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Abstract

We consider the problem of matrix approximation and denoising induced by the Kronecker
product decomposition. Specifically, we propose to approximate a given matrix by the sum
of a few Kronecker products of matrices, which we refer to as the Kronecker product ap-
proximation (KoPA). Because the Kronecker product is an extensions of the outer product
from vectors to matrices, KoPA extends the low rank matrix approximation, and includes
it as a special case. Comparing with the latter, KoPA also offers a greater flexibility, since
it allows the user to choose the configuration, which are the dimensions of the two smaller
matrices forming the Kronecker product. On the other hand, the configuration to be used
is usually unknown, and needs to be determined from the data in order to achieve the op-
timal balance between accuracy and parsimony. We propose to use extended information
criteria to select the configuration. Under the paradigm of high dimensional analysis, we
show that the proposed procedure is able to select the true configuration with probability
tending to one, under suitable conditions on the signal-to-noise ratio. We demonstrate
the superiority of KoPA over the low rank approximations through numerical studies, and
several benchmark image examples.

Keywords: Information Criterion, Kronecker Product, Low Rank Approximation, Matrix
Decomposition, Random Matrix

1. Introduction

Observations that are matrix/tensor valued have been commonly seen in various scientific
fields and social studies. In recent years, advances in technology have made high dimensional
matrix/tensor type data possible and more and more prevalent. Examples include high
resolution images in face recognition and motion detection (Turk and Pentland, 1991; Bruce
and Young, 1986; Parkhi et al., 2015), brain images through fMRI (Belliveau et al., 1991;
Maldjian et al., 2003), adjacent matrices of social networks of millions of nodes (Goldenberg
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et al., 2010), the covariance matrix of thousands of stock returns (Ng et al., 1992; Fan
et al., 2011), the import/export network among hundreds of countries (Chen et al., 2022),
etc. Due to the high dimensionality of the data, it is often useful and preferred to store,
compress, represent, or summarize the matrices/tensors through low dimensional structures.
In particular, low rank approximations of matrices have been ubiquitous. Finding a low
rank approximation of a given matrix is closely related to the singular value decomposition
(SVD), and the connection was revealed as early as Eckart and Young (1936). SVD has
proven extremely useful in matrix completion (Candès and Recht, 2009; Candes and Plan,
2010; Cai et al., 2010), community detection (Le et al., 2016), image denoising (Guo et al.,
2015), among many others.

In this paper, we investigate matrix approximations induced by the Kronecker product.
Since the Kronecker product is an extension of the outer product, we call the proposed
method KoPA (Kronecker outer Product Approximation). Kronecker product is an opera-
tion on two matrices which generalizes the outer product from vectors to matrices. Specif-
ically, the Kronecker product of a p × q matrix A = (aij) and a p′ × q′ matrix B = (bij),
denoted by A⊗B, is defined as a (pp′)×(qq′) matrix which takes the form of a block matrix.
In A⊗B, there are pq blocks of size p′ × q′, where the (i, j)-th block is the scalar product
aijB. We refer the readers to Horn and Johnson (1991) and Van Loan and Pitsianis (1993)
for overviews of the properties and computations of the Kronecker product. Kronecker
product has also found wide applications in signal processing, image restoration and quan-
tum computing, etc. For example, in the statistical modeling of a multi-input multi-output
(MIMO) channel communication system, Werner et al. (2008) modeled the covariance ma-
trix of channel signals as the Kronecker product of the transmit covariance matrix and the
receive covariance matrix. In compressed sensing, Duarte and Baraniuk (2012) utilized Kro-
necker products to provide a sparse basis for high-dimensional signals. In image restoration,
Kamm and Nagy (1998) considered the blurring operator as a Kronecker product of two
smaller matrices. In quantum computing, Kaye et al. (2007) represented the joint state of
quantum bits as a Kronecker product of their individual states.

In SVD, a matrix is represented as the sum of rank one matrices, where each of them
is represented as the outer product of the left singular vector and the corresponding right
singular vector (after the transpose). Similarly, the Kronecker Product Decomposition
(KPD) of a (pp′)× (qq′) matrix C is defined as

C =

d∑
k=1

Ak ⊗Bk.

where d = min{pq, p′q′}, and Ak and Bk are p× q and p′× q′ respectively. In the definition
of the KPD, the dimensions of Ak and Bk have to be specified, which (in this case, p × q
and p′ × q′) we refer to as the configuration of the KPD. Further constraints on Ak and
Bk are necessary to make the decomposition well defined and unique, but we will defer the
exact definition of KPD to Section 2. Since the Kronecker product is an extension of the
vector outer product, so is KPD of SVD. In particular, if p = 1, and q′ = 1, then Ak and Bk

are column and row vectors respectively, and the KPD, under this particular configuration,
becomes the SVD.

Similar to rank-one approximation, the best matrix approximation given by a Kronecker
product is formulated as finding the closest Kronecker product under the Frobenius norm.
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This was introduced in the matrix computation literature as the nearest Kronecker product
(NKP) problem in Van Loan and Pitsianis (1993), who also demonstrated its equivalence
to the best rank one approximation and therefore also to the SVD, after a proper rear-
rangement of the matrix entries. Such an equivalence is also maintained if one seeks the
best approximation of a given matrix by the sum of K Kronecker products of the same
configuration,

∑K
k=1Ak ⊗Bk. Despite of its connection to SVD, finding a best Kronecker

approximation also involves a pre-step: determining the configurations of the Kronecker
products, i.e., determining the dimensions of Ak and Bk. One of our major contributions
in this paper is on the selection of the configuration based on an information criterion.

Although the configuration selection poses new challenges, KPD also provides a frame-
work that is more flexible than SVD. Here we use the cameraman’s image, a benchmark
in image analysis, to illustrate the potential advantage of KPD over SVD. The left panel
in Figure 1 is the 512×512 pixel image of a cameraman in gray scale. The middle panel
shows the best rank-1 approximation of the original image given by the leading term of
SVD. The rank-1 approximation explains 45.63% of the total variation of the original im-
age with 1023 parameters. The right panel in Figure 1 displays the image obtained by the
nearest Kronecker product of configuration (16 × 32) ⊗ (32 × 16). With the same number
of parameters as the rank-1 approximation, this nearest Kronecker product approximation
explains 77.55% of the variance of the original image.

Figure 1: (Left) Original cameraman’s image; (Middle) SVD approximation; (Right) KPD
approximation

We will revisit the cameraman’s image in Section 6 with a more detailed analysis. We
notice here that the superiority of KoPA over low rank approximation in representing images
is partially due to the similarity of local blocks in the image. In this regard it is related to the
patch based de-noising methods (Dabov et al., 2007; Chatterjee and Milanfar, 2011) in the
field of image processing, which explore the recurrence of similar local pattern throughout
the image. However, we have a substantially distinct focus in this paper. One of our main
objectives is to devise a formal procedure to determine the configuration, or the “patch size”,
from the data, which is usually chosen in an ad hoc manner in patch based methods. We
introduce a statistical model to characterize the image generating mechanism, and propose
to use information criteria to select the configuration. Practically it implies an emphasis on
the balance between the complexity (number of model parameters) and accuracy (closeness
to the original image). Furthermore, the KoPA framework and the model selection also has
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potential applications in high dimensional panel time series, large network analysis, recom-
mending systems, and other matrix-type data analysis. For example, in modeling dense
networks (Leskovec et al., 2010), the adjacency matrix can be represented by a Kronecker
product A⊗B, where A and B correspond to the inter- and inner-community structures
respectively. As a second example, the KoPA may as well replace the low rank approx-
imation in the synchronization problem (Chen and Chen, 2008; Singer, 2011) to identify
the groups/clusters of the individuals, at the same time of denoising the distance matrix.
It is worth mentioning that KoPA can also be used to speed up the computation. If the
transition matrix of a Markov Chain can be represented as one or a sum of a few Kronecker
products, then the state update can be calculated more efficiently (Dayar, 2012). KoPA
plays its role in guiding the choice of the Kronecker product approximation of the transition
matrix.

In this paper, we focus on the model

Y = λA⊗B +
σ√
PQ

E,

where (P,Q) is the dimension of the matrix Y , E is a standard Gaussian ensemble consisting
of IID standard normal entries, λ > 0 and σ > 0 indicate the strength of signal and
noise respectively. We consider the matrix de-noising problem which aims to recover the
Kronecker product λA ⊗ B from the noisy observation Y . Here the configuration of the
Kronecker product, i.e. the dimensions of A and B, is to be determined from the data. We
propose to use information criteria (which include AIC and BIC as special cases) to select
the configuration, and prove its consistency under some conditions on the signal-to-noise
ratio. The consistency of the configuration selection is established for both deterministic and
random A and B, under the paradigm of high dimensional analysis, where the dimension
of Y diverges to infinity.

The rest of the paper is organized as follows. In Section 2, we give the precise definition
of the KPD, and introduce the model, with a review of some of their basic properties.
In Section 3, we propose the information criteria for selecting the configuration of the
Kronecker product. We investigate and establish the consistency of the proposed selection
procedure in Section 4. Extension to the multi-term Kronecker product models is discussed
in Section 5. In Section 6, we carry out extensive simulations to assess the performance of
our method, and demonstrate its superiority over the SVD approach. We also present a
detailed analysis of the cameraman’s image.

Notations: Throughout this paper, for a vector v, ∥v∥ denotes its Euclidean norm. And
for a matrix M , ∥M∥F =

√
tr(M ′M) and ∥M∥S = max∥u∥=1 ∥Mu∥ denote its Frobenius

norm and spectral norm respectively. For any two real numbers a and b, a ∧ b and a ∨ b
stand for min{a, b} and max{a, b} respectively. For any number x, x+ denotes the positive
part x ∨ 0 = max{x, 0}.
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2. Kronecker Product Model

2.1 Kronecker Product Decomposition

We first repeat the definition of the Kronecker product of a p × q matrix A and a p′ × q′

matrix B, which is given by

A⊗B =


a1,1B a1,2B · · · a1,qB
a2,1B a2,2B · · · a2,qB

...
...

...
ap,1B ap,2B · · · ap,qB

 .
Let C be a (pp′) × (qq′) real matrix, its Kronecker Product Decomposition (KPD) of

configuration (p, q, p′, q′) is defined as

C =

d∑
k=1

λkAk ⊗Bk. (1)

where d = min{pq, p′q′}, each Ak is a p× q matrix with Frobenius norm ∥Ak∥F = 1, each
Bk is a p′ × q′ matrix with ∥Bk∥F = 1, and λ1 ⩾ λ2 ⩾ · · · ⩾ λd ⩾ 0. The matrices Ak

are mutually orthogonal in the sense that tr(AkA
′
l) = 0 for 1 ⩽ k < l ⩽ d, and so are the

matrices Bk.
The best way to see that the KPD is a valid definition is through its connection with

the SVD, after a proper rearrangement of the elements of C, as demonstrated in Van Loan
and Pitsianis (1993). Denote by vec(·) the vectorization of a matrix by stacking its rows.
If A = (aij) is a p× q matrix, then

vec(A) := [a1,1, . . . , a1,q, . . . , ap,1, . . . , ap,q]
′.

If B = (bij) is a p′ × q′ matrix, then vec(A)[vec(B)]′ is a (pq) × (p′q′) matrix containing
the same set of elements as the Kronecker product A ⊗B, but in different positions. We
define the rearrangement operator R to represent this relationship. Write the matrix C as

a p× q array of blocks of the same block size p′× q′, and denote by Cp′,q′

i,j the (i, j)-th block,
where 1 ⩽ i ⩽ p, 1 ⩽ j ⩽ q. The operator R maps the matrix C to

Rp,q[C] =
[
vec(Cp′,q′

1,1 ), . . . , vec(Cp′,q′

1,q ), . . . , vec(Cp′,q′

p,1 ), . . . , vec(Cp′,q′
p,q )

]′
, (2)

When applied to a Kronecker product A⊗B, it holds that

Rp,q[A⊗B] = vec(A)[vec(B)]′. (3)

In view of (2) and (3), we see that the KPD in (1) corresponds to the SVD of the rearranged
matrix Rp,q[C], and the conditions imposed on Ak and Bk are derived from the properties
of the singular vectors.

Here, we note that the rearrangement operator R is configuration dependent, which we
emphasize by explicitly specifying the dimension ofAk (in this case, p and q) in the subscript
of R, see (2) and (3). When there is no ambiguity, the subscript of R may be omitted for
notational simplicity. According to the definition, the mapping Rp,q : Rpp′×qq′ → Rpq×p′q′ is
an isomorphism since it is linear and bijective. In addition, since the order of elements does
not change the Frobenius norm, the mapping R is also isometric under Frobenius norm.
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2.2 Kronecker Product Model

We consider the model where the observed P×Q matrix Y is a noisy version of an unknown
Kronecker product

Y = λA⊗B +
σ√
PQ

E. (4)

To resolve the obvious unidentifiability regarding A and B, we require

∥A∥F = ∥B∥F = 1, (5)

so that λ > 0 indicates the strength of the signal part. Note that under (5), A and B
are identified up to a sign change given their dimensions. To further identify A and B,
it is common to assume the largest non-zero element (in absolute value) of one of them is
positive. We assume that the noise matrixE has IID stand normal entries, and consequently
the strength of the noise is controlled by σ > 0. The dimensions of A and B correspond
to the integer factorization of the dimension of Y . For convenience, we assume throughout
this article that the dimension of the observed matrix Y in (4) is 2M × 2N with M,N ∈ N.
As a result, the dimension of A must be of the form 2m0 × 2n0 , where 0 ⩽ m0 ⩽ M and

0 ⩽ n0 ⩽ N , and the corresponding dimension of B is 2m
†
0 × 2n

†
0 , where m†

0 =M −m0 and

n†0 = N − n0. Therefore, we can simply use the pair (m0, n0) to denote the configuration
of the Kronecker product in (4). An implicit advantage of this assumption lies in the fact
that if two configurations (m,n) and (m′, n′) are different, then the number of rows of A
under one configurations divides the one under the other, and similarly for the numbers of
columns, and for B. For example, if m ⩽ m′, then the number of rows of A under the
former configuration, which is 2m, divides the number of rows 2m

′
under the latter. This

fact leads to a more elegant treatment of the theoretical analysis in Section 4.
For image analysis, assuming the dimension to be powers of 2 seems rather reasonable.

On the other hand, for other applications where the dimension of the observed matrix are
not powers of 2, one can transform the matrix to fulfill the assumption. For example,
one can super-sample the matrix to increase the dimension to the closest powers of 2, or
augment the matrix by padding zeros. The methodology proposed in this paper can be
applied to any integer numbers P and Q with more than two factors.

We will consider two mechanisms for the signal part λA⊗B.

Deterministic Scheme. We assume that λ, A and B are deterministic, satisfying (5).
We define the following signal-to-noise ratio to measure the signal strength

∥λA⊗B∥2F
E∥σE/2(M+N)/2∥2F

=
λ2

σ2
.

Random Scheme. Assume that λ, A and B are random and independent with E. Al-
though A and B are stochastic, we assume that they have been rescaled so that (5) is
fulfilled. In this case the signal-to-noise ratio is defined as

E∥λA⊗B∥2F
E∥σE/2(M+N)/2∥2F

=
Eλ2

σ2
.

Remark 1. We distinguish between these two schemes to account for the different assump-
tions on data generating mechanism. In the random scheme, the observed matrix data is
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assumed to be randomly chosen from a (super-)population of matrices with an ad-hoc prior,
which for example can be chosen as the Kronecker product of two independent Gaussian
random matrices. Under the random scheme assumption, ill-behaved matrices arise with
negligible probabilities under the prior. Similar assumptions have been used in factor anal-
ysis and random effects models. The deterministic scheme incorporates arbitrary matrices.
Additional assumptions need to be imposed to exclude extreme cases for which the proposed
model selection would fail.

2.3 Estimation with a Known Configuration

Suppose we want to estimate A and B based on a given configuration (m,n), that is, the

dimensions of A and B are 2m× 2n and 2m
† × 2n

†
respectively. Again we use m† =M −m

and n† = N − n to ease the notation when M and N are known. To estimate A and B in
(4) from the observed matrix Y , we solve the minimization problem

min
λ,A,B

∥Y − λA⊗B∥2F , subject to ∥A∥F = ∥B∥F = 1. (6)

Since we have assumed that the noise matrix contains IID standard normal entries, (6) is
also equivalent to the MLE. This optimization problem has been formulated as the nearest
Kronecker product (NKP) problem in the matrix computation literature (Van Loan and
Pitsianis, 1993), and solved through the SVD after rearrangement. According to Section 2.1,
after applying the rearrangement operator, the cost function in (6) is equivalent to

∥Y − λA⊗B∥2F = ∥R[Y ]− λvec(A)[vec(B)]′∥2F .

We note that the rearrangement operator R defined in (2) depends on the configuration
of the block matrix, and in the current case, on the configuration (m,n). Let R[Y ] =∑d

k=1 λkukv
′
k be the SVD of the rearranged matrix Rm,n[Y ], where λ1 ⩾ · · · ⩾ λd ⩾ 0

are the singular values in decreasing order, uk and vk are the corresponding left and right
singular vectors and d = 2m+n ∧ 2m

†+n†
. The estimators for model (4) are given by

λ̂ = λ1 = ∥R[Y ]∥S , Â = vec−1(u1), B̂ = vec−1(v1), σ̂2 = ∥Y ∥2F − λ̂2, (7)

where vec−1 is the inverse operation of vec(·) that restores a vector back into a matrix of
proper dimensions.

We examine a few special cases of the configuration (m,n). When (m,n) = (0, 0) or
(m,n) = (M,N), the nearest Kronecker product approximation of Y is always itself. For
instance, if m = n = 0, the estimators are

λ̂ = ∥Y ∥F , Â = 1, B̂ = λ̂−1Y , σ̂2 = 0.

These two configurations are obviously over-fitting, and we shall exclude them in the sub-
sequent analysis.

When (m,n) = (0, N) or (m,n) = (M, 0), the nearest Kronecker product approximation
of Y is the same as the rank-1 approximation of Y without rearrangement. When the
true configuration used to generate Y is chosen, that is (m,n) = (m0, n0), the problem is
equivalent to denoising a perturbed rank-1 matrix, since

Rm0,n0 [Y ] = λvec(A)vec(B)′ +
σ

2(M+N)/2
Rm0,n0 [E], (8)
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where the rearranged noise matrix Rm0,n0 [E] is still a standard Gaussian ensemble. There-
fore λ, A and B can be recovered consistently when σ∥Rm0,n0 [E]∥S = op(λ 2

(M+N)/2).
Details will be discussed in Section 4.

3. Configuration Determination through an Information Criterion

Our primary goal is to recover the Kronecker product λA⊗B from Y , based on model (4).
It depends on the configuration of the Kronecker product, which is typically unknown. We
propose to use the information criterion based procedure to select the configuration.

Recall that the dimension of Y is 2M × 2N . If the dimension of A is 2m × 2n, then
the dimension of B must be 2m

† × 2n
†
, where m† = M −m and n† = N − n. Therefore,

the configuration can be indexed by the pair (m,n), which takes value from the Cartesian
product set {0, . . . ,M} × {0, . . . , N}.

For any given configuration (m,n), the estimation procedure in Section 2.3 leads to
the corresponding estimators λ̂, Â and B̂. Denote the estimated Kronecker product by
Ŷ (m,n) = λ̂Â ⊗ B̂. Note that all of λ̂, Â and B̂ depend implicitly on the configuration
(m,n) used in estimation, and should be written as λ̂ = λ̂(m,n) etc. However, we will
suppress the configuration index from the notation for simplicity, whenever its meaning is
clear in the context. Under the assumption that the noise matrix E is a standard Gaussian
ensemble, we define the information criterion as

ICκ(m,n) = 2M+N ln ∥Y − Ŷ (m,n)∥2F + κη, (9)

where η = 2m+n + 2m
†+n†

is the number of parameters involved in the Kronecker product
of the configuration (m,n), and κ ⩾ 0 controls the penalty on the model complexity. The
information criterion (9) can be viewed as an extended version of the BIC. Similar proposals
have been introduced by Chen and Chen (2008) and Foygel and Drton (2010) in the linear
regression and graphical models setting, respectively. The information criterion (9) reduces
to the log mean square error when κ = 0, and corresponds to the Akaike information
criterion (AIC) (Akaike, 1998) when κ = 2, and the Bayesian information criterion (BIC)
(Schwarz, 1978) when κ = ln 2M+N = (M +N) ln 2.

Remark 2. Strictly speaking, the number of parameters involved in the Kronecker product
λA⊗B should be 2m+n+2m

†+n† −1 because of the constraints (5). Since it does not affect

the selection procedure to be introduced in (10), we will use η = 2m+n+2m
†+n†

for simplicity.

The information criterion (9) can be calculated for all configurations, and the one cor-
responding to the smallest value of (9) will be selected, based on which the estimation
procedure in Section 2.3 proceeds. In other words, the selected configuration (m̂, n̂) is
obtained through

(m̂, n̂) = argmin
(m,n)∈C

ICκ(m,n), (10)

where C is the set of all candidate configurations.
As discussed in Section 2.3, when m = n = 0 or (m,n) = (M,N), it holds that Ŷ = Y ,

and the information criterion (9) will be −∞, no matter what value κ takes. Therefore,
these two configurations should be excluded in model selection and we use

C := {0, . . . ,M} × {0, . . . , N} \ {(0, 0), (M,N)},
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as the set of candidate configurations in (10). Note that the set {0, . . . ,M} × {0, . . . , N}
forms a rectangle lattice in Z2, and (m,n) = (0, 0) and (m,n) = (M,N) are the bottom left
and top right corner of the lattice. Therefore, we sometimes intuitively refer to these two
configurations as the “corner cases” in the sequel. Furthermore, define W as the set of all
wrong configurations

W := C \ {(m0, n0)}.

We now provide a heuristic argument to show how the selection procedure (10) is able
to select the true configuration (m0, n0). We will leave some technical results aside, and
only highlight the essential idea. Precise statements and their rigorous analysis will be
presented in Section 4. For simplicity, assume that λ, σ and κ are fixed constants. Also
assume that both (m0 + n0) and (m†

0 + n†0) diverge, so that the number of parameters

η0 = 2m0+n0 + 2m
†
0+n†

0 is of a smaller magnitude than 2M+N .
According to (7), for a given configuration (m,n), Rm,n[Ŷ ] equals the first SVD com-

ponent of Rm,n[Y ], and it follows that ∥Y − Ŷ ∥2F = ∥Y ∥2F − ∥Ŷ ∥2F = ∥Y ∥2F − λ̂2, and the
information criterion (9) can be rewritten as

ICκ(m,n) = 2M+N ln(∥Y ∥2F − λ̂2) + κη. (11)

For the true configuration (m,n) = (m0, n0), the rearranged matrix Rm0,n0 [Y ] takes
the form (8), where the first term is a rank-1 matrix of spectral norm λ, and the noise term

has a spectral norm of the order O(2−(m0+n0)/2 + 2−(m†
0+n†

0)/2) (details given in Section 4),

which is negligible relative to λ, under the assumption m0+n0 ≫ 1,m†
0+n

†
0 ≫ 1. So under

the true configuration, λ̂ ≈ λ. On the other hand, the number of parameters η0 = o(2M+N ),
making the penalty term much smaller than the log likelihood in (9). To summarize,

ICκ(m0, n0) ≈ 2M+N ln
[
∥λA⊗B + σ 2−(M+N)/2E∥2F − λ2

]
≈ 2M+N lnσ2.

For a wrong configuration (m,n) ∈ W that is close to the true one, the spectrum norm
∥Rm,n[E]∥S and the number of parameters η are still negligible. However, the estimated

coefficient λ̂ is smaller than λ since

λ̂ = ∥Rm,n[Y ]∥S ≈ ∥Rm,n[λA⊗B]∥S < λ.

Let us assume that ∥Rm,n[λA⊗B]∥S ≤ ϕλ for some 0 < ϕ < 1, which implies that for the
wrong configuration (m,n),

ICκ(m,n) ≈ 2M+N ln
[
∥λA⊗B + σ2−(M+N)/2E∥2F − λ̂2

]
≈ 2M+N ln

[
∥σ2−(M+N)/2E∥2F + λ2 − ϕ2λ2

]
≈ 2M+N ln

[
σ2
(
1 +

(1− ϕ2)λ2

σ2

)]
.

Therefore, the information criterion (9) is in favor of the true configuration over a wrong
but close-to-truth one, and the two quantities are separated by

ICκ(m,n)− ICκ(m0, n0) ≈ 2M+N ln[1 + (1− ϕ2)λ2/σ2].
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On the other hand, for a wrong configuration (m,n) ∈ W that is close to the corner
configuration (0, 0) or (M,N), the singular value ∥Rm,n[E]∥S can be as large as 1/2, making
the separation between ICκ(m,n) and ICκ(m0, n0) by the log likelihood not guaranteed, i.e.
it can happen that λ̂ > λ under the wrong configuration. But at the same time the number
of parameters η is also approximately 2M+N , so ICκ(m,n) receives a heavy penalty, which
once again makes it greater than ICκ(m0, n0).

In summary, the trade-off between log likelihood and model complexity plays its role
here, as expected. Wrong but close-to-truth configurations involve similar numbers of pa-
rameters as the true one, but lead to much smaller likelihoods. On the other hand, a
close-to-corner configuration may yield a Ŷ closer to the original Y , but requires much
more parameters to do so. The true configuration can thus be selected because it reaches
the optimal balance between the the likelihood and model complexity.

In the preceding discussion we have assumed several convenient conditions to simplify
the heuristic arguments and to signify the essential idea. In particular, by assuming that λ
is a positive constant, the signal strength in model (4) is quite strong. In Section 4 we will
make effort to establish the model selection consistency under minimal conditions.

Remark 3. We remark that the optimization (10) is an exhaustive search over the can-
didate set C. The information function ICκ(m,n) is not necessarily a uni-modal function
in general, though it is likely to be uni-modal when both A and B are Gaussian random
matrices. As an extreme example, if A takes the form A = C ⊗ D, then both A ⊗ B
and C ⊗ (D ⊗B) are feasible configurations, and the ICκ function is bi-modal. The local
algorithms can be trapped at any of them, but the exhaustive search is then able to choose
the better one which involves less number of parameters.

On the other hand, in our specific settings, the matrix is of dimensions 2M ×2N . There-
fore the total number of candidate configurations would beMN−2 = log2(2

M ) log2(2
N )−2,

which is the product of the logarithms of the dimensions of the observed matrix Y , much
smaller compared to the size of Y . For more general dimensions P and Q, the configurations
are chosen from the set of all divisors of P and Q. Unless P and Q are highly composite
numbers (which are rare according to the number theory), the numbers of their divisors are
usually much smaller.

Finally, it is possible to develop more advanced searching algorithms. There are two
challenges: (1) the IC function is not necessarily convex and (2) the search space in discrete.
We leave the investigation of such development to future research.

4. Theoretical Results

In this section we provide a theoretical guarantee of the configuration selection procedure
proposed in Section 3, by establishing its asymptotic consistency. Throughout this section
all our discussion will be based on model (4).

4.1 Assumptions and Estimation Consistency under Known Configuration

We first introduce the assumptions of the theoretical analysis. Recall that for model (4),
(m0, n0) denotes the true configuration, i.e. the matrices A and B are of dimensions

2m0 × 2n0 and 2m
†
0 × 2n

†
0 respectively. For the asymptotic analysis, we make the following

10
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assumption on the sizes of A and B, which follows the paradigm of high dimensional
analysis.

Assumption 1 (Assumption on Dimension). Consider model (4). AsM+N → ∞, assume
that the true configuration (m0, n0) satisfies

m0 + n0
ln ln(MN)

→ ∞,
m†

0 + n†0
ln ln(MN)

→ ∞,

where m†
0 =M −m0 and n†0 = N − n0.

The condition entails that the numbers of entries in A and B will need to diverge to
infinity, and so is that of Y . It is also ensured that the true configuration cannot stay too
close to the corners. We remark that this will be the only condition on the sizes of the
involved matrices. In particular, we do not require all of m0, n0,m

†
0, n

†
0 to go to infinity.

Consequently, the low rank approximation (when (m0, n0) = (M, 0) or (m0, n0) = (0, N))
is also covered by the KoPA framework and our analysis as a special case.

The number of parameters involved in the Kronecker product λA⊗B is η0 = 2m0+n0 +

2m
†
0+n†

0 . It is a much smaller number than 2M × 2N , the number of elements in Y . Hence
Assumption 1 implies a significant dimension reduction.

We also make the following assumption on the error matrix E.

Assumption 2 (Assumption on Noise). Consider model (4). Assume that E is a standard
Gaussian ensemble, i.e. with IID standard normal entries.

We conclude this subsection with the convergence rates of the estimators λ̂ ,Â and
B̂, given by the estimation procedure in Section 2.3 under the true configuration. Since
the error matrix E has IID standard normal entries, according to Vershynin (2010), the
expectation of the largest singular value of the rearranged error matrixRm0,n0 [E] is bounded
by

s0 = 2(m0+n0)/2 + 2(m
†
0+n†

0)/2.

Theorem 1. Let λ̂, Â and B̂ be the estimators obtained under the true configuration, as
given in (7). Suppose Assumptions 1 and 2 hold, then for the deterministic scheme of model
(4), we have

λ̂− λ

λ
= Op

(
r0
λ/σ

)
, min

s=±1
∥Â− sA∥2F = Op

(
r0
λ/σ

)
, min

s=±1
∥B̂ − sB∥2F = Op

(
r0
λ/σ

)
,

where
r0 =

s0

2(M+N)/2
= 2−(m0+n0)/2 + 2−(m†

0+n†
0)/2.

4.2 Consistency of Configuration Selection

To study the consistency of the configuration selection proposed in Section 3, we need
assumptions on the signal-to-noise ratio. We choose to present model (4) with both λ and
σ so that it is able to account for any actual data generating mechanism. On the other
hand, the mathematical properties would only depend on the ratio λ/σ. The strength
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of the signal also depends on the contrast between true and wrong configurations. If a
configuration (m,n) ∈ W is used for the estimation, Y is rearranged as

Rm,n[Y ] = λRm,n[A⊗B] + σ2−(M+N)/2Rm,n[E]. (12)

Ignoring the noise term, only the first singular value component of Rm,n[A⊗B] (multiplied

by λ) is expected to enter Ŷ . When the true configuration is used, Rm,n[A ⊗ B] is a
rank-1 matrix, and its leading singular value equals 1 (recall that we have assumed that
∥A∥F = ∥B∥F = 1). On the other hand, if a wrong configuration is used, then Rm,n[A⊗B]
is no longer rank-1, and its leading singular value should be smaller than 1. Define

ϕ := max
(m,n)∈W

∥Rm,n[A⊗B]∥S . (13)

The quantity ϕ characterize how much of the signal A ⊗ B can be captured by a wrong
configuration, and it always holds that 0 < ϕ ≤ 1, so we also introduce

ψ2 := 1− ϕ2, (14)

and call it the representation gap. Note that 0 ≤ ψ2 < 1, and the larger ψ2 is, the easier it
is to separate true and wrong configurations. The following assumption shows the interplay
between the representation gap ψ2 and the signal-to-noise ratio λ/σ.

Assumption 3 (Representation Gap). For model (4), assume that A and B are deter-
ministic matrices, and

lim
M+N→∞

2(M+N)/2

2(m0+n0)/2 + 2(m
†
0+n†

0)/2
· (λ/σ) · ψ = ∞, (15)

and
lim

M+N→∞
2(M+N)/4 · (λ/σ) · ψ2 = ∞. (16)

In both (15) and (16), the signal-to-noise ratio and the representation gap ψ2 can di-
minish to zero, as long as they do not converge to zero too fast. In this sense, Assumption 3
is very flexible by requiring only very weak signal strength.
Remark 4. We have defined ϕ as the maximum over W, the set of all wrong configurations.
In fact, if we let ϕm,n := ∥Rm,n[A⊗B]∥S , and ψ2

m,n = 1−ϕ2m,n, then Assumption 3 can also
be given through ψ2

m,n instead of an uniform lower bound ψ2, leading to a weaker version
of the assumption. On the other hand, as will be shown in Section 4.3, if A and B are
randomly generated according to the Random Scheme, then indeed all ψ2

m,n are larger than
or around 1/2 with an overwhelming probability. This is suggesting that using the lower
bound ψ2 in Assumption 3 for the deterministic scheme is still reasonable. Therefore, we do
not spell out the detailed version of Assumption 3 using ψ2

m,n, but present it in the current
simple form.
Remark 5. Notions similar to the representation gap appear as key parameters in many
other problems. For example, in variable selection of linear regression problems,the repre-
sentation gap would be the smallest absolute non-zero coefficient in the model. In matrix
rank determination problems or factor models, the representation gap would be the eigen-
gap, or the smallest nonzero singular value.

The following theorem quantifies the separation of the information criterion (9) between
the true and wrong configurations.

12
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Theorem 2. Consider model (4), and assume Assumptions 1, 2, 3. If

κ ≥ 2 ln 2, and κ = o

(
2M+N ln(1 + (λ/σ)2ψ2)

2m0+n0 + 2m
†
0+n†

0

)
, (17)

then

min
(m,n)∈W

E[ICκ(m,n)]− E[ICκ(m0, n0)] ≥ 2M+N · ln[1 + (λ/σ)2ψ2] · (1 + o(1)).

To be precise, we note that for a sequence of numbers {ak}, the statement ak ≥ o(1) is
understood as max{−ak, 0} = o(1). According to Assumptions 3, (λ/σ)2ψ2 ≫ 2−(M+N)/2,
so Theorem 2 shows that the separation of the information criterion is at least of the order
2(M+N)/2.
Remark 6. The first condition in (17) ensures that the penalty on the number of pa-
rameters is large enough to exclude configurations close to (0, 0) and (M,N). The second
condition in (17) is imposed so that the contribution from the penalty term under the true
configuration is dominated by the representation gap. The exact formula of the difference
in expected information criterion is given by (36) in Appendix.

Next theorem establishes the consistency of (9). We need to define the symbol ≳: for two
sequences of positive numbers {ak} and {bk}, ak ≳ bk is defined as lim infk→∞ ak/bk > 0.

Theorem 3. Assume the same conditions of Theorem 2, then

P

[
ICκ(m0, n0) < min

(m,n)∈W
ICκ(m,n)

]
⩾ 1− exp

{
−C2M+N + ln(MN)

}
,

where the constant C, depending on λ/σ and ψ, is of order

C(λ/σ, ψ) ≳ (α1/3 − 1) ∧

(
α− α2/3

1 + λ/σ

)2

,

with α = 1+(λ/σ)2ψ2. In particular, the preceding convergence rate implies the consistency
of the configuration selection, i.e.

lim
M+N→∞

P

[
ICκ(m0, n0) < min

(m,n)∈W
ICκ(m,n)

]
= 1. (18)

Remark 7. In Assumption 3, we focus on the minimal signal-to-noise ratio and represen-
tation gap. On the other hand, if they are large such that lim inf(λ/σ)2ψ2 ≥ 1/2, then the
condition κ ≥ 2 ln 2 can be dropped from Theorem 2 and Theorem 3, which will continue
to hold if we set κ = 0 in (9). In other words, if the signal strength and the representation
gap are sufficiently large, one can simply use mean squared error to select the configura-
tion. Specifically, it requires λ2ψ2/σ2 > 1/2 to enable the use of κ = 0 in the information
criterion.
Remark 8. The normality assumption can be extended to any other distribution G as long
as the concentration inequality of ∥Rm,n[E]∥S (under any configuration (m,n)) is available.
There is no substantial difference in the analysis except that the threshold for signal-to-noise
ratio may vary under different noise distributions. We carry out simulation experiments in
Section 6.1.2 to demonstrate the performance of ICκ for the configuration selection under
normality. We also include additional simulations results under different noise distributions
in Appendix H.
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4.3 Model Selection under Random Scheme

In this section we consider the consistency of the model selection under the random scheme
(20). First of all, similar convergence rates as Theorem 1 can be obtained under the random
scheme.

Corollary 1. Assume Assumptions 1 and 2. If A and B are generated according to the
random scheme (20), then the conclusion of Theorem 1 continue to hold.

If a configuration (m,n) ∈ W is used, then the estimation procedure given in Section 2.3
rearranges Y as (12). In Section 4.2 for the deterministic scheme, we introduce ϕ as the
upper bound of ∥Rm,n[A⊗B]∥S over all wrong configurations. For the random scheme, it
turns out this upper bound and hence the representation gap ψ, depending on A and B, is
also random. We introduce the following “random” version of Assumption 3.

Assumption 4 (Representation Gap). Assuem in model (4), λ, A and B are random and
independent with E. Assume there exist two sequences of positive numbers {λ0} and {ψ0}
satisfying (15) and (16) (by replacing λ and ψ therein), such that

lim sup
M+N→∞

E[λ2/λ20] <∞, lim sup
M+N→∞

E[ψ2/ψ2
0] <∞,

and for any constant c > 0

lim
M+N→∞

MN · P
[
λ2/λ20 < 1− c

]
= lim

M+N→∞
MN · P

[
ψ2/ψ2

0 < 1− c
]
= 0. (19)

With Assumption 4, Theorem 2 and 3 continue to hold under the random scheme, as
asserted by the next theorem.

Theorem 4. Consider model (4) with random λ, A and B. Under Assumptions 1, 2 and
4, it holds that

min
(m,n)∈W

E[ICκ(m,n)]− E[ICκ(m0, n0)] ≥ 2M+N · ln[1 + (λ0/σ)
2ψ2

0] · (1 + o(1)).

Furthermore, the consistency (18) holds.

Assumption 4 is formulated to single out the minimal condition required for the consis-
tency under the random scheme. There is no specific distributional assumptions imposed
on A and B. In the rest of this section, we demonstrate that how it can be satisfied under
normality.

Example 1. Consider model (4). Suppose that

λA⊗B =
λ0Ã⊗ B̃

2(M+N)/2
, (20)

where λ0 is deterministic, and Ã and B̃ are independent, and both consisting of IID standard
normal entries. In order to fulfill the identifiability condition (5), we let A = Ã/∥Ã∥F ,
B = B̃/∥B̃∥F , and λ = λ0 · ∥Ã∥F · ∥B̃∥F /2(M+N)/2. Also assume that A and B are both
independent with E. For this example, the signal-to-noise ratio becomes

E∥λA⊗B∥2F
E∥σE/2(M+N)/2∥2F

=
λ20
σ2
.
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Recall that ϕ is defined as the upper bound of ∥Rm,n[A⊗B]∥S over all wrong configura-
tions. Only when the true configurations (m0, n0) is used, the rearrangement Rm0,n0 [A⊗B]
has the simple structure of a rank-1 matrix. Under a wrong configuration Rm,n[A ⊗ B]
no longer takes any special form. Nevertheless, the following lemma characterizes how the
spectral norm of Rm,n[A⊗B] depends on further rearrangements of both A and B. It is a
property of the Kronecker products and the KPD (1), so we present it in the general form,
without referring to any “true” configuration.

Lemma 1. Let A be a 2m × 2n matrix and B be a 2m
† × 2n

†
matrix. Then for any

m′, n′ ∈ Z, 0 ⩽ m′ ⩽M, 0 ⩽ n′ ⩽ N ,

∥Rm′,n′ [A⊗B]∥S = ∥Rm∧m′,n∧n′ [A]∥S · ∥R(m′−m)+,(n′−n)+ [B]∥S

Applying Lemma 1 to Example 1 leads to the following corollary.

Corollary 2. For Example 1, under Assumption 1, it holds that

max
(m,n)∈W

∥Rm,n[A⊗B]∥S =
1√
2
+ op(1).

And as a consequence, Assumption 4 holds with the λ0 in (20) and ψ2
0 = 1/2.

5. Multi-term Kronecker Product Models

In this section, we extend the one-term Kronecker product model in (4) to the following
K-term Kronecker product model.

Y =

K∑
k=1

λkAk ⊗Bk +
σ

2(M+N)/2
E, (21)

where λ1 > λ2 > · · · > λK > 0 and Ak ∈ R2m0×2n0 , Bk ∈ R2m
†
0×2n

†
0 , k = 1, · · · ,K satisfy

the following orthonormal condition:

tr(AkA
′
l) = tr(BkB

′
l) = δkl :=

{
1 if k = l,

0 if k ̸= l.

The orthonormal condition and the assumption λ1 > λ2 > · · · > λk > 0 implies the
identifiability: Ak and Bk are identified up to sign changes, see Section 2.1. Note that the
K terms in model (21) have the same configuration (m0, n0). Therefore, although multiple
terms are present, there is only one configuration to be determined.

Remark 9. For the multi-term model (21), both the configuration (m0, n0) and the number
of terms K need to be determined from the data. We propose to select the configuration
first. Once the configuration is selected as (m̂, n̂), the rearranged Rm̂,n̂(Y ) becomes the
sum of a rank K matrix and a noise matrix, and the determination of K turns into the rank
selection based on Rm̂,n̂(Y ), and existing methods in low rank approximation (Bai, 2003;
Ahn and Horenstein, 2013) can be applied. In this paper, we follow this two-step procedure
and focus on the choice of the configuration for model (21). We also remark that it is of
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interest to study the joint selection of the configuration and the number of terms, which we
shall leave for future study.

To select the configuration, we propose to use the same procedure in Section 3, that is,
for any candidate configuration (m,n) ∈ C, although Y is generated from the multi-term
model (21), we nonetheless still calculate the information criterion (9) by fitting the one-term
Kronecker product model (4) to Y . This approach avoids the need of the determination of
the number of Kronecker product terms when seeking the correct configuration. It allows
the separation of the two.

Similar to Eq.(13), for each term Ak ⊗Bk, define

ϕk = max
(m,n)∈W

∥Rm,n[Ak ⊗Bk]∥S . (22)

Under the true configuration, we have ∥
∑

k λkRm0,n0(Ak⊗Bk)∥S = λ1 given the orthonor-
mality assumption. For any wrong configuration, we have the following upper bound

max
(m,n)∈W

∥∥∥∥∥Rm,n

(
K∑
k=1

λkAk ⊗Bk

)∥∥∥∥∥
S

≤
K∑
k=1

λk max
(m,n)∈W

∥Rm,n[Ak⊗Bk]∥S =

K∑
k=1

λkϕk =: λ1ϕ̃,

where ϕ̃ := λ−1
1

∑K
k=1 λkϕk. When ϕ̃ < 1, there exists a strict representation gap

ψ̃2 = 1− ϕ̃2 (23)

between the true configuration and wrong configurations. Therefore, one can identify the
true configuration by minimizing the information criterion (11) over C. The theoretical
results in Section 4 can be adapted immediately. Corollary 3 is a direct extension of Theo-
rems 2 and 3. We skip the proof here.

Corollary 3 (Extension of Theorem 3). If ψ̃2 > 0, Theorem 2 and Theorem 3 continue to
hold for the multi-term model (21), by replacing the signal λ and the representation gap ψ
with λ1 and ψ̃ respectively.

The bound ϕ̃ is obtained by direct applications of the triangular inequality and may
not be sharp. The resulted condition on the representation gap in (23) is therefore very
strong.On the other hand, since ϕ̃ is only attained when the singular spaces ofRm,n[Ak⊗Bk]
are the same for some wrong configuration (m,n), one can further sharpen the upper bound
for max(m,n)∈W ∥Rm,n[

∑
k λkAk⊗Bk]∥S when the singular spaces of Rm,n[

∑
k λkAk⊗Bk]’s

are not identical, leading to a larger representation gap. And the more different these
singular spaces are, the larger the gap is. We will discuss a refined result in the next
subsection for the two-term models.

5.1 Analysis of the Two-Term Model

When K = 2, the multi-term model (21) becomes the two-term model

Y = λ1A1 ⊗B1 + λ2A2 ⊗B2 +
σ

2(M+N)/2
E. (24)
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Again, we use the same configuration selection procedure in Section 3, that is, we calculate
the information criterion (9) by fitting the one-term Kronecker product model (4) to Y . In
this case, the estimated λ̂ used in the information criterion (11) is

λ̂ = ∥Rm,n[Y ]∥S = ∥λ1Rm,n[A1 ⊗B2] + λ2Rm,n[A2 ⊗B2] + σ2−(M+N)/2Rm,n[E]∥S . (25)

Note that under the true configuration, we have λ̂ ≈ λ1. To bound λ̂ under wrong configu-
rations, we define

ϕ1 = max
(m,n)∈W

∥Rm,n[A1 ⊗B1]∥S , ϕ2 = max
(m,n)∈W

∥Rm,n[A2 ⊗B2]∥S ,

and the representation gaps

ψ2
1 := 1− ϕ21, ψ2

2 := 1− ϕ22.

Even though vec(A1) and vec(A2) are orthogonal according to the model assumption,
the column spaces of Rm,n[A1 ⊗ B1] and Rm,n[A2 ⊗ B2] are not necessarily orthogonal.
In the worst case when Rm,n[A1 ⊗ B1] and Rm,n[A2 ⊗ B2] have the same column space

and the same row space, then λ̂ in (25) can be close to λ1ϕ1 + λ2ϕ2, which may exceed
λ1. Therefore, we need to bound the distance between the column (and row) spaces of
Rm,n[A1 ⊗B1] and Rm,n[A2 ⊗B2]. For this purpose, we make use of the principal angles
between linear subspaces. Specifically, if M1 and M2 are two matrices of the same number
of rows, the smallest principal angle between their column spaces, denote by Θ(M1,M2),
is defined as

cosΘ(M1,M2) = sup
u1 ̸=0,u2 ̸=0

u′1M
′
1M2u2

∥M1u1∥∥M2u2∥
.

We first discuss the deterministic scheme, where Ak and Bk are non-random. In As-
sumption 5, θc and θr are lower bounds of the smallest possible principal angles between
the column spaces and the row spaces of the two rearranged components, respectively.

Assumption 5. There exist 0 < ξ < 1 such that

max
(m,n)∈WA

cosΘ(Rm,n[A1 ⊗B1],Rm,n[A2 ⊗B2]) ⩽ ξ,

and

max
(m,n)∈WB

cosΘ([Rm,n[A1 ⊗B1]]
′, [Rm,n[A2 ⊗B2]]

′) ⩽ ξ,

where

WA = {(m,n) ∈ W : m+ n ⩾ m† + n†},WB = {(m,n) ∈ W : m+ n < m† + n†}.

Remark 10. The assumption may look unintuitive at first sight, since it might be thought
that the matrices Ai ⊗ Bi, after the rearrangement under wrong configurations, are in
general full rank. This is, however, not true, in view of Lemma 1, most easily seen when
the wrong configuration (m,n) is nested with the true one (m0, n0) in the sense m ≤ n0
and n ≤ n0. On the other hand, the conditions in Assumption 5 are given separately over
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WA and WB. In each of them, the matrices involved have more rows than columns, and
the condition is on the corresponding column spaces.

The following lemma provides an upper bound of the spectral norm of a sum of two
matrices. It utilizes the principal angles between the column and row spaces to make the
bound sharper than the one given by the triangular inequality. Assumption 5 enables us to
apply Lemma 2 to bound λ̂ in (25).

Lemma 2. Suppose M1 and M2 are two matrices of the same dimension. Let ∥M1∥S = µ,
∥M2∥S = ν. Denote the principle angles between the column spaces and the row spaces as
θ = Θ(M1,M2), η = Θ(M ′

1,M
′
2), respectively. Then

∥M1 +M2∥2S ⩽ Λ2(µ, ν, θ, η),

where

Λ2(µ, ν, θ, η) =
1

2

[√
(µ2 + ν2 + 2µν cos θ cos η)2 − 4µ2ν2 sin2 θ sin2 η

+ µ2 + ν2 + 2µν cos θ cos η

]
.

Similar to Assumption 3, we assume the signal strengths λ1, λ2 and the noise level σ
satisfy the following assumption.

Assumption 6. For model (24), we assume that λk and the matrices Ak, Bk, k = 1, 2 are
deterministic and

lim
M+N→∞

2M+N

2m+n + 2m†+n†

λ21ψ
2
1 − λ22ϕ

2
2 − 2λ1λ2ϕ1ϕ2ξ

σ2 + λ22
= ∞ (26)

and

lim
M+N→∞

2(M+N)/4λ
2
1ψ

2
1 − λ22ϕ

2
2 − 2λ1λ2ϕ1ϕ2ξ

(λ1 + λ2)σ
= ∞. (27)

The conditions (26) and (27) correspond to (15) and (16) in the one-term model. Specifi-
cally, when λ2 = 0, the two-term model reduces to one-term case, and Assumption 6 reduces
to Assumption 3 as well. The main result for the two-term model is stated in Theorem 5.

Theorem 5. Consider the two-term model (24), where λk and the matrices Ak and Bk

are deterministic. Suppose Assumptions 1, 2, 5 and 6 hold. If κ satisfies

κ ⩾ 2 ln 2 and κ = o

(
2M+Nα

2m0+n0 + 2M+N−m0−n0

)
,

then
min

(m,n)∈W
E[ICκ(m,n)]− E[ICκ(m0, n0)] ⩾ 2M+Nα(1 + op(1)),

where

α = ln

(
1 +

λ21ψ
2
1 − λ22ϕ

2
2 − 2λ1λ2ϕ1ϕ2ξ

σ2 + λ22

)
. (28)

Furthermore, the consistency (18) continues to hold.
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Similar to Theorem 2, we have shown that for the two-term model, the information
criterion obtained by fitting a one-term model can still separate the true and wrong config-
urations with a gap of the order O(2M+Nα). On the other hand, comparing with Assump-
tion 3, Theorem 5 depends on Assumption 6, which requires not only the signal-to-noise
ratio (λ1/σ), but also the relative strength of the two terms (λ1/λ2) to be large enough.
Comparing the two term model (24) with the one term model (i.e. λ2 = 0), we note that
the information criterion gap α in Theorem 5 is smaller than the one given by Theorem 2.
This phenomenon can be intuitively explained through (28). On one hand, λ22 contributes
to the noise term when extracting the first KPD component, since λ22 + σ2 appears in the
denominator in (28). On the other hand, over-fitting due to the second Kronecker product
reduces ∥Y −Ŷ ∥2F under the wrong configuration, which is quantified by λ22ϕ

2
2+2λ1λ2ϕ1ϕ2ξ

in the numerator of (28).
Similar to Example 1, we consider the following example of the two term model under

normality.

Example 2. Consider the two term model (24). Suppose that

λkAk ⊗Bk = λk0Ãk ⊗ B̃k/2
(M+N)/2, k = 1, 2,

where all of the five matrices Ãk and B̃k and E are independent, and each consisting of IID
standard normal entries. To translate it back into the form of (24), we let Ak = Ãk/∥Ãk∥F ,
Bk = B̃k/∥B̃k∥F , and λk = λk0 · ∥Ãk∥F · ∥B̃k∥F /2(M+N)/2.

For Example 2, it turns out that with probabilities tending to one, ξ is close to 0 and
the representation gaps ψ2

1 and ψ2
2 are close to 1/2 (due to Corollary 2). As an immediate

consequence, Theorem 5 yields a information criterion gap of the size

α = ln

(
1 +

λ210 − λ220
2(σ2 + λ220)

)
.

However, by a refined analysis of Assumption 5 under the normality of Example 2, we are
able to prove the following improved result.

Corollary 4. Consider Example 2. Under Assumptions 1 and 2, Theorem 5 holds with the
information criterion gap

α = ln

(
1 +

λ210
2(σ2 + λ220)

)
.

6. Examples

We illustrate the performance of the estimation and configuration selection procedure
through simulation studies in Section 6.1, and image examples in Section 6.2.

6.1 Simulations

We design two simulation studies: the first one on the performance of the estimation proce-
dure introduced in Section 2.3, and the second one on the configuration selection proposed
in Section 3. Many implications of the theoretical results in Section 4 surface from the
outcomes of the numerical studies.
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6.1.1 Estimation with known configuration

We first consider the performance of the estimators of λ, A and B given in (7), when the
true configuration (m0, n0) is known. Throughout this subsection the simulations are based
on model (4) with m0 = 5, n0 = 5, M = 10, N = 10 and σ = 1.

The model (4) after the rearrangement under the true configuration becomes

Rm0,n0 [Y ] = λvec(A)vec(B)′ + σ2−(M+N)/2Rm0,n0 [E],

where vec(A) ∈ R2m0+n0 , vec(B) ∈ R2m
†
0+n

†
0 are unit vectors. Without loss of generality, set

vec(A) = (1, 0, . . . , 0)′, vec(B) = (1, 0, . . . , 0)′. In this experiment, the noise level is fixed
at σ = 1, so the signal-to-noise ratio is controlled by λ, which takes values from the set
{e1, e2, . . . , e16}. For each value of λ, we calculate the errors of the corresponding estimators
λ̂, Â and B̂ by

ln

(
λ̂

λ
− 1

)2

and ln ∥Â−A∥2F + ln ∥B̂ −B∥2F .

The errors based on 20 repetitions are reported in Figure 2.

Figure 2: Boxplots for errors in λ̂, Â and B̂ against the signal-to-noise ratio.

Figure 2 displays an interesting linear pattern, that is, as the signal-to-noise ratio in-

creases, ln
(
λ̂
λ − 1

)2
is approximately linear against lnλ with a slope around −2, and so is

the error ln(∥Â−A∥2F ∥B̂ −B∥2F ) for the matrix estimators. We note that this pattern is
consistent with Theorem 1, which asserts that

λ̂

λ
− 1 = Op

(
1

λ

)
and ∥Â−A∥F ∥B̂ −B∥F = Op

(
1

λ

)
,

since r0 defined in Theorem 1 remains a constant here as we vary the signal strength λ in
the simulation.

6.1.2 Configuration Selection

We now demonstrate the performance of the information criterion based procedure for
selecting the configuration. Two criteria will be considered: MSE (when κ = 0) and AIC
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(when κ = 2). Corresponding to the one- and multi-term models considered in Sections 4
and 5, we carry out two experiments respectively.

Experiment 1: One-term KoPA model

The simulation is based on model (4). Two configurations are considered: (i) M = N = 9,
m0 = 4, n0 = 4, and (ii) M = N = 10, m0 = 5, n0 = 4. Similar to Section 6.1.1, the
noise level is fixed at σ = 1, so the signal-to-noise ratio is controlled by λ. To control the
representation gap ψ2, we construct the matrices A and B as follows:

A =
√
φ2

[
1
0

]
⊗D1 +

√
1− φ2

[
0
1

]
⊗D2,

B =
√
φ2

[
1
0

]
⊗D3 +

√
1− φ2

[
0
1

]
⊗D4,

where vec(Di), i = 1, 2, 3, 4 are independent random unit vectors such that vec(D1) and
vec(D2) are orthogonal, and so are vec(D3) and vec(D4). In the experiment, five values
of φ2 are considered: φ2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We remark that the construction above
controls the representation gaps for configurations (1, 0) and (m0+1, n0) at φ

2 exactly, and
the representation gaps for configurations with m + n ∈ {1,M + N − 1} (close to trivial
configurations) or |m − m0| + |n − n0| = 1 (close to the true configuration) at roughly
0.5. Consequently, when φ2 = 0.1, 0.2, 0.3, 0.4, the overall representation gap ψ2 is at the
desired level φ2 with high probabilities. But when φ2 = 0.5, the representation gap ψ2 can
be slightly smaller than 0.5.

In Figure 3, we plot the empirical frequencies of the correct configuration selection, out
of 100 repetitions, against the signal-to-noise ratio λ/σ. Note that the x-axis scale in Sub-
figures 3a and 3b is different from that in 3c and 3d. The performances of both MSE (κ = 0)
and AIC (κ = 2) are illustrated. BIC (κ = (M +N) ln 2) has a very similar performance to
AIC, and is not reported here.

For extremely weak signal-to-noise ratio λ ⩽ 0.03, neither of MSE and AIC is able to
select the true configuration with a high probability, for both configurations. This does
not contradict with Theorem 3. When the signal is very weak, larger dimensions of the
observed matrix Y are required for the consistency. As the signal-to-noise ratio increases
from 0.01 to 0.13, the probability that the true configuration is selected increases gradually
and eventually gets very close to one for AIC as shown in Figures 3a and 3b. We also note
that the performance gets better as the representation gap ψ2 increases. These observations
are echoing Theorem 2, which shows that AIC (with κ = 2 > 2 ln 2) only requires a minimal
condition (λ/σ)2ψ2 > 0 to achieve the consistency, and the separation gap of AIC is a mono-
tone function of (λ/σ)2ψ2. On the other hand, the performance of MSE exhibits a phase
transition: it only starts to select the true configuration with a decent probability when the
signal-to-noise ratio λ/σ exceed a certain threshold. The theoretical asymptotic threshold
for MSE is λ/σ ⩾

√
1/(2ψ2) as discussed in Remark 7. For ψ2 ∈ {0.5, 0.4, 0.3, 0.2, 0.1} used

in this simulation, the corresponding thresholds for λ/σ are {1, 1.12, 1.29, 1.58, 2.24}, which
can be clearly visualized in Figures 3c and 3d.

Comparing Figures 3a with Figures 3b, we observe that the empirical frequency curve
increases from 0 to 100 much faster when the matrices are larger. This is consistent with
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(a) M = N = 9, AIC (b) M = N = 10, AIC

(c) M = N = 9, MSE (d) M = N = 10, MSE

Figure 3: The empirical frequencies of the correct configuration selection out of 100 repeti-
tions.

Theorem 2, which shows that the probability of correct configuration selection approaches
1 exponentially fast.

Experiment 2: Two-term KoPA model

In the second experiment, we consider the two-term KoPA model in (24) where Ak and Bk

are generated under the random scheme in Example 2 such that ψ2
1 ≈ 1/2 and ψ2

2 ≈ 1/2.
According to Theorem 5, besides the signal-to-noise ratio λ1/σ, the relative strength of the
second term λ2/λ1 (for the random scheme adopted in this experiment, see Corollary 4)
affects the configuration selection as well.

In this simulation, we fix the configurations to M = N = 9, (m0, n0) = (4, 4) and con-
sider four different relative strengths of the second term λ22/λ

2
1 ∈ {0.3, 0.4, 0.5, 0.6}. Similar

to Experiment 1, we report the empirical frequencies of correct configurations selection of
MSE and AIC, out of 100 repetitions, as a function of the signal-to-noise ratio λ1/σ in
Figure 4.

Figure 4a shows that the performance of AIC is in-sensitive to the ratio λ22/λ
2
1 over the

experimented range. To the contrary, it is seen from Figure 4b that MSE performs better
when the ratio λ22/λ

2
1 gets smaller, which is consistent with Corollary 4.
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(a) M = N = 9, AIC (b) M = N = 9, MSE

Figure 4: The empirical frequencies of the correct configuration selection out of 100 repeti-
tions in a two-term model.

6.2 Analysis of Image Examples

6.2.1 The cameraman’s image

In this section we revisit and analyze the cameraman image introduced in Section 1. The
original image, denoted by Y0, has 512 × 512 pixels. Each entry of Y0 is a real number
between 0 and 1, where 0 codes black and 1 indicates white. The grayscale cameraman
image Y0 is displayed in Figure 1.

Our analysis will be based on the de-meaned version Y of the original image Y0. We
demonstrate how well the image Y can be approximated by a Kronecker product or the
sum of a few Kronecker products, and make comparisons with the low rank approximations
given by SVD.

We first consider the configuration selection by MSE, AIC and BIC on the original image
Y . Figure 5 plots the heat maps for the information criterion ICκ(m,n) for all candidate
configurations in the set

C = {(m,n) : 0 ⩽ m,n ⩽ 9} \ {(0, 0), (9, 9)},

where the top-left and bottom-right corners are always excluded from the consideration.
Since darker cells correspond to smaller values of the information criteria, we see that MSE
and AIC select the configuration (8, 9), and BIC selects (6, 7).

We also observe an overall pattern in Figure 5: configurations with larger (m,n) values
are more preferable than those with smaller (m,n). Note that the Kronecker product does
not commute, and with configuration (m,n) the product is a 2m × 2n block matrix, each
block of the size 29−m×29−n. Real images usually show the locality of pixels in the sense that
nearby pixels tend to have similar colors. Therefore, it can be understood that larger values
of m and n are preferred, since they are better suited to capture the locality. Actually, for
the cameraman’s image, the configuration (8, 9) accounts for 99.50% of the total variation
of Y . The penalty on the number of parameters in AIC is not strong enough to offset the
closer approximation given by the configuration (8, 9). With a stronger penalty term, BIC
selects a configuration that is closer to the center of the configuration space, involving a
much smaller number of parameters.
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Figure 5: Information Criteria for the cameraman’s image. (Left) MSE (Mid) AIC (Right)
BIC. Darker color corresponds to lower IC value.

From the perspective of image compressing, KoPA is more flexible than the low rank
approximation, by allowing a choice of the configuration, and hence a choice of the com-
pression rate. To compare their performances, we use the ratio ∥Ŷ ∥2F /∥Y ∥2F to measure

how close the approximation Ŷ is to the original image Y . In Figure 6, these ratios
are plotted against the numbers of parameters for the KPD, marked by “+” on the solid
line. Since the number of parameters involved in the Kronecker product with configuration
(m,n) is η = 2m+n + 2M+N−m−n, the configurations {(m,n) : m + n = c} for any given
0 < c < M + N have the same number of parameters. Among these configurations, we
only plot the one with the largest ∥Ŷ ∥2F /∥Y ∥2F . On the other hand, each cross stands
for a rank-k approximation of Y , where its value on the horizontal axis is the number of
parameters

η = 1 +
k∑

j=1

(2M + 2N − 2j + 1) for k = 1, . . . , 2M∧N .

According to Figure 6, there always exists a one-term Kronecker product which provides a
better approximation of the original cameraman’s image than the best low rank approxi-
mation involving the same number of parameters.

We also consider de-noising the images corrupted by additive Gaussian white noise

Yσ = Y + σE,

where E is a matrix with IID standard normal entries. We experiment with three levels of
corruption: σ = 0.1, 0.2, 0.3. Examples of the corrupted images with different σ are shown
in Figure 7 with the values rescaled to [0, 1] for plotting.

For the corrupted images, the information criteria ICκ(m,n) are calculated, and the
corresponding heat maps are plotted in Figure 8. With added noise, AIC and BIC tend to
select configurations in the middle of the configuration space.

Now we consider multi-term Kronecker approximation. Following the discussion in
Section 5, for each of three corrupted images Yσ, we use the configuration selected by BIC
in Figure 8. Specifically, configurations (6, 6), (5, 6) and (5, 5) are selected when σ = 0.1,
0.2 and 0.3, respectively. A two-term Kronecker product model (24) is then fitted under the
selected configuration. The fitted images are plotted in the upper panel of Figure 9. Each
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Figure 6: Percentage of variance explained against number of parameters, for KoPA with
all configurations, and for low rank approximations of all ranks.

Figure 7: Noisy cameraman’s images when (Left) σ = 0.1 (Mid) σ = 0.2 (Right) σ = 0.3

of them is compared with the image obtained by the low rank approximation involving a
similar number of parameters as the two-term KoPA. From Figure 9, it is quite evident that
the details can easily be recognized from the images reconstructed by the two-term KoPA,
but can hardly be perceived in those given by the low rank approximation.

Finally, we examine the reconstruction error defined by

∥Y − Ŷ ∥2F
∥Y ∥2F

,

where Y is the original image and Ŷ is the one reconstructed from Yσ. For each of the
three noisy images, we continue to use the configuration selected by BIC. With fixed con-
figurations, we keep increasing the number of terms in the KoPA until Yσ is fully fitted,
and plot the corresponding reconstruction error against the number of parameters in Fig-
ure 10. It has the familiar “U” shape, showing the trade-off between estimation bias and
variation. A similar curve is given for the low rank approximations exhausting all possible
ranks. From Figure 10, it is seen that the multi-term KoPA constantly outperforms the
low rank approximation at any given number of parameters. Furthermore, the minimum
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MSE AIC BIC

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

Figure 8: Heat maps for three different information criteria for the camera’s images with
different noise levels. Darker color means lower IC value.
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σ = 0.1 σ = 0.2 σ = 0.3
K
o
P
A

S
V
D

Figure 9: The fitted image given by multi-term KoPA, and the SVD approximation with
similar number of parameters.

Figure 10: Reconstruction error against the number of parameters for KoPA and low rank
approximations. The three panels from left to right correspond to σ = 0.1, σ = 0.2 and
σ = 0.3 respectively.

reconstruction error that KoPA can reach is always smaller than that given by the low rank
approximation.

6.2.2 More images

To assess the performance of KoPA model in image denoising, we repeat the experiment
in Section 6.2.1 to a larger set of test images. The 10 test images printed in Figure 11
are collected from Image Processing Place1 and The Waterloo image Repository2. Each

1. http://www.imageprocessingplace.com/root files V3/image databases.htm
2. http://links.uwaterloo.ca/Repository.html
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Figure 11: List of test images.

image SVD KoPA mSVD mKoPA TVR

boat 0.4709 0.1757 0.0853 0.0613 0.0356
cameraman 0.5446 0.1337 0.0644 0.0399 0.0294
goldhill 0.4632 0.1391 0.0759 0.0568 0.0363
jetplane 0.7347 0.1853 0.0866 0.0596 0.0302
lake 0.5425 0.1287 0.0825 0.0539 0.0308

livingroom 0.6747 0.2055 0.0995 0.0811 0.0589
mandril 0.6949 0.3557 0.1471 0.0889 0.0739
peppers 0.7394 0.1075 0.0734 0.0445 0.0224
pirate 0.7746 0.1533 0.1018 0.0686 0.0413

walkbridge 0.6617 0.2085 0.1263 0.0925 0.0593

Table 1: Reconstruction errors of one-term SVD, one-term KoPA, multi-term SVD(mSVD),
multi-term KoPA(mKoPA) and total variation regularization (TVR) on the ten test images.

of the 10 test images is a 512 × 512 gray-scaled matrix, same as the cameraman’s image.
We corrupt the test image with additive Gaussian noise, whose amplitude is 0.5 times the
standard deviation of all its pixel values:

Yσ = Y + 0.5 · std(Y ) ·E.

We compare five methods of denoising these images: one-term SVD and KoPA mod-
els, multi-term SVD and KoPA models, image denoising algorithm through total variation
regularization (Chambolle, 2004). Since determining the number of terms in multi-term
models is beyond the scope of this article, the number of terms in the multi-term models
are chosen to minimize the reconstruction error. The performance of the five approaches
on the ten images are reported in Table 1.

For each image, the configuration of the KoPA is selected by BIC (κ = 18 ln 2). From
Table 1, the KoPA-based methods outperform SVD-based approaches, which is not surpris-
ing as SVD corresponds to a special configuration in KoPA models. On the other hand,
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the image denoising based on KoPA (and multi-term KoPA) is close to the TVR (total
variation regularization) method but the latter does have a superior performance.

We note that KoPA and TVR are not directly comparable. Image is a special type of
matrix data, whose entries usually possess certain continuity in values. TVR fully utilizes
this continuity by imposing regularization on the total variation while SVD and KoPA do
not. The difference can be seen from Figure 12 as well. The TVR can recover the smooth
region (the mandrill’s nose) well, while the multi-term KoPA model has more details in non-
smooth regions (the mandrill’s fur and beard). Finally we remark that the performance of
KoPA approach on image analysis can possibly be improved by adding a similar penalty
term on the smoothness of B.

Figure 12: (left) The mandrill image, (mid) recovered images from multi-term KoPA model
and (right) total variation regularization.

7. Conclusion and Discussions

In this article, we propose to use the Kronecker product approximation as an alternative of
the low rank approximation of large matrices. Comparing with the low rank approximation,
KoPA is more flexible because any configuration of the Kronecker product can potentially
be used, leading to different levels of approximation and compression. To select the config-
uration, we propose to use the extended information criterion, which includes MSE, AIC
and BIC as special cases. We establish the asymptotic consistency of the configuration
selection procedure, and use an example with a random Kronecker product to illustrate
how the technical assumptions are fulfilled. Extension to the multi-term Kronecker product
model is also investigated. Both simulations and analysis of image examples demonstrate
that KoPA can be superior over the low rank approximations in the sense that it can give
a closer approximation of the original matrix/image with a higher compression rate.

We conclude with a discussion of future directions. First of all, the Kronecker product
model (4) is not permutation-invariant. In other words, after a permutation of columns
and rows, the signal from the matrix Y may or may not be a Kronecker product. When
the columns and rows have an order in nature as in image data and in spatial-temporal
data, it is not an issue. But in general, especially when the data is allowed to be shuffled, a
pre-processing step for ordering rows and columns should be investigated before conducting
KoPA analysis. Another extension is to consider a multi-term model, where each term can
have its own configuration. This approach certainly allows a greater flexibility, but also
poses new challenges not only on the configuration and order selections, but also on the
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estimation and algorithms as well. It would be ideal if a natural and interpretable proce-
dure for the estimation, order determination, and configuration selection and be developed,
with theoretical guarantees. Lastly, cross validation may also be used for configuration
selection. Note that we are working with one single observation (the matrix Y ). It is
possible to randomly remove one or a set of elements of Y , and evaluate the performance
of a configuration based on the ‘prediction’ accuracy of these elements. This approach re-
quires a matrix completion procedure based on Kronecker Product approximation, which
can be done based on low rank matrix completion procedure on the re-arranged matrix. We
are currently studying such a procedure, though its theoretical properties requires further
investigation.
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Appendix A. Proof of Theorem 1 and Corollary 1

Without loss of generality, we assume σ = 1. Noticing that

λ̂ = ∥Rm0,n0 [Y ]∥S = ∥λvec(A)vec(B)′ + σ2−(M+N)/2Rm0,n0 [E]∥S ,

by triangular inequality, we have∣∣∣λ̂− ∥λvec(A)vec(B)′∥S
∣∣∣ ⩽ σ2−(M+N)/2∥Rm0,n0 [E]∥S ,

where ∥λvec(A)vec(B)′∥S = λ. The following bound for ∥Rm0,n0 [E]∥S can be obtained
using the concentration inequality from Vershynin (2010),

P (∥Rm0,n0 [E]∥S ⩾ 2(m0+n0)/2 + 2(M+N−m0−n0)/2 + t) ⩽ e−t2/2.

Therefore, ∥Rm0,n0 [E]∥S = s0 +Op(1) and

|λ̂− λ| ⩽ 2−(M+N)/2(s0 +Op(1)) = r0 +Op(2
−(M+N)/2),

which yields λ̂− λ = Op(r0).

The bounds for Â and B̂ corresponds to the error bounds in estimating the left and right
singular vectors of Rm0,n0 [Y ], which is a direct consequence of the analysis in Wedin (1972)
by observing that

min
s=±1

∥Â− sA∥2F = min
s=±1

∥vec(Â)− svec(A)∥22 = 2 sin2Θ(vec(Â), vec(A)).

A sharper bound is provided in Cai and Zhang (2018).
Since above analysis holds for any fixed value of λ, Corollary 1 follows immediately.

Appendix B. Proof of Theorem 2

We first show and prove several technical lemmas.

Lemma 3. Suppose an > 0, an → 0 and xn = Op(1) is a sequence of continuous random
variables with density functions pn satisfying

(i) E|xn| ⩽ C for some constant C for every n,

(ii) 1 + anxn > 0 almost surely,

(iii) a−2
n supx⩽−1/(2an) pn(x) → 0,

then we have

E ln (1 + anxn) = O (an) .

Proof. Let pn(xn) be the density function of xn. For the positive part, we have

E+ =

∫ +∞

0
ln(1 + ant)pn(t)dt ⩽

∫ +∞

0
antpn(t)dt ⩽ anE|xn| ⩽ Can.
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For the negative part, we have

E− =

∫ 0

−1/an

ln(1 + ant)pn(t)dt

=

∫ −1/(2an)

−1/an

ln(1 + ant)pn(t)dt+

∫ 0

−1/(2an)
ln(1 + ant)pn(t)dt

⩾

[
sup

t⩽−1/(2an)
pn(t)

]∫ −1/(2an)

−1/an

ln(1 + ant)dt+

∫ 0

−1/(2an)
2antpn(t)dt

⩾ −1 + ln 2

2an
sup

t<−1/(2an)
pn(t) + 2an

∫ 0

−∞
tpn(t)dt

⩾ o(an)− 2Can.

Hence,

E ln(1 + anxn) = E+ + E− = O(an).

The conditions in Lemma 3 are easy to verify in the subsequent proofs. Condition (ii)
ensures the logarithm is well-defined on the whole support. Condition (i) is satisfied when
xn converges in mean to a random variable x with finite expectation. Condition (iii) is
controlling the left tails of the densities, and is easily fulfilled if they are exponential.

Lemma 4. Let X be an arbitrary P ×Q real matrix with P ⩽ Q and E be a P ×Q matrix
with IID standard Gaussian entries. Then we have

E∥X +E∥2S ⩽ ∥X∥2S + (
√
P +

√
Q)2 + 4∥X∥S

√
P +

√
2π(

√
P +

√
Q) + 2 =: U2.

Furthermore, the departure from the expectation is sub-Gaussian such that for any positive
t, we have

P [∥X +E∥S ⩾ U + t] ⩽ e−t2/2.

Proof. Without loss of generality, we assumeX = [X1,X2], whereX1 ∈ RP×P is a diagonal
matrix andX2 ∈ RP×(Q−P ) is zero. Such a form ofX can always be achieved by multiplying
X and E from left and right by orthogonal matrices, without changing the distribution of
E. Similarly, we partition E into [E1,E2] with E1 ∈ RP×P and E2 ∈ RP×(Q−P ). Then

∥X +E∥2S = sup
u∈RP ,∥u∥=1

u′(X +E)(X +E)′u

= sup
u∈RP ,∥u∥=1

u′XX ′u+ u′EEu+ 2u′XE′u

⩽ ∥X∥2S + ∥E∥2S + 2∥X∥S∥E1∥S

According to Vershynin (2010), we have E∥E1∥S ⩽ 2
√
P and

P [∥E∥S ⩾
√
P +

√
Q+ t] ⩽ e−t2/2.
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Therefore,

E∥E∥2S =

∫ ∞

t=0
P [∥E∥S > t]2tdt ⩽ (

√
P +

√
Q)2 +

√
2π(

√
P +

√
Q) + 2.

Hence, we have

E∥X +E∥2S ⩽ ∥X∥2S + (
√
P +

√
Q)2 + 4∥X∥S

√
P +

√
2π(

√
P +

√
Q) + 2 =: U2.

Since for any fixed X, ∥X+E∥S is a function of E with Lipschitz norm 1, by concentration
inequality, for any positive t, we have

P [∥X +E∥S ⩾ U + t] ⩽ e−t2/2.

We rewrite the information criterion as

ICκ(m,n) = D
[
ln ∥Y − Ŷ (m,n)∥2F + κr2m,n − 2κD−1/2

]
,

where D = 2M+N and rm,n = 2−(m+n)/2 + 2−(m†+n†)/2. The constant term 2κD−1/2 is
irrelevant to the configuration (m,n) and is therefore ignored in subsequent proofs. Without
loss of generality, we define the following expected information criterion

EICκ(m,n) = D
[
E ln ∥Y − Ŷ (m,n)∥2F + κr2m,n

]
for simplicity. The difference in expected information criterion between wrong configura-
tions and the true configuration is of central interest, so we define

∆EICκ(m,n) = EICκ(m,n)− EICκ(m0, n0)

Under the true configuration (m0, n0), we have

E∥Y − Ŷ (m,n)∥2F ⩽ E∥Y − λA⊗B∥2F = σ2D−1E∥E∥2F = σ2.

Therefore, we have

EICκ(m0, n0) ⩽ D
[
lnE∥Y − Ŷ (m,n)∥2F + κr20

]
⩽ D

[
lnσ2 + κr20

]
, (29)

where r0 = rm0,n0 .

Define

λ̂(m,n) := ∥Rm,n[Y ]∥S = ∥λRm,n[A⊗B] + σD−1/2Rm,n[E]∥S . (30)

To calculate the information criterion for wrong configurations, we use the following equality

∥Y − Ŷ (m,n)∥2F = ∥Y ∥2F −
[
λ̂(m,n)

]2
.
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Notice that

∥Y ∥2F = ∥λA⊗B∥2F + σ2D−1∥E∥2F + 2λσD−1/2tr[(A⊗B)E′],

where ∥λA ⊗ B∥2F = λ2, σ2D−1∥E∥2F = σ2(1 + Op(D
−1/2)) and tr[(A ⊗ B)E′] follows a

standard normal distribution. We have

∥Y ∥2F = λ2 + σ2 +R1, (31)

where
R1 = Op

(
(σ2 + λσ)D−1/2

)
.

For wrong configurations (m,n) ∈ W, without loss of generality, we assume m + n ⩽
(M +N)/2. According to Lemma 4, we have the upper bound for (30):

[λ̂(m,n)]2 ⩽ λ2ϕ2 + σ2r2m,n + 4λϕσ2(m+n)/2D−1/2 +Op((λσ + σ2)D−1/2)

⩽ λ2ϕ2 + σ2r2m,n + 4λσD−1/4 +Op((λσ + σ2)D−1/2). (32)

Hence,

∥Y − Ŷ (m,n)∥2S ⩾ λ2(1− ϕ2) + σ2(1− r2m,n)− 4λσD−1/4 +Op((λσ + σ2)D−1/2).

The last two terms are minor terms by Assumption 3. Therefore,

EICκ(m,n) ⩾ D

[
ln(λ2ψ2 + σ2(1− r2m,n))−O

(
λσD−1/4

σ2 + λ2ψ2

)
+ κr2m,n

]
. (33)

Here Lemma 3 is applied since the stochastic term in (32) has an exponential tail bound.
Notice that EICκ(m,n) in (33) is either a monotone increasing function or a uni-modal
function of r2m,n on [1/2, 4D1/2]. Therefore, the minimum of the right hand side of (33) is
obtained on the boundary. When r2m,n = 1/2, (33) becomes

EICκ(m,n) ⩾ D

[
ln(λ2ψ2 + σ2/2)−O

(
λσD−1/4

σ2 + λ2ψ2

)
+ κ/2

]
. (34)

When r2m,n = 4D−1/2, (33) becomes

EICκ(m,n) ⩾ D

[
ln(λ2ψ2 + σ2)−O

(
λσD−1/4

σ2 + λ2ψ2

)]
. (35)

In conclusion, for any wrong configuration (m,n) ∈ W, we have

∆EICκ(m,n) ⩾ D

[
α−O

(
λσD−1/4

σ2 + λ2ψ2

)
− κr20,

]
(36)

where

α =

[
ln

(
1 +

λ2ψ2

σ2

)]
∧
[
ln

(
1

2
+
λ2ψ2

σ2

)
+
κ

2

]
.
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When κ ⩾ 2 ln 2, α takes the first value in the preceding equation. The assumptions imposed
in Theorem 2 ensure the leading term α in (36) dominates other terms so that the minimum
of ∆EIC over the wrong configurations is strictly positive.

We now address Remark 7. It turns out possible to use only the MSE to select the
configuration, which corresponds to κ = 0. It requires a stronger signal-to-noise ratio
λ2ψ2/σ2 > 1/2 so that the leading term α in (36) is positive, and hence Theorem 2 continues
to hold.

Remark 11. Note that the upper bound used in (32) is quite conservative, because the
maximums of ϕ and 2(m+n)/2 over W are taken separately. It leads to a simple form of
Assumption 3, which is actually not as optimal as possible. If we define ϕ(m,n) = ∥Rm,n[A⊗
B]∥S , then the condition (16) in Assumption 3 can be relaxed to

lim
M+N→∞

inf
(m,n)∈W

(2(m+n)/2 + 2(m
†+n†)/2) · λ

σ
· 1− [ϕ(m,n)]2

ϕ(m,n)
= ∞.

However, in the main text we choose to introduce the concept of representation gap and
present a simple version of Assumption 3.

Appendix C. Proof of Theorem 3

We begin with the tail bounds for ∥E∥2F . According to the tail bounds for χ2 random
variable given in Laurent and Massart (2000), it holds that for any t > 0,

P
[
D−1∥E∥2F > 1 +

√
2D−1/2t+D−1t2

]
⩽ e−t2/2, (37)

P
[
D−1∥E∥2F < 1−

√
2D−1/2t

]
⩽ e−t2/2, (38)

where D = 2M+N . Therefore, at the true configuration (m0, n0), we have

P
[
∥Y − Ŷ (m0,n0)∥2F > σ2 +

√
2σ2D−1/2t+ σ2D−1t2

]
⩽P

[
∥σD−1/2E∥2F > σ2 +

√
2σ2D−1/2t+ σ2D−1t2

]
⩽e−t2/2. (39)

Noticing that

∥Y ∥2F = λ2 + σ2D−1∥E∥2F + 2λσD−1/2Z,

where Z = tr[(A⊗B)E′] is a standard Gaussian random variable, by (38) we have

P
[
∥Y ∥2F < λ2 + σ2 − (

√
2σ2 + 2λσ)D−1/2t

]
⩽ 2e−t2/2. (40)

Now we consider the tail bound for λ̂(m,n) of wrong configurations. According to
Lemma 4, we have the tail bound for λ̂(m,n) as

P [λ̂(m,n) ⩾ U + σD−1/2t] ⩽ e−t2/2, (41)
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where

U2 = λ2ϕ2 + σ2r2m,n + 4λϕσ2(m+n)/2D−1/2 +
√
2πσ2rm,nD

−1/2 + 2σ2D−1 < (λ+ σ)2.

Let α = ln(1 + (λ/σ)2ψ2) be the positive gap constant. We have

P [ICκ(m0, n0) > EICκ(m0, n0) +Dα/3]

=P
[
∥Y − Ŷ (m0,n0)∥2F > σ2eα/3

]
⩽ exp

(
−c21D/2

)
, (42)

where
c21 = eα/3 − 1.

For any (m,n) ∈ W, it holds that

P [ICκ(m,n) < EICκ(m0, n0) +Dα/3]

⩽P [ICκ(m,n) < EICκ(m,n)−Dα/3]

⩽P
[
∥Y ∥2F − λ̂2 < λ2 + σ2 − λ2ϕ2 − 2h

]
⩽P

[
∥Y ∥2F < λ2 + σ2 − h

]
+ P

[
λ̂2 > U2 + h

]
⩽2 exp

(
−c22D/2

)
+ exp

(
−c23D/2

)
(43)

where we use (40) and (41) to obtain (43),

h =
1

2

(
1− e−α/3

)
(λ2(1− ϕ2) + σ2), c2 =

h√
2σ2 + 2λσ

,

and c3 is the solution of
σ2c23 + 2(λ+ σ)σc3 = h.

We conclude that

P

[
ICκ(m0, n0) ⩾ min

(m,n)∈W
ICκ(m,n)

]
⩽

∑
(m,n)∈W

P [ICκ(m0, n0) ⩾ ICκ(m,n)]

⩽
∑

(m,n)∈W

(
P [ICκ(m0, n0) ⩾ EICκ(m0, n0) +Dα/3]

+ P [ICκ(m,n) ⩽ EICκ(m0, n0) +Dα/3]

)
⩽4(M + 1)(N + 1) exp

[
−c2D/2

]
→ 0, (44)

where c = min{c1, c2, c3}. By calculating the orders of c1, c2, c3, it holds that

c2 ⩾ O

(eα/3 − 1) ∧

(
eα − e2α/3

1 + λ/σ

)2
 .
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Specifically, if α→ 0 (or equivalently, (λ/σ)2ψ2 → 0), we have

c2 ⩾ O

(
λ2

σ2
ψ2 ∧ (λ2/σ2)2

(1 + λ/σ)2
ψ4

)
The right hand side is much greater than ln(MN), under Assumptions 1 and 3.

Appendix D. Proof of Theorem 4

The proof is very similar to the proofs of Theorem 2 and Theorem 3, so we only point out
the major steps, but omit the details. Condition (19) implies that λ2 = λ20(1 + op(1)) and
ψ2 = ψ2

0(1 + op(1)). The proof of Theorem 2 follows immediately by replacing λ2 and ψ2

with the deterministic values λ20 and ψ2
0, except that an op(λ

2
0 + ψ2

0) term is added to (30).
Since the additional stochastic term is negligible and has finite expectation, Theorem 2
continues to hold.

The consistency follows same lines as those of Theorem 3 except that the deviations
λ2−λ20 and ψ2−ψ2

0 should be incorporated into (44). Specifically, Assumption 4 implies that
for any small constant δ, with probability larger than 1−o(1/(MN)), we have λ2 ⩾ λ20(1−δ)
and ψ2 ⩾ ψ2

0(1− δ). Proof of Theorem 3 follows immediately by replacing λ2 and ψ2 with
λ20(1− δ) and ψ2

0(1− δ). The following probability of exceptions should be added to (44).

(M + 1)(N + 1)
[
P [λ2 < λ20(1− δ)] + P [ψ2 < ψ2

0(1− δ)]
]
= o(1),

which does not affect consistency but may reduce the convergence rate.

Appendix E. Proof of Lemma 1 and Corollary 2

Consider the complete Kronecker product decomposition of A with respect to the configu-
ration (m ∧m′, n ∧ n′, (m−m′)+, (n− n′)+):

A =
I∑

i=1

µiCi ⊗Di, (45)

where I = 2m∧m′+n∧n′ ∧ 2(m−m′)++(n−n′)+ , µ1 ⩾ µ2 ⩾ · · · ⩾ µI are the coefficients in
decreasing order. Ci and Di satisfy

⟨Ci,Cj⟩ = ⟨Di,Dj⟩ = δi,j , (46)

where δi,j is the Kronecker delta function such that δi,j = 1 if and only if i = j and
δi,j = 0 otherwise, and ⟨A,B⟩ := tr[A′B] is the trace inner product. Notice that the
decomposition in (45) corresponds to the singular value decomposition for Rm∧m′,n∧n′ [A].
Therefore, the singular values µ1, . . . , µI are uniquely identifiable and the components Ci,
Di are identifiable if the singular values are distinct. In particular,

µ1 = ∥Rm∧m′,n∧n′ [A]∥S .

Similarly, the KPD of B with the configuration ((m′−m)+, (n
′−n)+,M−m∨m′, N−n∨n′)

is given by

B =
J∑

j=1

νjFj ⊗Gj ,
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where J = 2(m
′−m)++(n′−n)+ ∧ 2M+N−m∨m′−n∨n′

and

ν1 = ∥R(m′−m)+,(n′−n)+ [B]∥S .

With the two KPD of A and B, we can rewrite A⊗B as

A⊗B =

(
I∑

i=1

µiCi ⊗Di

)
⊗

 J∑
j=1

νjFj ⊗Gj

 =

I∑
i=1

J∑
j=1

µiνjCi ⊗Di ⊗ Fj ⊗Gj .

Notice that the Kronecker product satisfies distributive law and associative law. The matrix
Di is 2

(m−m′)+ × 2(n−n′)+ and the matrix Fj is 2(m
′−m)+ × 2(n

′−n)+ . For all possible values
of m,m′, n, n′, either one of Di and Fj is a scalar, or they are both vectors; and for both
cases Di ⊗ Fj = Fj ⊗Di. Therefore,

A⊗B =
I∑

i=1

J∑
j=1

µiνjCi ⊗ Fj ⊗Di ⊗Gj =
I∑

i=1

J∑
j=1

µiνjPij ⊗Qij , (47)

where
Pij := Ci ⊗ Fj , Qij := Di ⊗Gj .

Notice that Pij is a 2m
′ × 2n

′
matrix and Qij is a 2M−m′ × 2N−n′

matrix. Therefore,
(47) is a KPD of A ⊗ B indexed by (i, j) with respect to the Kronecker configuration
(m′, n′,M −m′, N − n′) as long as Pij and Qij satisfy the orthonormal condition in (46).
In fact,

⟨Pij ,Pkl⟩ = tr[P ′
ijPkl]

= tr[(Ci ⊗ Fj)
′(Dk ⊗Gl)]

= tr[(C ′
iDk)⊗ (F ′

jGl)]

= tr[C ′
iDk]tr[F

′
jGl]

= δi,jδk,l,

and similar results hold for Qij . It follows that

∥Rm′,n′ [A⊗B]∥S = max
i,j

µiνj = µ1ν1 = ∥Rm∧m′,n∧n′ [A]∥S · ∥R(m′−m)+,(n′−n)+ [B]∥S ,

and the proof of Lemma 1 is complete.

Now we consider Corollary 2. When A and B are generated as in Example 1, we have

∥Rm∧m′,n∧n′ [Ã]∥S ⩽ 2(m∧m′+n∧n′)/2 + 2((m−m′)++(n−n′)+)/2 +Op(1),

∥R(m′−m)+,(n′−n)+ [B̃]∥S ⩽ 2((m
′−m)++(n′−n)+)/2 + 2(M+N−m∨m′−n∨n′)/2 +Op(1),

∥Ã∥F ∥B̃∥F = 2(M+N)/2(1 +Op(r0)).

Hence,

∥Rm′,n′ [A⊗B]∥S =
∥Rm′,n′ [Ã⊗ B̃]∥S

∥Ã∥F ∥B̃∥F
⩽ 2−(m′+n′)/2 + 2−(M+N−m′−n′)/2

+ 2−(|m−m′|+|n−n′|)/2 + 2−(M+N−|m−m′|−|n−n′|)/2 + op(1).
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The maximum of the right hand side is obtained when |m−m′|+ |n−n′| = 1, or m′ +n′ ∈
{1,M +N − 1}, for which

∥Rm′,n′ [A⊗B]∥S ⩽ 1/
√
2 + op(1).

Furthermore, it is straightforward to verify that the upper bound is attained when m′+n′ ∈
{1,M +N − 1}, which leads to Corollary 2.

Appendix F. Proof of Lemma 2

We first prove the following technical lemma.

Lemma 5. Let U , V be two vector subspaces of Rn with Θ(U, V ) = θ ∈ [0, π/2], where
Θ(U, V ) denotes the smallest principal angle between U and V . Suppose w ∈ Rn is a unit
vector and

∥PUw∥ = cosα,

for some α ∈ [0, π/2], where PU denotes the orthogonal projection to the space U . Then it
holds that

∥PV w∥ ⩽

{
cos(θ − α) if α ⩽ θ,

1 if α > θ.

Proof. Let

u =
PUw

∥PUw∥
,

then ∥u∥ = 1 and u ∈ U . Let {u1, u2, . . . , un} be an orthogonal basis of Rn such that
u1 = u. For any vector v ∈ V , we have

v′w = v′

(
n∑

i=1

uiu
′
i

)
w

= v′u1u
′
1w +

n∑
i=2

v′uiu
′
iw

⩽ v′u1u
′
1w +

√√√√ n∑
i=2

v′ui

√√√√ n∑
i=2

u′iw

= cos η cosα+ sin η sinα

= cos(η − α),

where v′u1 = cos η. The proof is complete by noting that cos η = v′u1 ⩽ cos θ.

We now prove Lemma 2.
Proof of Lemma 2. Recall that M1 and M2 are of the same dimension. We consider the
maximization of ∥(M1 +M2)u∥2 over all unit vectors u. First write

∥(M1 +M2)u∥2 = ∥M1u+M2u∥2

= ∥M1PM ′
1
u+M2PM ′

2
u∥2

= ∥M1PM ′
1
u∥2 + ∥M2PM ′

2
u∥2 + 2(M1PM ′

1
u)′M2PM ′

2
u,
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where PM denotes the projection matrix to the column space of M . Since ∥M1∥S = µ and
∥M2∥S = ν, we have

∥M1PM ′
1
u∥2 ⩽ µ2∥PM ′

1
u∥2 and ∥M2PM ′

2
u∥2 ⩽ ν2∥PM ′

2
u∥2.

Since M1PM ′
1
u ∈ span(M1) and M2PM ′

2
u ∈ span(M2), it holds that

(M1PM ′
1
u)′M2PM ′

2
u ⩽ cos θµν∥PM ′

1
u∥∥PM ′

2
u∥.

It follows that

∥(M1 +M2)u∥2 ⩽ µ2∥PM ′
1
u∥2 + ν2∥PM ′

2
u∥2 + 2µν∥PM ′

1
u∥∥PM ′

2
u∥ cos θ.

Suppose ∥PM ′
1
u∥ = cosα for some α ∈ [0, π/2]. If α > η, then ∥PM ′

2
u∥ ⩽ 1. The right hand

side of the preceding inequality attains its maximum when ∥PM ′
1
u∥ = cos η and ∥PM ′

2
u∥ = 1.

Hence, we only consider the case α ⩽ η, which implies that ∥PM ′
2
u∥ ⩽ cos(η − α), and

∥(M1 +M2)u∥2 ⩽ µ2 cos2 α+ ν2 cos2(η − α) + 2µν cos θ cosα cos(η − α).

Therefore,

µ2 cos2 α+ ν2 cos2(η − α) + 2µν cos θ cosα cos(η − α)

=
1

2
µ2(1 + cos 2α) +

1

2
ν2(1 + cos(2η − 2α)) + µν cos θ[cos η + cos(η − 2α)]

=
1

2
(µ2 + ν2 + 2µν cos θ cos η)

+

(
1

2
µ2 +

1

2
ν2 cos(2η) + µν cos θ cos η

)
cos(2α) +

(
1

2
ν2 sin(2η) + µν cos θ sin η

)
sin(2α)

⩽
1

2
(µ2 + ν2 + 2µν cos θ cos η)

+

√(
1

2
µ2 +

1

2
ν2 cos(2η) + µν cos θ cos η

)2

+

(
1

2
ν2 sin(2η) + µν cos θ sin η

)2

=
1

2

(
µ2 + ν2 + 2µν cos θ cos η +

√
(µ2 + ν2 + 2µν cos θ cos η)2 − 4µ2ν2 sin2 θ sin2 η

)
.

The proof is complete.

Appendix G. Proofs of Theorem 5 and Corollary 4

The proof of Theorem 5 is similar to the proofs of Theorem 2 and Theorem 3, so we only
point out the main steps here and omit the details.

Following the same argument as in the proof of Theorem 2, the expected information
criteria of the true configuration is

EICκ(m0, n0) = D
[
ln
(
λ22 + σ2

)
+ κr20

]
.

For a wrong configuration (m,n) ∈ W, λ̂(m,n) is obtained by

λ̂(m,n) = ∥λ1R[A1 ⊗B1] + λ2R[A2 ⊗B2] + σD−1/2R[E]∥S .
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According to Lemma 2 and Assumption 5, we have

∥λ1R[A1 ⊗B1] + λ2R[A2 ⊗B2]∥2S ⩽ λ21ϕ
2
1 + λ22ϕ

2
2 + 2λ1λ2ϕ1ϕ2ξ < (λ1 + λ2)

2. (48)

By Lemma 4, we have

[λ̂(m,n)]2 ⩽ λ21ϕ
2
1 + λ22ϕ

2
2 + 2λ1λ2ϕ1ϕ2ξ + σ2r2m,n

+O((λ1 + λ2)σD
−1/4) +Op

(
(λ1 + λ2 + σ)σD−1/2

)
. (49)

With (49) replacing (32), the rest of the proof follows the same line of the proof of Theorem 2.
The proof of consistency is same as in the proof of Theorem 3 except that the formula of
λ̂(m,n) in (49) is used in (43).

We now prove Corollary 4. When model (24) is generated under the random scheme
in Example 2, we only consider the wrong configuration close to the true configuration. It
can be verified that the separation ∆EIC(m,n) is larger at other configurations. Consider
(m,n) such that |m0 −m|+ |n0 − n| = 1. Then from Corollary 2, we have

ϕ1 =
1√
2
+Op(r0), ϕ2 =

1√
2
+Op(r0).

Now consider the principle angles between R[A1 ⊗B1] and R[A2 ⊗B2 as in Lemma 2, We
have

cos θ = Op(2
−(m+n)), cos η = Op(2

−(m†+n†)).

By Lemma 2, (48) can be revised to

∥λ1R[A1 ⊗B1] + λ2R[A2 ⊗B2]∥2S ⩽
λ21
2

+Op(λ
2
1r0).

Corollary 4 follows immediately.

Appendix H. Additional Simulation with Different Noise Distributions

In this section, we examine the performance of configuration selection under different distri-
butions of the noise matrix E. We replicate the simulation in Experiment 1 in Section 6.1.2
with M = N = 9, replacing the the normal distribution of the noise by (1) Unif[−1, 1]
and (2) Student’s t4 distribution with degrees of freedom 4, both normalized to have unit
variance. The uniform distribution is an example of the sub-Gaussian case, whose con-
centration inequality of the spectral norm is provided by, for example, Proposition 2.4 of
Rudelson and Vershynin (2010). The t4 is an example of tails heavier than the Gaussian
distribution.

We plot the number of correct configuration selections out of 100 replications for different
noise distributions in Figure 13. There is no substantial difference between Gaussian and
uniform cases. The t4 noise appears to require higher signal-to-noise ratios than Gaussian
noise due to its heavier tail. But the phase transition of correctly selecting the configuration
continues to exist.
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(a) AIC, Gaussian (b) AIC, Uniform (c) AIC, t

(d) MSE, Gaussian (e) MSE, Uniform (f) MSE, t

Figure 13: The empirical frequencies of the correct configuration selection out of 100 repe-
titions under AIC and MSE for different noise distributions with dimensions M = N = 9.
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