (Methodological), 51(2), 157–195.

Tsay RS (2013). Multivariate time series analysis: with R and financial applications. John
Wiley & Sons.

Tsay RS, Wood D (2021). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series
(MTS) and Estimating Multivariate Volatility Models. R package version 1.0.3, URL https:
//CRAN.R-project.org/package=MTS.

Tsuyuzaki K, Ishii M, Nikaido I (2021). nnTensor: Non-Negative Tensor Decomposition.
R package version 1.1.5, URL https://CRAN.R-project.org/package=nnTensor.

van den Boogaart KG (2020). tensorA: Advanced Tensor Arithmetic with Named Indices.
R package version 0.36.2, URL https://CRAN.R-project.org/package=tensorA.

Vazzoler S (2021). sparsevar: Sparse VAR/VECM Models Estimation. R package ver-
sion 0.1.0, URL https://CRAN.R-project.org/package=sparsevar.

Wang D, Liu X, Chen R (2019). “Factor models for matrix-valued high-dimensional time
series.” Journal of Econometrics, 208(1), 231–248.

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=tensor
https://CRAN.R-project.org/package=tensor
https://CRAN.R-project.org/package=freqdom
https://CRAN.R-project.org/package=BMTAR
https://CRAN.R-project.org/package=BMTAR
https://CRAN.R-project.org/package=MTS
https://CRAN.R-project.org/package=MTS
https://CRAN.R-project.org/package=nnTensor
https://CRAN.R-project.org/package=tensorA
https://CRAN.R-project.org/package=sparsevar

34 Analysis of Tensor Time Seires

Wang D, Zheng Y, Li G (2021). “High-Dimensional Low-Rank Tensor Autoregressive Time
Series Modeling.” arXiv preprint arXiv:2101.04276.

Wilms I, Basu S, Bien J, Matteson DS (2021a). “Sparse identification and estimation of
large-scale vector autoregressive moving averages.” Journal of the American Statistical
Association, 0(0), 1–12.

Wilms I, Matteson DS, Bien J, Basu S, Nicholson W, Wegner E (2021b). bigtime: Sparse
Estimation of Large Time Series Models. R package version 0.2.1, URL https://CRAN.
R-project.org/package=bigtime.

Xia D, Yuan M (2019). “On polynomial time methods for exact low-rank tensor completion.”
Foundations of Computational Mathematics, 19(6), 1265–1313.

Xia D, Yuan M, Zhang CH (2021). “Statistically optimal and computationally efficient low
rank tensor completion from noisy entries.” The Annals of Statistics, 49(1), 76–99.

Xia D, Zhou F (2019). “The Sup-norm Perturbation of HOSVD and Low Rank Tensor
Denoising.” Journal of Machine Learning Research, 20(61), 1–42.

Xiao H, Han Y, Chen R, Liu C (2021). “Reduced Rank Autoregressive Models for Matrix
Time Series.” Technical report, Rutgers University.

Yu L, He Y, Kong X, Zhang X (2022). “Projected estimation for large-dimensional matrix
factor models.” Journal of Econometrics, 229(1), 201–217.

Yuan M, Zhang CH (2016). “On tensor completion via nuclear norm minimization.” Foun-
dations of Computational Mathematics, 16(4), 1031–1068.

Yuan M, Zhang CH (2017). “Incoherent tensor norms and their applications in higher order
tensor completion.” IEEE Transactions on Information Theory, 63(10), 6753–6766.

Zamora R (2019). tensorr: Sparse Tensors in R. R package version 0.1.1, URL https:
//CRAN.R-project.org/package=tensorr.

Zhang A (2019). “Cross: Efficient low-rank tensor completion.” The Annals of Statistics,
47(2), 936–964.

Zhang AR, Luo Y, Raskutti G, Yuan M (2020). “ISLET: Fast and Optimal Low-Rank Tensor
Regression via Importance Sketching.” SIAM Journal on Mathematics of Data Science,
2(2), 444–479.

Zhao Y, Levina E, Zhu J (2012). “Consistency of community detection in networks under
degree-corrected stochastic block models.” The Annals of Statistics, 40(4), 2266–2292.

Zhou H, Li L, Zhu H (2013). “Tensor regression with applications in neuroimaging data
analysis.” Journal of the American Statistical Association, 108(502), 540–552.

https://CRAN.R-project.org/package=bigtime
https://CRAN.R-project.org/package=bigtime
https://CRAN.R-project.org/package=tensorr
https://CRAN.R-project.org/package=tensorr

Journal of Statistical Software 35

A. List of Functions in R Package tensorTS

Functions Details

tenAR.est Estimation function for the tensor autoregressive model. Methods include:
projection (PROJ), least squares (LSE) and maximum likelihood (MLE),
as determined by the value of method.

tenAR.predict Prediction based on the tensor autoregressive model or reduced rank MAR model.
If rolling=TRUE, returns the rolling forecasts.

tenAR.sim Generate a TenAR(p) tensor time series.
matAR.RR.est Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or

MLE (RRMLE), as determined by the value of method.
mplot Plot a matrix-valued time series, or a slice of a tensor-valued time series.
mplot.acf Plot ACF of a matrix-valued time series, or a slice of a tensor-valued time series.
tenFM.est Estimation function for the tensor factor model.

Methods include TIPUP, TOPUP, iterative TIPUP and iterative TOPUP.
tenFM.rank Rank determination function for the tensor factor model.

rank specifies the criterion: Eigen Ratio (ER) or Information Criterion (IC).
Methods include TIPUP, TOPUP, iterative TIPUP and iterative TOPUP.

tenFM.sim Generate a TenFM tensor time series with a given tensor factor process.

Table 9: Functions in the R package tensorTS.

36 Analysis of Tensor Time Seires

B. Taxi Data Downloading and Pre-processing
This part is for data preprocessing only, it would first download the taxi data in years 2017
to 2019, then convert the files into a 365ˆ 69ˆ 69ˆ 24 tensor. We also divide these days into
business days and holidays and model the dynamics separately.

Downloading 2017-2019 taxi data , 36 files in total
for(i in 1:36){

year = (i-1)%/%12+2017
month = (i-1)%%12+1
filename = paste('yellow_tripdata_',year,'-',sprintf("%02d",month),'.csv',sep='')
download_url = paste('https://s3.amazonaws.com/nyc-tlc/trip+data/',filename,sep='')
download.file(download_url,destfile = filename, method="curl")

}

taxi pre-processing, only use the 69 regions on manhattan
download.file('https://s3.amazonaws.com/nyc-tlc/misc/taxi+_zone_lookup.csv',

destfile = 'taxi+_zone_lookup.csv', method="curl")
taxi_dict = read.csv('taxi+_zone_lookup.csv',header=T)
taxi_dict_manhattan = taxi_dict[taxi_dict$Borough=="Manhattan",]
locationID_manhattan = taxi_dict_manhattan$LocationID

y.manhattan = array(0,c(69,69,24,365*3))
number of days in each month, for years 2017-2019
day_index = c(31,28,31,30,31,30,31,31,30,31,30,31)
day_start_index=0 # the index for day-fiber
for(i in 1:36){

file.year = (i-1)%/%12+2017
file.month = (i-1)%%12+1
filename = paste('yellow_tripdata_',file.year,'-',sprintf("%02d",file.month),'.csv',sep='')
data = read.csv(filename,header=T)
data = data[,c(2,8,9)] # pick-up time, pick-up location, drop-off location
N = length(data[,1])

tt = data$tpep_pickup_datetime
year = as.numeric(substring(tt,1,4))
month = as.numeric(substring(tt,6,7))
day = as.numeric(substring(tt,9,10))
hour = as.numeric(substring(tt,12,13))+1
PL = match(as.numeric(data$PULocationID),locationID_manhattan)
DL = match(as.numeric(data$DOLocationID),locationID_manhattan)

Only consider trips within manhattan and current date
Trips out of manhattan and trips spanning across two days won't be counted
mask = year==file.year & month==file.month & !is.na(PL) & !is.na(DL)
for(j in 1:N){

if(mask[j]==TRUE){
y.manhattan[PL[j],DL[j],hour[j],day[j]+day_start_index] =

y.manhattan[PL[j],DL[j],hour[j],day[j]+day_start_index] + 1
}

}
day_start_index = 365*(file.year-2017) + sum(day_index[1:file.month])

}

Journal of Statistical Software 37

Separate the business days and holidays in year 2019
library(bizdays)
library(RQuantLib)
load_quantlib_calendars('UnitedStates/NYSE','2019-01-01','2019-12-31')
day1 = as.Date("2019-01-01")
bizday_idx = c()
bizday_date = c()
for(i in 1:365){

if(is.bizday(day1+i-1,'QuantLib/UnitedStates/NYSE')){
bizday_idx = c(bizday_idx,i)
bizday_date = c(bizday_date,as.character(day1+i-1))

}
}
bizday_idx = bizday_idx+365*2 # skip year 2017 and 2018

The 12 manhattan midtown regions chosen to demonstrate tenFM
locationID_manhattan_midtown = c(224,107,234,90,68,246,186,164,100,170,137,233)
region_idx_midtown = match(locationID_manhattan_midtown,locationID_manhattan)
y.midtown = aperm(y.manhattan[region_idx_midtown,region_idx_midtown,,bizday_idx],c(4,1,2,3))
save(y.midtown,file='tenFM_taxi_manhattan_midtown.RData')

year 2017-2019 business days data, example for tensor autoregressive model
load_quantlib_calendars('UnitedStates/NYSE','2017-01-01','2019-12-31')
day1 = as.Date("2017-01-01")
bizday_idx = c()
bizday_date = c()
for(i in 1:1095){

if(is.bizday(day1+i-1,'QuantLib/UnitedStates/NYSE')){
bizday_idx = c(bizday_idx,i)
bizday_date = c(bizday_date,as.character(day1+i-1))

}
}
area = c(41,42,43,47,54)
h = aperm(y.manhattan[area,area,c(9:15),bizday_idx],c(4,1,2,3)) # 754*5*5*7

exponential.smooth = function(x, lambda){
if(length(lambda) > 1)

stop("lambda must be a single number")
if(lambda > 1 || lambda <= 0)

stop("lambda must be between zero and one")
xlam = x * lambda
xlam[1] = x[1]
filter(xlam, filter = 1 - lambda, method = "rec")

}

dim = dim(h)[-1]
T = dim(h)[1]
trend = array(0,c(T,dim))
for(i in 1:dim[1]){

for(j in 1:dim[2]){
for (k in 1:dim[3]){

38 Analysis of Tensor Time Seires

trend[,i,j,k] = exponential.smooth(h[,i,j,k], 2/(63+1))
}

}
}
xx = h - trend
save(xx,file='tenAR_taxi.RData')

Journal of Statistical Software 39

C. R Code for the Examples

tenAR part
xx = load(’tenAR_taxi.RData’)
dim(xx)
mplot(xx[1:100,,,7])
set.seed(123)
est = tenAR.est(xx, R=2, P=1, method="MLE")
A = est$A
length(A) == 1 # order P = 1
length(A[[1]]) == 2 # number of terms R = 2
length(A[[1]][[1]]) == 3 # mode K = 3
A[[1]][[2]][[3]]
sd = est$sd
sd[[1]][[2]][[3]]
Sigma = est$SIGMA
Sigma[[2]]
residuals = est$res
dim(residuals)
mplot.acf(residuals[,,,7])
est$BIC
pred = tenAR.predict(est, n.ahead = 3)
dim(pred)
T = dim(xx)[1]
t0 = T - 150
pred.rolling = tenAR.predict(est, n.ahead = 1, rolling=TRUE, n0=t0)
sum((pred.rolling - xx[(t0+1):T,,,])^2)/(7*5*5*(T-t0))

matAR.RR part
xmat = xx[,,,7]
dim(xmat)
est.rr = matAR.RR.est(xmat, method="RRMLE", k1=1, k2=1)
est.rr$A1
est.rr$sd.A1
pred.rr = tenAR.predict(est.rr, n.ahead = 3)
t0 = T - 150
pred.rolling = tenAR.predict(est.rr, n.ahead = 1, rolling=TRUE, n0=t0)
sum((pred.rolling - xmat[(t0+1):T,,])^2)/(5*5*(T-t0))

tenFM part
load manhattan midtown, year 2019 data
y.midtown=load('tenFM_taxi_manhattan_midtown.RData')
dim(y.midtown)
mplot(y.midtown[,,,8])

rank selection and factor estimation
rank.ans = tenFM.rank(y.midtown,h0=1,rank='IC',iter=TRUE,method='TIPUP',penalty=1)
rank.ans$factor.num
rank.ans2 = tenFM.rank(y.midtown,h0=1,rank='IC',iter=TRUE,method='TIPUP',penalty=5)
rank.ans2$factor.num
factor.ans = tenFM.est(y.midtown,c(4,4,3),h0=1,iter=TRUE,method='TIPUP')
factor.ans$fnorm.resid

40 Analysis of Tensor Time Seires

factor.ans$niter

varimax rotation of the loading and factor
A1.varimax=varimax(factor.ans$Q[[1]])$loadings
A1.varimax=A1.varimax %*% diag(apply(A1.varimax,2,function(x){sign(sum(x))}))
round(t(A1.varimax),2)
A2.varimax=varimax(factor.ans$Q[[2]])$loadings
A2.varimax=A2.varimax %*% diag(apply(A2.varimax,2,function(x){sign(sum(x))}))
round(t(A2.varimax),2)
A3.varimax=varimax(factor.ans$Q[[3]])$loadings
A3.varimax=A3.varimax %*% diag(apply(A3.varimax,2,function(x){sign(sum(x))}))
round(t(A3.varimax),2)*100
A.varimax=list(A1.varimax,A2.varimax,A3.varimax)
Ft.varimax=rTensor::ttl(rTensor::as.tensor(y.midtown),lapply(A.varimax,t),c(2,3,4))@data
mplot(Ft.varimax[,,,1])

Journal of Statistical Software 41

Affiliation:
Rong Chen, Yuefeng Han, Zebang Li, Han Xiao, Ruofan Yu
Department of Statistics
Rutgers University
110 Frelinghuysen Rd
Piscataway, NJ 08904, USA
E-mail: rongchen@stat.rutgers.edu

yuefeng.han@rutgers.edu
zebang.li@rutgers.edu
hxiao@stat.rutgers.edu
ry166@stat.rutgers.edu

Dan Yang
Faculty of Business and Economics
The University of Hong Kong
Pokfulam Road
Hong Kong
E-mail: dyanghku@hku.hk

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:rongchen@stat.rutgers.edu
mailto:yuefeng.han@rutgers.edu
mailto:zebang.li@rutgers.edu
mailto:hxiao@stat.rutgers.edu
mailto:ry166@stat.rutgers.edu
mailto:dyanghku@hku.hk
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Tensor Autoregressive Models
	Tensor Autoregressive Models
	An Example for Tensor Autoregressive Model
	Reduced Rank Matrix Autoregressive Models
	An Example for the RRMAR Model

	Tensor Factor Model
	Introduction to the Tensor Factor Model
	Estimation of the Tensor Factor Model
	The Non-iterative Estimation Methods: TIPUP and TOPUP
	The Iterative Estimation Methods: iTOPUP and iTIPUP

	Rank Determination of the Tensor Factor Model
	An Example for the Tensor Factor Model

	Summary and Conclusion
	List of Functions in R Package tensorTS
	Taxi Data Downloading and Pre-processing
	R Code for the Examples

