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Abstract

A matrix completion problem is to recover the missing entries in a partially observed matrix.

Most of the existing matrix completion methods assume a low rank structure of the underlying

complete matrix. In this paper, we introduce an alternative and more general form of the

underlying complete matrix, which assumes a low Kronecker rank instead of a low regular rank,

but includes the latter as a special case. The extra flexibility allows for a much more parsimonious

representation of the underlying matrix, but also raises the challenge of determining the proper

Kronecker product configuration to be used. We find that the configuration can be identified

using the mean squared error criterion as well as a modified cross-validation criterion. We

establish the consistency of this procedure under suitable conditions on the signal-to-noise ratio.

A aggregation procedure is also proposed to deal with special missing patterns and complex

underlying structures. Both numerical and empirical studies are carried out to demonstrate the

performance of the new method.

Keywords: Matrix completion, Kronecker product approximation, aggregated estimation,

model selection, information ceriterion

∗Chencheng Cai is a postdoctoral fellow at Department of Statistical Science, Fox School of Business, Temple

University, Philadelphia, PA 19122. E-mail: chencheng.cai@temple.edu. Rong Chen is Professor, Department of

Statistics, Rutgers University, Piscataway, NJ 08854. E-mail: rongchen@stat.rutgers.edu. Han Xiao is Associate

Professor, Department of Statistics, Rutgers University, Piscataway, NJ 08854. E-mail: hxiao@stat.rutgers.edu.

Han Xiao is the corresponding author. Chen’s research is supported in part by National Science Foundation grants

DMS-1503409, DMS-1737857, IIS-1741390, CCF-1934924, DMS-2027855, and DMS-2052949. Xiao’s research is

supported in part by National Science Foundation grants DMS-1454817, DMS-2027855, DMS-2052949, and a research

grant from NEC Labs America.

1



1 Introduction

Many applications involve observations in a matrix form, and most likely of large dimensions. When

the observed matrix is the sum of a signal matrix and a noise matrix, or is partially observed, a

common approach in machine learning and statistics is to assume that the underlying signal matrix

has a rank that is much smaller than its dimension. The low rank structure represents the interaction

between matrix entries with a smaller number of parameters and reveals the core factors that drive

and control the high dimensional observations, resulting in significant dimension reduction. Such a

low rank assumption also makes it possible to recover the missing entries in a partially observed

matrix, known as the matrix completion problem. Matrix completion has broad and important

applications, including collaborative filtering (Goldberg et al., 1992), global positioning (Biswas

et al., 2006) and remote sensing (Schmidt, 1986), among many others. One of the most famous

examples is the Netflix recommendation system contest (Bennett et al., 2007), in which the winning

algorithm recovers the movie-rating matrix by a rank one matrix based on the observed ratings.

Two different settings of matrix completion problems have been considered in the literature.

One is the exact matrix completion problem whose goal is to recover the original matrix exactly

when a portion of the matrix entries is missing. When the original matrix rank is known, it can

be recovered through the alternating minimization algorithm proposed by Jain et al. (2013) under

certain conditions. When the matrix rank is unknown, it is still possible to exactly recover the

matrix through nuclear norm optimization (Candès and Recht, 2009; Candès and Tao, 2010). The

nuclear norm optimization approach can also be applied to tensor completion problems whose

goal is to recover a tensor structure (Yuan and Zhang, 2016). The second setting considers the

circumstances when the observed entries are corrupted by noises while at the same time a portion

of the entries is missing. It is known as the stable matrix completion problem. Candès and Plan

(2010) extends the nuclear norm optimization approach to the stable matrix completion problem by

relaxing the constraint. Assuming the matrix rank is known, Keshavan et al. (2010b) approaches

the problem using a combination of spectral techniques and manifold optimization. Specifically

for stable rank one matrix completion problem, Cosse and Demanet (2017) proposes to solve it

using two rounds of semi-definite programming relaxation. Note that the alternating minimization

algorithm in Jain et al. (2013) is applicable for the stable matrix completion problem as well.

It is observed that in many applications of image analysis, signal processing and quantum

computing, the high dimensional data in matrix form often has a low-rank structure in terms of
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Kronecker product decomposition instead of singular value decomposition (Werner et al., 2008;

Duarte and Baraniuk, 2012; Kamm and Nagy, 1998). Approximating a matrix with a sum of a small

number of matrices in Kronecker product form is an extension of the low rank approximation with

a sum of rank one matrices. The flexibility provides an alternative approach for matrix completion.

The key challenging factor of the approach is to determine the Kronecker product’s configuration,

which is the dimensions of the two matrices of the product.

In this article, we consider the matrix completion problem under the setting that the signal

matrix is the sum of k Kronecker products with an unknown configuration. Although it is natural

to think of using an information criterion to determine the configuration, we find strikingly that

the criterion based on just the mean squared error can identify the configuration, and prove its

asymptotic consistency under suitable conditions on the signal-to-noise ratio. We therefore propose

a two-step procedure of the stable matrix completion problem, first identify the configuration, and

then complete the matrix using the chosen configuration. We also would like to emphasize that the

objective of our paper is on the completion of the matrix, and the Kronecker product structure is a

vehicle for achieving it.

For a given configuration of the Kronecker product, if one block of the matrix is completely

missing, then it is impossible to recover the entries in it. To alleviate this issue, we also introduce an

aggregated procedure which incorporates a few different configurations, and combine the recovered

matrices under each of them. This is based on an intuitive observation that entries non-recoverable

under one configuration may be recovered under others, perhaps imperfectly but still usefully.

The aggregation over multiple configurations can also potentially provide more robust and stable

estimates of the underlying signal matrix in finite samples under the bias-variance trade-off framework.

We propose an empirical procedure to implement the aggregation procedure, and use a modified

cross-validation criterion to select the number of configurations to be used.

Compared to the conventional matrix completion based on the low rank structure, our approach

brings two new advancements. First, it allows the user to search over configurations, and thus offers

a greater flexibility. More strikingly, this is at no additional cost of the observing rate (compared to

the state-of-art procedures), if the candidate set of the configurations is not too large (see Section 4.4

for details). On the other hand, a higher observing rate does allow the search of the optimal

configuration over a larger candidate set. Second, the aggregation over multiple configurations can

lead to more robust and stable matrix completion.

The rest of the paper is organized as follows. In Section 2, we formally introduce the matrix
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completion problem, assuming the underlying complete matrix has a low Kronecker rank. The

estimation and configuration determination procedures are presented in Section 3. The theoretical

analysis on the consistency of the configuration selection and the error bound of recovered matrix are

provided in Section 4. We explore the power of aggregation by incorporating different configurations

in Section 5. Section 6 employs simulation studies and a real image example to demonstrate the

performances of both the configuration selection and the matrix completion procedures. Section 7

concludes.

Notation: [K] = {0, 1, . . . ,K} denotes the set of non-negative integers less than or equal to K.

For a vector u, ‖u‖ denotes its Euclidean norm. For a matrix M ∈ Rm×n, ‖M‖F represents its

Frobenius norm such that ‖M‖F =
√

tr(MM ′) and ‖M‖S denotes its spectral norm defined by

‖M‖S = arg maxu∈Rn,‖u‖=1 ‖Mu‖. For positive integer P , we denote the set of all divisors of P by

d(P ) = {p ∈ Z+ : P mod p = 0}.

2 Low K-rank Matrix Completion

2.1 K-rank and the matrix completion

Let M ∈ RP×Q be a P × Q matrix, and suppose P and Q can be factorized as P = pp∗ and

Q = qq∗. It is shown (Van Loan and Pitsianis, 1993) that M has a complete Kronecker product

decomposition (KPD) in the form

X =

(pq)∧(p∗q∗)∑
i=1

λiAi ⊗Bi (1)

where Ai ∈ Rp×q and Bi ∈ Rp∗×q∗ , and the Kronecker product of A ∈ Rp×q and B ∈ Rp∗×q∗ is

given as

A⊗B :=


a1,1B a1,2B . . . a1,qB

a2,1B a2,2B . . . a2,qB
...

...
. . .

...

ap,1B ap,2B . . . ap,qB

 , (2)

where ai,j is the element of A in i-th row and j-th column. In (1) we require

λ1 > λ2 > · · · > λ(pq)∧(p∗q∗) > 0,

and

tr(AiA
T
j ) = tr(BiB

T
j ) =

 1 when i = j

0 when i 6= j
,
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so that the matrices Ai and Bi are identified up to a sign change when λi are all distinct. The

(p, q, p∗, q∗) or simply (p, q) (when P and Q are given) is called the configuration of the Kro-

necker product decomposition. When P and Q have multiple integer factors, there are multiple

configurations and therefore a KPD in the form (1) exists for each configuration.

We propose to consider the matrix completion problem when the matrix X ∈ RP×Q, which we

try to recover, has a low rank KPD such as

X =

r∑
i=1

λiAi ⊗Bi (3)

with configuration (p0, q0) and rank r ≤ (p0q0) ∧ (p∗0q
∗
0). We refer to r as the Kronecker rank

(K-rank) of X with respect to the configuration (p0, q0). The relationship between K-rank and KPD

is similar to, and an extension of the relationship between rank and singular value decomposition

(SVD), which renders X in the form

X =
r∑
i=1

λiuiv
T
i , (4)

a sum of r rank one matrices. It is seen that the SVD in (4) is the KPD in (3) with the configuration

(P, 1, 1, Q). On the other hand, a full rank matrix can have a low Kronecker rank. For example,

the (mn)-dimensional identity matrix Imn can be written as Imn = Im ⊗ In, and is therefore of

Kronecker rank 1. In fact, there is a deeper and more intrinsic connection between (3) and (4), as

will be explained in Section 2.2.

We assume that Y is a corrupted version of the underlying signal matrix X such that

Y = X +
σ√
PQ

E, (5)

where E is a P ×Q matrix with IID standard Gaussian entries and σ denotes the noise level.

In the matrix completion problem, the matrix Y is only partially observed. In this paper, we

consider the missing completely at random scheme by assuming that the observed matrix Y ∗ is

generated as

[Y ∗]ij = [Y ]ijδij

where δij are independent and identically distributed ∼ Bernoulli(τ), which are also independent

with X and E. The rate τ is called the observing rate. We also introduce another notation of the

observed matrix through a projection operator. Let Ω be the set of indices of the observed entries
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in Y ∗ and define the projection PΩ(·) as

[PΩ(M)]ij =


[M ]ij if (i, j) ∈ Ω,

0 otherwise,

for any P ×Q matrix M . In particular, it follows that Y ∗ = PΩ(Y ), where unobserved entries are

filled with zeros by default.

2.2 Connection to low rank matrix completion

The prevailing matrix completion algorithms (Candès and Recht, 2009; Candès and Plan, 2010;

Jain et al., 2013) assume a low rank structure of the signal matrix X as in (4). It corresponds to a

special low K-rank form of X in (3), with the configuration p = P, q = 1 and p∗ = 1, q∗ = Q. In

this section, we demonstrate the idea of Van Loan and Pitsianis (1993) and Cai et al. (2019b) that

with a known configuration, the matrix completion problem with KPD in (3) can be converted to a

standard low rank matrix completion problem and be solved using the existing approaches.

As discussed in Van Loan and Pitsianis (1993) and Cai et al. (2019b), the Kronecker product of

two matrices and the outer product of their vectorized version are linked through a rearrangement

operation. It can be seen from (2) that all the entries in A⊗B have the form ai,jbk,` and all the

entries in vec(A)vec(B)T have the same form ai,jbk,`, where vec(·) is the vectorization operation

that flattens a matrix to a column vector. Hence A ⊗ B and vec(A)vec(B)T have exactly the

same entries in the matrices, except the arrangement – one is a pp∗ × qq∗ matrix and the other is a

pq × p∗q∗ matrix.

We define a rearrangement operator Rp,q[·] so that R[A⊗B] = vec(A)vec(B)T . Specifically,

assuming M is a pp∗ × qq∗ matrix, a rearrangement operation Rp,q[·] is defined as

Rp,q[M ] = [vec(M1,1), . . . , vec(Mp,q)]
T ,

where Mi,j is the (i, j)-th block of M of size p∗ × q∗. Then for any p × q matrix A and p∗ × q∗

matrix B, we have

Rp,q[A⊗B] = vec(A)[vec(B)]T .

That is, if the configuration of the rearrangement operator is the same as that of the operand, the

rearrangement operator Rp,q turns a Kronecker product into a rank-one matrix. Note that the

rearrangement operation is linear, in that Rp,q(c1M1 + c2M2) = c1Rp,q(M1) + c2Rp,q(M2) and the

inverse operator R−1
p,q exist so that R−1

p,q(Rp,q(M)) = M . The rearrangement operator also retains
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the Frobenius norm in that ‖Rp,q(M)‖F = ‖M‖F since both matrices contain the same set of

elements. As a result, the KPD (3) becomes a SVD after the rearrangement, and many problems

pertaining to KPD can therefore be solved under the realm of SVD.

If we apply Rp0,q0 to the corrupted matrix Y in (5), assuming that X has a low K-rank

r ≤ (p0q0) ∨ (p∗0q
∗
0), it returns a corrupted low rank matrix

Rp0,q0 [Y ] =
r∑
i=1

λivec(Ai)[vec(Bi)]
T +

σ√
PQ
Rp0,q0 [E], (6)

where Rp0,q0 [E], the rearranged noise matrix, is still a matrix of IID Gaussian entries. Note

that Rp0,q0 [PΩY ] = PΩ̄p0,q0
Rp0,q0 [Y ] where Ω̄p0,q0 denotes the indices of the observed entries after

rearrangement. The K-rank-r matrix completion problem based on PΩY is therefore equivalent to

the standard rank-r matrix completion problem based on PΩ̄p0,q0
Rp0,q0 [Y ].

The preceding discussion assumes that the true configuration (p0, q0) is known so that the

rearrangement operator in (6) is determined. However, observing only the matrix PΩY and its

dimension (P,Q) does not reveal the true configuration (p0, q0) — any configuration (p, q) satisfying

p ∈ d(P ) and q ∈ d(Q) might be the true configuration, where d(P ) is the set of factors (divisors) of

P . If the rearrangement operator R is erroneously configured, the low rank structure in (6) might

be violated since Rp,q[A⊗B] typically does not preserve the low rank structure if (p, q) 6= (p0, q0).

3 Methodology

In this section, we propose a two-step procedure to solve the matrix completion problem under the

assumption that the signal matrix X is of low K-rank under a proper configuration. In the first step,

we determine the configuration by maximizing a criterion function over all candidate configurations.

Specifically, we use the spectral norm of the rearranged version of PΩ[Y ] as the criterion function.

In the second step, we convert the observed matrix to a standard matrix completion problem as in

(6) with respect to the estimated configuration from first step. The rearranged partially observed

matrix is then completed by an alternating least squares (ALS) algorithm.

3.1 Configuration Determination

Recall that (P,Q) is the dimension of Y ∗ = PΩY . We introduce the following candidate set

Cδ = {(p, q) : p ∈ d(P ), q ∈ d(Q), (PQ)1/4+δ 6 pq 6 (PQ)3/4−δ}, (7)
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where 0 < δ < 1/4 is a positive constant. Again, d(P ) is the set of all factors of P . For each

configuration (p, q) in the set Cδ, the rearranged Rp,q[PΩY ] has an aspect ratio between (PQ)−1/2+2δ

and (PQ)1/2−2δ. Here, extreme aspect ratios are excluded for several reasons. First, the extreme

“corner” cases where pq is extremely small or large are of less interest. For example p = q = 1 and

p = P, q = Q represent the case of a product of scalar and the full matrix. When p = q = 2, the signal

matrix X is assumed to be a block matrix formed by two-by-two matrices (total PQ/4 of them) of

the same proportion, while when p = P/2, q = Q/2, the matrix X is a two-by-two block matrix of

size (P/2)× (Q/2). The model complexity is high and the dimension reduction in these cases is

limited, similar to using a very small bandwidth in kernel smoothing operations. Second, from the

view of model selection using information criteria, we can view δ as a model complexity penalty

parameter with the penalty function pen(p, q) = 0 if (p, q) ∈ Cδ and pen(p, q) =∞ otherwise. Third,

we expect the partially observed matrix Rp0,q0 [PΩY ] to be recoverable under the true configuration

while an extreme aspect ratio usually results in a non-negligible probability of missing an entire

row or column, in which case these missing items are not recoverable. The recoverability issue will

be discussed in detail later. Lastly, the aspect ratio is a crucial factor in quantifying the error of

standard low rank matrix completion (Keshavan et al., 2010a; Jain et al., 2013; Gunasekar et al.,

2013). Theoretical performance guarantee exists only when the aspect ratio is in a reasonable range.

We propose to determine the configuration through the following maximization problem,

(p̂, q̂) = arg max
(p,q)∈Cδ

‖Rp,q[PΩY ]‖S . (8)

Recall that in PΩY , unobserved entries are filled in with zeros.

We now briefly discuss the heuristics behind the procedure (8). The rearranged partially

observed matrix Rp,q[PΩY ] can be viewed as a partially observed version of the rearranged matrix

PΩ̄p,qRp,q[Y ]. Its spectral norm is therefore

‖Rp,q[PΩY ]‖S = ‖PΩ̄p,qRp,q[Y ]‖S ≈ τ‖Rp,q[X]‖S . (9)

As discussed in Cai et al. (2019b), under mild conditions, ‖Rp,q[X]‖S attains its maximum over Cδ
at the true configuration. The error in the approximation (9) comes from two sources: the noise

matrix E and the missing entries. Both can be controlled when we operate within the candidate set

Cδ for δ > 0. The analysis is presented in Section 4.
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3.2 Estimation

Once the configuration is determined, the Kronecker matrix completion problem under the configu-

ration (p̂, q̂) becomes a standard low rank matrix completion problem on the rearranged matrix

whose rank is the same as the K-rank of the original matrix. Existing procedures such as that

proposed by Ashraphijuo et al. (2017) for identifying the rank are readily applicable. With a fixed

rank r, it becomes the following optimization problem.

min
λi,Ai,Bi

∥∥∥∥∥PΩ

(
r∑
i=1

λiAi ⊗Bi

)
− PΩY

∥∥∥∥∥
F

. (10)

where Ai ∈ Rp̂×q̂, Bi ∈ Rp̂∗×q̂∗ and ‖Ai‖F = ‖Bi‖F = 1 with p̂∗ = P/p̂ and q̂∗ = Q/q̂. Since the

rearrangement operation preserves the Frobenius norm, the optimization problem (10) is equivalent

to the classical rank-r matrix completion problem

min
λi,ui,vi

∥∥∥∥∥PΩ̄p̂,q̂

(
r∑
i=1

λiuiv
T
i −Rp̂,q̂[Y ]

)∥∥∥∥∥
F

. (11)

where ui = vec(Ai), vi = vec(Bi), and Ω̄p̂,q̂ records the indices of observed entries after the

rearrangement. To solve the optimization in (11), we adopt the alternating least squares (ALS)

algorithm proposed by Jain et al. (2013), where the initial values for ui and vi are directly estimated

from the singular value decomposition of PΩ̄p̂,q̂
Rp̂,q̂[Y ] as in Keshavan et al. (2010b). The algorithm

is depicted in Algorithm 1. The recovered matrix is therefore X̂ = R−1
p̂,q̂ [
∑r

i=1 λ̂iûiv̂
T
i ], where R−1

p̂,q̂

is the inverse operator of the rearrangement and λ̂i, ûi and v̂i are the optimal solution of (11).

We note that there are other algorithms available for solving (11) besides the ALS (Algorithm 1).

For example, the OptSpace algorithm proposed by Keshavan et al. (2010b) can be adopted as well

to solve (11) once the configuration is determined. In this paper we focus on and analyze the ALS

algorithm. We will also compare the ALS and the OptSpace in the numerical studies.

4 Theoretical Analysis

In this section, we present the theoretical properties of our methodology when the signal X is of

K-rank 1. That is,

Y = λA⊗B +
σ√
PQ

E, (12)

where A ∈ Rp0×,q0 , B ∈ Rp∗0×q∗0 , ‖A‖F = ‖B‖F = 1 and E is a Gaussian ensemble matrix with

IID standard normal entries. Here we normalize the error matrix by (PQ)−1/2 such that the
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Algorithm 1 Matrix Completion with Fixed Configuration

1: Input: matrix PΩY , configuration (p, q).

2: Select rank r.

3: Let Ỹ = PΩ̄p,qRp,q[Y ].

4: Initialize Λ(0), U (0), V (0) such that U (0)Λ(0)[V (0)]T is the leading rank r SVD of Ỹ .

5: repeat

6: U∗ = arg min
U

‖PΩ̄p,q [Ỹ −U [V (k)]T ]‖F

7: V ∗ = arg min
V

‖PΩ̄p,q [Ỹ −U∗[V ]T ]‖F

8: Update Λ(k+1), U (k+1), V (k+1) such that U∗[V ∗]T = U (k+1)Λ(k+1)[V (k+1)]T is in standard

SVD form.

9: until convergence

10: Return X̂ = R−1
p,q [UΛV T ] where Λ,U ,V are from the last iteration.

signal-to-noise ratio of the fully observed Y is λ2/σ2. The analysis in this section can be extended

to r > 1 cases without substantial differences. The presentation for r = 1 case is cleaner and easier

to understand.

4.1 Assumptions

In the subsequent analysis, we consider the following asymptotic scheme.

Assumption 1 (True configuration). Assume the dimension of Y goes to infinity, i.e. PQ→∞,

and there is an absolute constant 0 < δ 6 1/4 such that the true configuration (p0, q0) satisfies

(PQ)1/4+δ 6 p0q0 6 (PQ)3/4−δ.

The requirement on the true configuration in Assumption 1 can be equivalently stated as

(p0, q0) ∈ Cδ. Note that we do not require both P →∞ and Q→∞. We only require that jointly

PQ → ∞. In addition, δ > 0 implies that the dimensions p0q0 → ∞ and p∗0q
∗
0 → ∞, or for both

component matrices A and B, at least one of its dimensions goes to infinity. In the meantime,

as discussed in Section 3.1, the aspect ratio of Rp0,q0 [Y ] is restricted between (PQ)−1/2+2δ and

(PQ)1/2−2δ.

Definition 1 (Incoherence Coefficient). The incoherence parameter µ of a m × n matrix M is

defined by

µ =

√
mn‖M‖max

‖M‖F
,
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where ‖ · ‖max denotes the maximum absolute entry of a matrix.

Assumption 2 (Incoherence condition). Let µ be the maximum of the incoherence parameters

of matrices A and B as defined in Definition 1. We assume as PQ→∞

lim
PQ→∞

µ2

(PQ)δ
= 0.

The incoherence condition is commonly imposed in theoretical investigations of matrix completion

problems (Candès and Recht, 2009; Candès and Plan, 2010; Keshavan et al., 2010b). More specifically,

Assumption 2 translates into an incoherence condition on vec(A) and vec(B) , the singular vectors

of the rearranged matrix, which is usually assumed for the standard low rank matrix completion

problem on Rp0,q0 [PΩY ].

The incoherence parameter µ is greater or equal to 1. One would expect µ to increase slowly as

PQ→∞. In the case when a matrix is generated by normalizing a p× q matrix of IID standard

Gaussian entries, its incoherence parameter would be Op(
√

log pq) as pq →∞. Therefore, if both

A and B are generated from random Gaussian matrices (see for example, the random scheme

introduced in Cai et al. (2019b)), we have µ = Op(
√

log(p0q0 ∨ p∗0q∗0)) = Op(
√

(3/4− δ) logPQ) as

PQ→∞.

Assumption 3 (Observing rate). Assume the observing rate τ satisfies

lim
PQ→∞

τ(PQ)2δ

(µ4 + logPQ)
→∞.

Assumption 3 specifies the minimum allowable observing rate τ . Under Assumption 2, the

observing rate τ is allowed to go to zero, with a decay rate depends on δ and µ.

Following Cai et al. (2019b), we define

φ = max
(p,q)∈Wδ

‖Rp,q[A⊗B]‖S ,

where Wδ := Cδ \ {(p0, q0)} is set of incorrect configurations in the candidate set. Since under

the true configuration, ‖Rp0,q0 [A ⊗B]‖S = ‖vec(A)vec(B)T ‖S = ‖vec(A)‖F ‖vec(B)T ‖F = 1, φ2

can be viewed as the maximum portion (in Frobenius norm) of the matrix A ⊗B that can be

represented by a Kronecker product of a wrong configuration. On the other hand, for any given

configuration (p, q) ∈ Wδ, we always have ‖Rp,q[A ⊗B]‖S 6 ‖Rp,q[A ⊗B]‖F = ‖A ⊗B‖F = 1,

resulting in φ 6 1. The representation gap ψ2 is therefore defined as

ψ2 := 1− φ2. (13)
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The representation gap ψ2, taking value on [0, 1], quantifies the gap between any wrong configuration

and the true configuration in the sense of representing the signal part with a K-rank 1 matrix. If

ψ2 = 0, there exists another configuration (p′, q′) 6= (p0, q0) such that A⊗B = A′ ⊗B′ for some

A′ ∈ Rp′×q′ and B′ ∈ RP/p′×Q/q′ , hence our model cannot be uniquely determined. A larger value

of the representation gap ψ2 makes it easier to separate the true configuration from the wrong ones.

As discussed in Cai et al. (2019b), this gap is similar to the smallest eigenvalue in determining

matrix ranks, or the smallest standardized non-zero coefficient in variable selection in regression

analysis.

Assumption 4 (SNR and representation gap). Assume ψ2 and λ/σ satisfy

lim
PQ→∞

τψ4(PQ)2δ

µ4
→∞, and lim

PQ→∞

τ(λ/σ)2ψ4(PQ)2δ

logPQ
→∞.

Assumption 4 gives the lower bounds on the representation gap ψ2 and the signal-to-noise

ratio λ/σ, in terms of the incoherence parameter µ and the observing rate τ . Comparing with

Assumption 3 on the observing rate τ , we see that constant values of λ/σ and ψ2 suffice for

Assumption 4, though they may shrink to 0 with a rate depending on δ and τ , as PQ→∞.

4.2 Properties of the estimated configuration

To ease the notation, we denote the criterion function by

G(p, q) = ‖Rp,q[PΩY ]‖S ,

for (p, q) ∈ Cδ. Recall that we use this function as the configuration selection criterion in (8).

Theorem 1 provides the gap in the expectation of G(p, q) between the true configuration and any

wrong configurations.

Theorem 1 (Gap in criterion function). Under Assumptions 1 to 4, we have

E[G(p0, q0)]− max
(p,q)∈Wδ

E[G(p, q)] > τλ(1− φ)(1 + o(1)),

where the expectation is taken on both random observations of entries and the random noise.

Since E[G(p0, q0)] ≈ τλ, Theorem 1 shows that the representation gap of the signal part is

preserved using the criterion function G(p, q). The proof of the theorem can be found in the

Appendix.
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On the face of it, Theorem 1 is similar to the one for the Kronecker product model introduced

in Cai et al. (2019b). However, the underlying matrix completion problem makes it substantively

different, in the form and even more so in the proof. We mention two major differences here. First of

all, in the matrix completion problem, the candidate set Cδ has to be smaller than the one considered

in Cai et al. (2019b), where in the latter case, only two extreme configurations (0, 0), (P,Q) are

excluded from C. The model complexity is controlled by excluding extreme configurations. From

the perspective of the aspect ratio of Rp,q[PΩY ], the aspect ratio is often controlled as a constant as

matrix size increases to infinity in existing literature on conventional matrix completion problems

(Candès and Recht, 2009; Candès and Plan, 2010; Jain et al., 2013). Within the configuration set

Cδ, the aspect ratio is allowed to shrink to 0 or increases to infinity with a controlled rate between

(PQ)−1/2+2δ and (PQ)1/2−2δ. Configurations that result in the aspect ratios of Rp,q[PΩY ] outside

this range are excluded. Second, our assumption on the signal-to-noise ratio and representation

gap (Assumption 4) is stronger than its counterpart in Cai et al. (2019b). The reason is that

the missingness contributes more to the fluctuation of G(p, q) than the noise matrix E itself (see

equation (24) in the proof).

Theorem 2 (Consistency). Let (p̂, q̂) = arg max(p,q)∈Cδ G(p, q). Under Assumptions 1 to 4, we

have

P [(p̂, q̂) = (p0, q0)] > 1− C |d(P )||d(Q)|
(PQ)3/4+3δ

,

for some constant C, where |d(P )| is the size of the set d(P ).

Remark: Theorem 2 is established for the model with K-rank 1. If the K-rank is higher

than 1, the same procedure (8) can still select the true configuration consistently, under a larger

signal-to-noise, and an additional assumption on the relative strengths of the terms in (3). On the

other hand, when the K-rank is greater than 1, it is also of interest to consider the joint selection of

the configuration and the K-rank. Since it exceeds the scope of this paper, we leave it to the future

work.

Remark: According to the number theory (Hardy et al., 1979), for any ε > 0, |d(n)| = o(nε).

Therefore the probability of consistency in Theorem 2 converges to 1 as PQ→∞. We note that the

convergence rate, as presented in Theorem 2, is only related to PQ and δ but not the signal-to-noise

ratio λ/σ or the representation gap ψ2, different from that for configuration determination for

matrix denoising based on a fully observed matrix (Cai et al., 2019b). Again, this is because of the

smaller candidate configuration set controlled by δ. In fact, according to the proof of Theorem 2

13



shown in Appendix, there is a term exp{−C(λ/σ)2ψ4PQ} in the lower bound of the probability of

correct determination. However, this term is dominated by the main term.

4.3 Property of the recovered matrix

After the configuration has been determined by maximizing the criterion function G(p, q), the second

step is to recover the original matrix using Algorithm 1. It is known that a completely missed row

or column cannot be recovered by a low rank matrix completion. There is a similar phenomenon

under the model (3). For example, if the true configuration (p0, q0) is used in Algorithm 1, and if

a block of Y is completely missing, then the corresponding element of Ai is not recoverable, and

neither is the whole missing block. The top row of Figure 1 illustrates the situation: the first block

(highlighted in black in the upper left panel) is completely missing, and becomes a completely missed

row (in the upper right panel) after rearrangement. Therefore, the first element of Ai in (3), or

the first entry of ui in (4) is not recoverable. We provide a formal characterization of irrecoverable

entries in Definition 2.

Definition 2 (Irrecoverable entries). The entry Xi,j is irrecoverable with respect to configuration

(p, q) under the observation set Ω if either the entire row or the entire column of Rp,q[PΩY ] that

contains Xi,j is completely missing.

Equivalently, using the notation of index set Ω, the entry Xi,j is irrecoverable if either{
(i′, j′) ∈ Ω :

⌊
i− 1

p∗

⌋
=

⌊
i′ − 1

p∗

⌋
,

⌊
j − 1

q∗

⌋
=

⌊
j′ − 1

q∗

⌋}
= ∅, (14)

or {
(i′, j′) ∈ Ω : i′ = i+ lp∗, j′ = j +mq∗ for some l,m ∈ Z

}
= ∅, (15)

where bxc denotes the largest integer that is no greater than x.

Remark: In Definition 2, (14) means the row in Rp,q[PΩY ] that contains Xi,j is completely missing,

and (15) implies that the entire column in Rp,q[PΩY ] that contains Xi,j is missing.

Lemma 1 (Recoverability). Under Assumptions 1 and 3, as PQ→∞,

P [all entries in PΩY are recoverable under (p0, q0)] > 1− 2 exp{−C(PQ)1/4−δ logPQ},

for some constant C.
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Lemma 1 shows that as long as (p0, q0) ∈ Cδ, with high probability, there is no missing columns

or missing rows in the rearranged matrix Rp0,q0 [PΩY ] such that the optimization in (11) is well

defined.

Theorem 3 (Recovery error). Let X̂ = λ̂Â ⊗ B̂ be the recovered matrix of optimization (11)

under the true configuration (p0, q0) using Algorithm 1. Then under Assumption 2, with high

probability we have

‖X̂ −X‖F 6 λ
√
PQ exp

{
−C1τ(p0q0 ∧ p∗0q∗0)

µ4 logPQ

}
+ C2

σµ√
τ

√
logPQ · (PQ)−1/4(p0q0 ∧ p∗0q∗0)−1

for some global constant C1, C2 > 0.

Theorem 3 gives the error bound for the recovered matrix under the true configurations. Since

in Assumption 1 p0q0 ∧ p∗0q∗0 > (PQ)1/4+δ, the error bound in Theorem 3 can be revised to

‖X̂ −X‖F 6 λ exp

{
−C3τ(PQ)1/4+δ

µ4 logPQ

}
+ C2

σµ√
τ

√
logPQ · (PQ)−1/2−δ. (16)

Under Assumption 3, one can verify both terms on the right hand side converges to 0. The

second term in (16) dominates. Using τ � µ4(PQ)−2δ from Assumption 3 and µ = o((PQ)δ/2 from

Assumption 2, one can further have

‖X̂ −X‖F = op

(
σ
√

logPQ(PQ)−1/2
)
.

Remark. Theorem 3 is adapted from Theorem 2.5 of Jain et al. (2013) on the ALS Algorithm for

solving the optimization (11). If one chooses to use the OptSpace algorithm, similar recovery error

bounds can inherit from Theorem 1.2 of Keshavan et al. (2010b) without additional assumptions.

Furthermore, this paper focuses on the noisy matrix completion, and so does Theorem 3. Results

for the exact matrix recovery under the noiseless setting can also be obtained, and the key is to

identify the configuration correctly first. We do not include these results which are outside the

scope of this paper. We refer the readers to Jain et al. (2013) for more on the exact recovery based

on the low rank structure.

4.4 A discussion on the observing rate

The observing rate is critical for the task of matrix completion. A natural question to ask is: since

the Kronecker product decomposition based matrix completion extends the conventional one based

on the low rank structure, what is the implication on the observing rate? In this section we elaborate
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on the Assumption 3 and compare it with those required by the state-of-art methods: the nuclear

norm minimization algorithm of Candès and Plan (2010), the spectral matrix completion algorithm

of Keshavan et al. (2010a) and the OptSpace algorithm of Keshavan et al. (2010b).

Assumption 3 can be rewritten as a lower bound of the observing rate

τ � log2 PQ (PQ)−2δ, (17)

where we assume µ < C
√

logPQ with high probability for some constant C, which holds if A and

B are random matrices with IID standard Gaussian entries normalized to have Frobenius norm 1.

In fact, (17) can be viewed as the worst case requirement in the sense that

log2 PQ (PQ)−2δ = max
(p,q)∈Cδ,pq6(PQ)1/2

log2 PQ

√
p∗q∗

(pq)3
, (18)

where the maximum is attained on the boundary of Cδ.

Recall from Section 2.2 that although the observed low K-rank matrix Y is P ×Q, the dimension

of its corresponding rearranged low rank matrix, Rp0,q0 [Y ], is p0q0 × p∗0q∗0. When comparing our

conditions to existing ones on the completion of a m× n (m ≥ n) low rank matrix M , one should

correspond (m,n) to (p0q0, p
∗
0q
∗
0) instead of (P,Q). Under such a correspondence, our requirement

on the observing rate is actually τ � log2m
√
m/n3 as shown in (18). Again, Assumption 3 and

Eq. (17) guarantees that this condition is fulfilled for any configuration in the candidate set Cδ.

For exact matrix completion, both the nuclear norm minimization algorithm and the spectral

matrix completion approach require a minimum observing rate of order O(n−1 log2m) (see Theorem 1

in Candès and Plan (2010) and Theorem 1.2 in Keshavan et al. (2010a)), assuming a logarithm

bound on the incoherence parameters.

For noisy matrix completion, consider M to be a low rank matrix added with IID Gaussian

noise of standard deviation σ. The nuclear norm minimization algorithm has the same observing

rate requirement, O(n−1 log2m), as the exact completion problem, with a recovery error rate

‖M − M̂‖F = O(
√
mn2) & O(

√
mn) (see Theorem 7 in Candès and Plan (2010)). On the other

hand, the OptSpace algorithm requires an observing rate of O(log n/n+
√
m/n3), achieving a smaller

error rate ‖M − M̂‖F = O(
√
mn(n/m)−1/4 log−1m) = o(

√
mn) (see Theorem 1.2 in Keshavan

et al. (2010b)). Comparing these two algorithms, the OptSpace algorithm leads to a smaller recovery

error under a slightly stronger requirement on the observing rate. Our condition on the observing

rate is the same as that of the OptSpace algorithm,up to a logarithmic factor, if δ is chosen as

δ = δ∗ such that p0q0 = (PQ)1/4+δ∗ , i.e. Cδ∗ is just large enough to include the true configuration.

16



Our condition involves the additional logarithmic factor log2m because the proposed method also

has a step of selecting the configuration. On the other hand, if one prefers more flexibility given by

a larger candidate set Cδ with 0 < δ < δ∗, then Assumption 3 will require a higher observing rate.

We also note that a similar comparison can be made with the recent result Abbe et al. (2020).

Following the preceding discussion, let us consider the special case where the true signal matrix

is indeed low rank. In such a scenario, the true configuration of the KPD is (P, 1). In order for the

candidate set Cδ to include the true configuration, the constant δ has to be less than or equal to

δ∗ =
log(P ∧Q)

logPQ
− 1

4
,

when P∧Q > (PQ)1/4. If the candidate set Cδ∗ is used to search the configuration, then Assumption 3

again requires the same observing rate (up to a logarithmic factor) as that of the OptSpace algorithm.

5 Aggregated Estimation

Instead of selecting the single best configuration from the candidate set, an alternative is to

incorporate several configurations and combine the recovered matrices under these configurations,

leading to a aggregated recovery procedure. One immediate motivation and advantage of this

approach is that it alleviates the infeasibility problem when only one configuration is used. Note

that if a block is completely missing under the selected configuration (p̂, q̂), then all the missing

entries in this block cannot be recovered (see Definition 2).

We explain heuristically how aggregation can help to alleviate this issue. Let (p0, q0) be the true

configuration. Suppose the first P/p0 ×Q/q0 block of Y is completely unobserved as in Figure 1a,

where missing entries in the first block are highlighted in black, and other missing entries are

marked in gray. After the rearrangement using the true configuration (p0, q0), this block becomes

a completely unobserved row in Figure 1b. If we consider using another configuration (p, q) with

p > p0 and q > q0, there will be more completely missed rows after the rearrangement. For example,

Figure 1c shows Rp,q[Y ] with (p, q) = (2p0, q), which has two missing rows. On the other hand,

under a configuration (p, q) such that either p < p0 or q < q0, there won’t be any completely missed

rows after rearrangement. Figure 1d depicts the missing entries of Rp,q[Y ] with (p, q) = (p0/2, 2q0),

under which those pixels in black are recoverable. There can be multiple configurations under

which the completely missing block is recoverable. Aggregate the recovered matrices under such

configurations helps to recover the blocks that are completely missing.
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(a) Ω (b) Ω̄p0,q0

(c) Ω̄2p0,q0 (d) Ω̄p0/2,2q0

Figure 1: Locations of unobserved entries under rearrangements of different configurations, where

white pixels represent observed entries, black pixels represent the unobserved entries in the first

(upper-left most) block and gray pixels represent other missing entries.

In this section we aim to provide an empirical procedure of the aggregated estimation, and

discuss its properties and advantages. We also propose to use cross validation to select the number

of configurations to be incorporated.

5.1 Aggregated Estimation

Let Ck = (pk, qk), k = 1, 2, . . . be the sequence of configurations ordered according to the criterion

function (8) within the candidate configuration set Cδ, and let X̂k be the estimated X using

configuration Ck. For the (i, j)-th entry of X, and the k-th configuration Ck, define νijk be the

feasibility indicator which takes value 0 if the (i, j)-th entry is infeasible under configuration Ck,

and 1 otherwise. Let dij = min{k : νijk = 1} so Cdij is the best configuration under which (i, j)-th

entry is feasible. For a given integer d > 0, the final estimate of the (i, j)-th entry of X is obtained

as a weighted average of the (i, j)-th entries of X̂k,

X̂[i, j] =

∑d∨dij
k=1 wkνijkX̂k[i, j]∑d∨dij

k=1 wkνijk
(19)

where wk is the weight assigned to configuration Ck. The simplest choice would be the constant

weights such that wk ≡ 1. A more refined approach is to use a set of weights that reflects the

accuracy of each configuration.

For most of the missing entries, the aggregated estimator take the weighted average of the
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recovered entries among the best d configurations. If an entry (i, j) is infeasible under all the d

best configurations C1, . . . , Cd, the above estimator uses the best configuration dij > d under which

(i, j)-th entry is feasible, and fill it with the recovered entry under that configuration.

Remark: The aggregated estimation (19) can also be viewed as a model averaging procedure.

The benefit of the aggregation is multi-fold. First it provides an effective approach to handle

the infeasibility issue. The probability that there is an entry that is infeasible under all possible

configurations is extremely small, for reasonably large (M,N), and number of factors of P and Q.

Hence the procedure is able to handle higher missing rates. Second, model averaging can potentially

provide more robust and stable estimators, as demonstrated in many studies in statistics literature

(Buckland et al., 1997; Raftery et al., 1997). Note that for each possible configuration, there is a

corresponding KPD (1), which, when truncated at a given K-rank r, provides an approximation

to the signal matrix X in (5), though different approximations under different configurations and

K-ranks are of different qualities. Averaging over the best performing configurations can potentially

improve the quality of matrix recovery. Third, aggregation provides sharper resolution in the

completed matrix, particularly in image reconstruction. Kronecker products induce a block structure

in the resulting matrix hence often produce ‘grainy’ images. Averaging over several configurations

reduces such effects. Fourth, the final predictive model after averaging is equivalent to a hybrid

Kronecker product model

X =
d∑

k=1

wkXk,

where each Xk assumes a KPD of form (3) under configuration Ck. The aggregation approach

bypasses the difficulty of jointly estimating such a model as well as determining the configurations

in such a model. The effectiveness of the approach will be demonstrated in the empirical study.

Remark: In some real applications (for example image completion), it is difficult to justify that

X has Kronecker rank 1 and it is possible that X is instead a sum of several Kronecker products

with different configurations (see the hybrid decomposition in Cai et al. (2019a)). The aggregation

procedure is actually identifying those most plausible configurations and recovers the matrix X as

a mixture of them as in (19).

Remark: The empirical study shows that the performance is less sensitive to the number of

configurations used in the aggregated recovery (19) if the corner configurations (small or large

m+ n) are excluded. More detailed investigation may be needed.

Remark: In practice the matrix dimension P and Q may not have many factors, which limits
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the flexibility of the KPD approach as the candidate set C can be small. In this case it is possible to

augment the observed matrix with additional missing rows and columns so that the new dimensions

P ∗ and Q∗ have more factors. One such choice is to make P ∗ = 2M and Q∗ = 2N . One can also use

different P ∗ and Q∗ as part of the aggregating operation. With a good configuration determination

procedure and effective aggregation, significant improvement in matrix completion tasks can be

obtained.

5.2 Choose Number of Terms by Cross-validation

In practice, it remains to determine the number of different configurations to be incorporated in the

aggregation. Here we propose an empirical procedure for determining the number of terms by the

K-fold cross-validation. Recall Ω is the set of indices of the observed entries in Y . Let Ω[1], · · · ,Ω[K]

be a random K-fold partition of Ω such that Ω[1] ∪ · · · ∪ Ω[K] = Ω and for any 1 6 i < j 6 K, we

have Ω[i] ∩Ω[j] = ∅ and ||Ω[i]| − |Ω[j]|| 6 1. Suppose X̂(k; Ω \Ω[i]) is the aggregated estimate for X

as constructed in (19), which is obtained by fitting Kronecker matrix completion models on PΩ\Ω[i]Y

and aggregating the results from the first k configurations in Cδ. The K-fold cross-validation mean

squared error (CV-MSE) is defined by

CV-MSE(k) =
1

|Ω|

∥∥∥∥∥PΩY −
K∑
i=1

PΩ[i]X̂(k; Ω \ Ω[i])

∥∥∥∥∥
2

F

=
1

|Ω|

∥∥∥∥∥
K∑
i=1

{
PΩ[i]Y − PΩ[i]X̂(k; Ω \ Ω[i])

}∥∥∥∥∥
2

F

. (20)

The number of models can be selected by minimizing CV-MSE(k) over k = 1, 2, . . . . In principle,

CV-MSE(k) can also be used to estimate the performance ‖Y −X̂(k; Ω)‖2F , including the unobserved

entries as well, which cannot be calculated directly.

In i-th cross-validation fold, we use PΩ\Ω[i]Y as the training set and use PΩ[i]Y as the test set.

The split of data decreases the observation rate in PΩ\Ω[i]Y by 1/K and increase the unrecoverability

and the number of unrecoverable entries, which may worsen the performance. To minimize the

potential impact of the decrease in observing rate, a large value of K is preferred. On the other

hand, larger K involves heavier computation. In the numerical analysis that follows, we choose

K = 10 as a compromise.
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6 Empirical Examples

6.1 Simulation: Configuration Selection

In this simulation experiment, we demonstrate the performance of the configuration determination

procedure under the model (5) with a X of K-rank 1. Specifically, the component matrices A and

B are randomly generated as

A =

(√
1− ϕ2

0

)
⊗D1 +

(
0

ϕ

)
⊗D2,

B =

(√
1− ϕ2

0

)
⊗D3 +

(
0

ϕ

)
⊗D4,

where ‖Di‖F = 1, i = 1, 2, 3, 4, D1 and D2 are 2m0−1 × 2n0 matrices such that tr(D1D
T
2 ) = 0, and

D3 and D4 are 2M−m0−1×2N−n0 matrices such that tr(D3D
T
4 ) = 0. We design such a construction

so that the representation gap can be controlled at roughly ϕ2. Let X = λA ⊗ B, where λ is

the parameter used to control the signal-to-noise ratio. The underlying complete matrix Y is

generated according to Y = X + σ2−(M+N)/2E, where E contains IID standard normal entries.

The observation set Ω is sampled independently such that P [(i, j) ∈ Ω] = τ for all (i, j).

We consider two dimension and configuration setups: M = N = 9 with true configuration

(m0, n0) = (4, 4), and M = N = 10 with true configuration (m0, n0) = (5, 4). All combinations of 20

different signal-to-noise ratio values λ/σ ∈ {0.1, 0.2, . . . , 2.0}, two different observing rates τ = 0.1

and 0.2, three different values of ϕ2 = 0.3, 0.4, and 0.5 and three different candidate sets C5, C6, and

C7 are considered, where

Cs := {(p, q) : p ∈ d(P ), q ∈ d(Q), 2s 6 pq 6 PQ2−s}.

here s is an integer satisfying (M + N)/4 < s < (M + N)/2. With slight misuse of notations,

the candidate set Cs is equivalent to Cδ in (7) with corresponding value of δ = s/(M +N)− 1/4.

However, it is more convenient and intuitive to use Cs here. Note that C5 is the largest set among

the three.

For each combination of λ/σ, τ , ϕ2 and C, we repeat the simulation 100 times and record how

many times the true configuration (m0, n0) is selected by the criterion in (8). These empirical

frequencies are plotted as functions of the signal-to-noise ratio in Figure 2 for different combinations

of (M,N), τ , ϕ2 and C. We see the general pattern that these functions are all monotone, and when

the signal-to-noise ratio is large enough, chances of choosing the correct configuration approach one.

21



The left panel in Figure 2 reveals that a larger signal-to-noise ratio is required when the

candidate set Cs is larger (note that C5 is the largest among the three of them). This is consistent

with Assumption 4, which requires a larger signal-to-noise ratio for a smaller value of δ, i.e. a

larger candidate set. Theorem 2 also shows that the convergence rate is a decreasing function of δ.

The middle panel of Figure 2 indicates that as the representation gap increases, the probability of

making correct choice also increases. It is the reason that Assumption 4 links the representation

gap ψ2 and the required signal-to-noise ratio λ/σ in a negative relationship. The right panel gives

the empirical frequency curves for different dimensions and different observing rates. The pattern

is very intuitive, when the dimension is larger, or the observing rate is higher, the performance is

better.

Figure 2: The empirical frequency (in %) of correct configuration selection increases monotonically

as the signal-to-noise ratio for (Left) different candidate sets, (Mid) different representation gaps

and (Right) different dimensions and observing rates.

To give another comparison, for any combination of (M,N), τ , ϕ2 and C, we define γ∗ be

the smallest signal-to-noise ratio (truncated to 0.1) such that the empirical frequency of correct

configuration selection exceeds 50%. The results are reported in Table 1.

6.2 Simulation: Comparison with Conventional Matrix Completion Methods

We compare the proposed matrix completion algorithm based on the Kronecker product decomposi-

tion with some state-of-art low-rank matrix completion methods. The matrix in this simulation is

generated according to

Y = A⊗B + 2−(M+N)/2E,

where A ∈ R2m0×2n0 and B ∈ R2M−m0×2N−n0 are obtained by normalizing the IID Gaussian random

matrices of corresponding dimensions so that they have Frobenius norm 1. The E ∈ R2M×2N contains
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τ 0.1 0.2

ϕ2 0.3 0.4 0.5 0.3 0.4 0.5

M = N = 9

C5 1.6 1.1 1.0 0.6 0.5 0.5

C6 0.6 0.6 0.5 0.4 0.4 0.4

C7 0.4 0.4 0.4 0.3 0.3 0.3

M = N = 10

C5 1.3 1.0 0.9 0.6 0.5 0.5

C6 0.6 0.6 0.5 0.4 0.4 0.4

C7 0.4 0.4 0.4 0.3 0.3 0.3

Table 1: Value of γ∗ for different combinations of (M,N), τ , ψ2 and C.

IID standard Gaussian entries. Roughly speaking, the signal-to-noise ratio in this generating model

is 1.

We consider two state-of-art methods for the low rank matrix completion: OptSpace (Keshavan

et al., 2010b) and ALS (Jain et al., 2013) for comparison. For the approach proposed in this paper,

after the configuration has been determined according to (8), we apply both ALS and OptSpace to

the rearranged matrix Rp̂,q̂[PΩY ]. These two algorithms are labelled Kron-OptSpace and Kron-ALS

respectively.

Specifically, we consider four true configurations, and fix M = 10, N = 8 for the dimensions

of Y and τ = 0.1 for the observing rate. The average completion error over 100 repetitions for

the four aforementioned methods are reported in Table 2. The completion error is calculated

by ‖X̂ −A ⊗B‖F , where X̂ is the completed matrix. All approaches conduct a rank-1 matrix

completion, where either Y (for OptSpace and ALS) or Rp̂,q̂[PΩY ] (for Kron-OptSpace and Kron-

ALS) is assumed to have rank 1. In both OptSpace and ALS algorithms, we set the number of

iterations to 100 and the relative tolerance in Frobenius norm to 1e-8.

Note that when (m0, n0) = (10, 0), A⊗B is of rank 1, it turns out Kron-OptSpace and Kron-ALS

have exactly the same completion errors as OptSpace and ALS respectively. For the other three

choices of (m0, n0), Kron-OptSpace and Kron-ALS are much better than OptSpace and ALS. The

inferior performance of ALS and OptSpace is due to the misspecification: the matrix A⊗B is not

rank-1 under these configurations. In contrast, our approaches (Kron-OptSpace and Kron-ALS)

successfully identifies the low Kronecker rank structure and applies the conventional low rank matrix

completion algorithms on the correctly transformed matrix Rp̂,q̂[PΩY ], whose signal parts is indeed

of rank 1.
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(m0, n0) OptSpace ALS Kron-OptSpace Kron-ALS

(5, 4) 1.1074 (0.0303) 3.2172 (2.9519) 0.2156 (0.0204) 0.2086 (0.0056)

(6, 4) 1.1159 (0.02871) 4.0533 (4.1828) 0.2508 (0.0381) 0.2370 (0.0053)

(9, 0) 0.7499 (0.0201) 0.7499 (0.0196) 0.2130 (0.0174) 0.2080 (0.0044)

(10, 0) 0.2471 (0.0357) 0.2379 (0.0055) 0.2471 (0.0357) 0.2379 (0.0055)

Table 2: Completion errors of four approaches for four different true configurations, averaged over

100 repetitions. Standard deviations among 100 repetitions are reported in parentheses. Each

approach assumes the signal matrix to be either rank-1 or Kronecker rank-1.

In addition, by comparing the completion errors of OptSpace (Kron-OptSpace resp.) and ALS

(Kron-ALS resp.), we observe that ALS results in a smaller error than OptSpace under the correct

model specification, and OptSpace is more stable when the model is misspecified.

Since A⊗B is not rank-1 under the true configurations (m0, n0) = (5, 4), (6, 4), (9, 0), we also

consider the conventional OptSpace with ranks from 1 to 10, and plot the completion errors in

Figure 3 (completion errors of the rank-1 Kron-OptSpace are plotted as dashed lines). When

(m0, n0) = (5, 4), (6, 4), A ⊗ B is not low rank at all. Increasing the rank also increases the

completion error. When (m0, n0) = (9, 0), A ⊗ B is exactly rank-2, a rank-2 OptSpace matrix

completion results in the lowest completion error among all ranks. However, the rank-2 OptSpace is

still not as good as the rank-1 Kron-OptSpace. This is because the noise matrix interferes more with

A⊗B in OptSpace than with vec(A)[vec(B)]> in Kron-OptSpace, because the former is rank-2

and the latter rank-1 (see Cai et al. (2019b) for more on the rank of A ⊗B rearranged under a

mis-specified configuration).

Figure 3: Completion errors versus the rank specified for conventional multi-rank OptSpace matrix

completion, averaged over 100 repetitions. The completion errors from rank-1 Kronecker OptSpace

algorithm are plotted as dashed lines.
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To summarize, the simulation in this subsection reveals that when X has a low Kronecker

rank rather than low rank, conventional matrix completion methods suffer from misspecification

error while our proposed method can discover the underlying Kronecker structure and achieve a

better completion. When X is indeed of low rank, our method attains a similar performance to

conventional matrix approaches (with a little overhead in the computation for determining the

configuration).

6.3 Simulation: Aggregated Estimation

In this simulation experiment, we look into the performance of the aggregated estimation introduced

in Section 5. The signal part X ∈ R2M×2N is generated as a mixture of k0 Kronecker products:

X =

k0∑
i=1

Ai ⊗Bi,

where Ai and Bi are 2mi × 2ni and 2M−mi × 2N−ni matrices, correspondingly. In other words, the

i-th Kronecker product in X has the configuration (mi, ni). (Here for notational simplicity, we use

(m,n) instead of (2m, 2n) to indicate the configuration.) We design the structure of Ai and Bi as

follows:

Ai = ϕD
(i)
1 ⊗

[
1√
2

1√
2

]
+
√

1− ϕ2D
(i)
2 ⊗

[
1√
2
− 1√

2

]
,

Bi = ϕ

 1√
2

1√
2

⊗D
(i)
3 +

√
1− ϕ2

 1√
2

− 1√
2

⊗D
(i)
4 ,

where D
(i)
1 and D

(i)
2 are random 2mi × 2ni−1 matrices such that they both have Frobenius norm 1

and are orthogonal with each other, and so do D
(i)
3 and D

(i)
4 . It follows that ‖Ai‖F = ‖Bi‖F = 1.

The quantity ϕ2 ∈ (0, 1) controls the representation gap of the product Ai ⊗Bi. Specifically, at the

configurations (mi, ni − 1) and (mi + 1, ni), it holds that

‖Rmi,ni−1[Ai ⊗Bi]‖S ≈ ‖Rmi+1,ni [Ai ⊗Bi]‖S ≈ ϕ ∧
√

1− ϕ2.

Furthermore, under the above construction, the incoherence parameters µ for Ai and Bi are roughly

the same (≈
√

(mi + ni) ∧ (M +N −mi − ni) · log 2) for different values of ϕ.

In this experiment, we set M = N = 9. Two specific constructions of X are considered: (i) k0 = 1

(one term model) and (m1, n1) = (5, 4), and (ii) k0 = 2 (two term model) and (m1, n1) = (5, 4),

(m2, n2) = (4, 5). Two values of ϕ2 = 0.5 and 0.05 are used, corresponding to large and small

representation gaps respectively. We label the four scenarios as follows for later references.
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Scenario L1: One-term X (k0 = 1) with a large representation gap ϕ2 = 0.5.

Scenario S1: One-term X (k0 = 1) with a small representation gap ϕ2 = 0.05.

Scenario L2: Two-term X (k0 = 2) with a large representation gap ϕ2 = 0.5.

Scenario S2: Two-term X (k0 = 2) with a small representation gap ϕ2 = 0.05.

For each scenario, the matrix

Y = X +
2

2(M+N)/2
·E

is partially observed with observing rate τ = 0.2. We apply the aggregation approach (19) proposed

in Section 5 to PΩY with equal weights using up to 10 configurations in the candidate set C7. For

each configuration, we use either one or two Kronecker products with that configuration in the

averaging, and refer to them as K-rank-1 and K-rank-2 in the sequel. The mean squared error

2−(M+N)‖X̂ −X‖2F based on 100 repetitions are plotted against the number of configurations in

Figure 4 for the four scenarios.

Figure 4: Cross-validated mean squared error (CV-MSE) and mean squared error (MSE) under four

scenarios, using two K-ranks.

When the representation gap is large, models with wrong configurations usually possess a large

bias. The benefit from averaging models under many configurations may not be enough to offset
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Scenario L2

Term Config.
Criterion Error (one term) Error (agg.)

Function Rank-1 Rank-2 Rank-1 Rank-2

1 (5, 4) 0.2208 0.5527 0.4939 0.5527 0.4939

2 (4, 5) 0.2124 0.5547 0.4698 0.2770 0.2520

3 (5, 5) 0.1773 0.7811 0.6017 0.3792 0.2804

4 (4, 4) 0.1737 0.8017 0.6226 0.4342 0.2897

5 (6, 4) 0.1720 0.8294 0.6407 0.4670 0.2934

6 (4, 6) 0.1703 0.8020 0.6470 0.4686 0.2732

7 (3, 5) 0.1698 0.8133 0.6491 0.4767 0.2742

8 (5, 3) 0.1693 0.8303 0.6366 0.4876 0.2693

9 (6, 5) 0.1645 0.9752 0.9893 0.5140 0.2952

10 (5, 6) 0.1606 0.9575 0.9429 0.5327 0.3172

Table 3: Configuration-wise MSE and the MSE of averaging over first k configurations are listed for

both K-rank 1 and K-rank 2 matrix completion. Error (one term) refers to MSE of X̂ obtained

in the k-th iteration. Error (agg.) refers to the MSE of the aggregated model using the first k

configurations. Both are normalized by the factor ‖X‖2F /2M+N .

this extra bias. Therefore, in scenarios L1 and L2 (first column of Figure 4), the MSE starts to

increase when number of averaged configurations is greater than the true number of Kronecker

products k0, except when K-rank-2 models under scenario L1. However, when the representation

gap is small, there exist several alternative configurations with relatively small bias. Adding those

configurations into the averaging model can significantly reduce variance while adding little bias.

Hence, in scenarios S1 and S2 (second column of Figure 4), adding more terms can reduce the MSE.

We also observe that in general averaging using K-rank 2 models outperforms averaging K-rank 1

models in S2.

The ordered configurations, their corresponding MSE, and the MSE of the model aggregated up

to it are reported in Table 3 for Scenario L2. Under L2, X is the sum of two Kronecker products of

configurations (4, 5) and (5, 4), which correspond to the two largest values of the selection criterion,

and hence take up the first two rows of Table 3. The gap between the second configuration (4, 5)

and the third (5, 5) in terms of the criterion is much greater than the gaps between any other two
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Scenario S1

Term Config.
Criterion Error (one term) Error (agg.)

Function Rank-1 Rank-2 Rank-1 Rank-2

1 (5, 4) 0.2177 0.0868 0.2599 0.0868 0.2599

2 (6, 4) 0.2163 0.1662 0.3374 0.0931 0.1818

3 (5, 3) 0.2143 0.1597 0.2958 0.0792 0.1418

4 (6, 3) 0.2077 0.1926 0.3200 0.0888 0.1364

5 (6, 5) 0.1799 0.7134 0.4740 0.1088 0.1391

6 (7, 4) 0.1799 0.6758 0.4577 0.1247 0.1414

7 (4, 3) 0.1777 0.6736 0.4636 0.1342 0.1296

8 (5, 2) 0.1731 0.7377 0.4502 0.1466 0.1234

9 (5, 5) 0.1712 0.5806 0.2337 0.1593 0.1164

10 (4, 4) 0.1711 0.5623 0.2405 0.1666 0.1113

Table 4: Top 10 configurations according to the criterion function under Scenario S1. Error (one

term) refers to MSE of X̂ obtained in the k-th iteration. Error (agg.) refers to the MSE of the

aggregated model using the first k configurations. Both are normalized by the factor ‖X‖2F /2M+N .

consecutively selected configurations. As a result, aggregation over only the first two configurations

yields the best performance for both K-rank 1 and K-rank 2 matrix completion.

Similar results for Scenario S1 are reported in Table 4. Due to the small representation gap,

configurations (6, 4), (5, 3) and (6, 3) are close to the truth (5, 4) in terms of the the criterion

function. Therefore, aggregation over more terms can reduce the MSE.

The number of terms in the averaging can be determined by a cross-validation procedure as

discussed in Section 5. We conduct a 10-fold cross-validation and report the cross-validated MSE

(CV-MSE) based on 100 repetitions in Figure 4. The CV-MSE exhibits patterns similar to MSE

and can approximate MSE well (up to an offset) in Figure 4, suggesting that cross-validation can be

used in practice to determine the number of terms incorporated in the aggregated recovery. For

Scenarios S1, L1 and L2, for all 100 repetitions, the number of configurations that minimizes the

CV-MSE also minimizes the MSE, while for S2, 92 out of 100 repetitions do.

As we mentioned earlier, aggregation is an approach that tunes the bias-variance trade-off, which

results in a smaller error when (i) the added terms can reduce the bias or (ii) the added terms
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can reduce variance while only introducing additional bias slightly. In the preceding experiments,

if X is a sum of multiple Kronecker products of different configurations, averaging over multiple

configurations can reduce the bias but the bias begins to increase when number of averaged models

exceeds the number of terms in X as in Scenario L2. On the other hand, if the terms in X have

small representation gaps, aggregation can improve the overall performance by reducing the variance

without increase the bias significantly as in Scenarios S1 and S2.

6.4 Simulation: Completely missing block

In addition to variance reduction, the aggregation over different configurations can also help

recovering entries that are unrecoverable under a single configuration. In this part of the simulation

study, we consider Scenario S1 in Section 5, and force that the first 24 × 25 block is completely

unobserved. In other words, the index set of observed entries reduces from the original Ω to

ΩB = Ω \B, where B := {(i, j) : i = 1, · · · , 24; j = 1, · · · , 25}. We repeat the whole simulation 100

times and record the mean squared error of all the entries of X, and of the first block (which is

completely missing) of X. Specifically, the overall MSE is 2−(M+N)‖X̂ −X‖2F and the MSE of the

first block is 2−(M+N−m1−n1)‖PB[X̂]− PB[X]‖2F , where PB is the projection operator onto the set

B. The benchmark method fills the missing entries by the average value of observed ones. If there

are still irrecoverable entries with K configurations, by default the benchmark method is used to fill

in the values. We report the median of the MSE over 100 repetitions as a function of the number of

configurations in Figure 5. Median instead of average is reported here for the sake of robustness,

since in several repetitions the MSE is tremendously large for the first block. Although the first

block is irrecoverable under the true configuration (5, 4) (and also irrecoverable under (m,n) with

m > 5 and n > 4), Figure 5 reveals that it can be recovered partially by the aggregated estimation,

where the MSE of the first block is typically greater than the overall MSE.

We pick one repetition and report the top 10 configurations according to the criterion function,

and the corresponding MSE up to the given configuration in Table 5. The performance of the

benchmark method is also reported. The top 10 configurations are the same as those in Table 4,

but the values of the criterion function are slightly smaller due to the extra missing block. The first

block is irrecoverable under the top 2 configurations and therefore a benchmark method is used to

fill in the first block, resulting in a large MSE for the first two configurations. Starting from the

third row, when aggregating over more than three configurations, the first block is recoverable, with

a significantly smaller MSE.
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Figure 5: Median of overall MSE and first-block MSE over 100 repetitions as a function of number

of configurations for Scenario S1.

Term Config.
Criterion MSE (overall) MSE (1st block)

Function Rank-1 Rank-2 Rank-1 Rank-2

1 (5, 4) 0.2167 0.0914 0.2645 0.9986 0.9986

2 (6, 4) 0.2153 0.0977 0.1868 0.9986 0.9986

3 (5, 3) 0.2131 0.0795 0.1423 0.1191 0.1438

4 (6, 3) 0.2066 0.0889 0.1372 0.0847 0.1403

5 (7, 4) 0.1793 0.1062 0.1391 0.0847 0.1403

6 (6, 5) 0.1793 0.1248 0.1420 0.0847 0.1403

7 (4, 3) 0.1764 0.1344 0.1302 0.0710 0.1200

8 (5, 2) 0.1721 0.1472 0.1239 0.1204 0.1234

9 (5, 5) 0.1706 0.1598 0.1168 0.1204 0.1234

10 (4, 4) 0.1702 0.1685 0.1115 0.4567 0.0900

Benchmark (Fill in mean) 1.599 0.9986

Table 5: Top 10 configurations according to the criterion function under Scenario S1 with a

completely missing block under true configuration. the overall MSE and the one for the first block

are normalized by ‖X‖2F /2M+N and ‖PBX‖2F /2(M+N−m1−n1) accordingly.
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Figure 6: (Left) Cameraman’s image; (Middle) Cameraman’s image with noise; (Right) Noisy image

with 20% observed entries.

6.5 Real image example

In this section, we apply the proposed matrix completion approach to the cameraman’s image1,

which has been widely used as a benchmark in image analysis. The original image, which is a

512× 512 gray-scaled picture, is shown in Figure 6 (left panel). It is represented by a 512× 512

matrix X of real numbers between 0 and 1, 0 for black and 1 for white.

We first add a noise to the original image such that Y = X + 0.1E, where the entries of E are

IID standard Gaussian noises. The corrupted image Y is shown in the middle panel of Figure 6.

We set the observing rate to 20% (τ = 0.2) and sample the observing set Ω as i.i.d Bernoulli(τ).

The observed Y ∗ = PΩY is plotted in the right panel of Figure 6, where missing entries are filled as

white. We follow the configuration determination procedure proposed in Section 3.1. The maximum

of the criteria function ‖Rp,q[PΩY ]‖S is attained at the configuration (p̂, q̂) = (64, 64), within the

candidate configuration set C6 (defined in Section 6.1). It corresponds to decomposing X as the

Kronecker product of a 64×64 and a 8×8 matrix. Recovered images under the configuration (64,64)

and K-ranks 1 to 3 are shown in the upper row of Figure 7. The cameraman can be recognized from

the recovered matrix of K-rank 1 and more details are added as the K-rank increases to 2 and 3.

We also compare the performance of matrix completion through KPD with the classical approach

through SVD. In particular, we consider matrix completion via the alternating minimization

algorithm with ranks 8, 16 and 24, matching the numbers of parameters under K-ranks 1, 2, 3 of

the Kronecker matrix completion with configuration (64, 64). These recovered images are shown in

1The image can be found in the Python package scikit-image, available at https://scikit-image.org/
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KPD rank 1 2 3

Error 0.1224 0.1084 0.1136

Error (trimmed) 0.1219 0.1060 0.1071

SVD rank 8 16 24

Error 0.2167 0.4986 0.9968

Error (trimmed) 0.2060 0.3464 0.5988

Table 6: Error for Kronecker matrix completion and classical matrix completion with similar number

of parameters.

the lower row of Figure 7. The superiority of the KPD approach is easily seen from the images.

Besides judging the recovered images by eyesight, we quantify the quality of a recovered matrix by

the reconstruction error

‖X − X̂‖2F /‖X‖2F , (21)

where X is the image without noise and X̂ is the recovered matrix. Table 6 reports the reconstruction

errors of recovered matrices through KPD and SVD. The trimmed error is for the trimmed recovered

matrix, whose pixel values are restricted to [0, 1]. It confirms again that Kronecker matrix completion

can recover the cameraman’s image more accurately compared to the SVD approach, with a similar

number of parameters. The result is anticipated since KPD matrix completion has more flexibility

in selecting the configurations, including SVD matrix completion as one of its special cases. The

proposed configuration determination procedure is able to find a better configuration, which provides

better performance than one of its special cases.

To examine the performance of the aggregation approach, we consider three restricted candidate

sets C5, C6, C7, defined in Section 6.1, corresponding to pq ∧ p∗q∗ > 32, 64, 128, respectively. We also

consider both K-ranks 1 and 2 for each configuration. The configurations within the candidate sets

are ordered based on the criterion function. Then X̂ is obtained by a simple average of the matrices

recovered under the first d configurations, according to (19). The left sub-figure of Figure 8 shows

the reconstruction error against d. The errors corresponding to K-rank 2 for the candidate set C5 is

much worse than all other scenarios and is therefore not shown.

The right sub-figure of Figure 8 reports the cross-validation errors. We choose to use K = 20-fold

to minimize the impact of decreased observing rate. Although CV-MSE and the reconstruction error

have different scales (the former is calculated according to (20) where the error E is also involved,

32



Figure 7: (Upper row) Recovered images using KPD (Lower row) Recovered images using SVD.

The extreme values are trimmed such that all pixel values are between 0 and 1.

the latter does not involve E directly and is normalized by ‖X‖2F as in (21)), CV-MSE nevertheless

exhibits the same trend as the reconstruction error and the number of configurations that minimize

CV-MSE coincides with the one that minimize the reconstruction error for each scenario. Similar

to the simulation studies, the CV-MSE can work as a proxy of the reconstruction error, which is

usually infeasible in practice. In addition, CV-MSE helps not only in determining the number of

configurations with respect to a certain configuration set C, but also in choosing the appropriate

fitting K-rank and choosing the best configuration set C.

We note that determining the best configuration set is not trivial. On the one hand, as discussed

in Section 4, extreme configurations (pq < (PQ)1/4 or p∗q∗ < (PQ)1/4) must be excluded to have

a stable Kronecker product matrix completion. On the other hand, configurations close to these

boundaries (pq = (PQ)1/4 or p∗q∗ = (PQ)1/4) may have uncontrollable performance and slower

convergence rates. Fitting a higher K-rank matrix completion model with those configurations can

potentially suffer from sever overfitting. For example, if only K-rank 1 models are considered, C5

performs the best. However, fitting K-rank 2 models with respect to C5 results in a tremendously

large error in some unobserved entries and is therefore not reported in Figure 8.
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It can be seen from Figure 8 that using K-rank 2 and candidate set C6 performs the best. (C5 with

K-rank 2 is severly overfitted as discussed earlier) The error of averaging the top 5 configurations

is around 0.0790, which is about 20% smaller than 0.1084, obtained by the K-rank two matrix

completion under a single configuration, as reported in Table 6. The error rate then stays roughly

constant if more configurations are added into the averaging.

The reconstructed images averaged over 4 configurations with K-rank 1 under the candidate sets

C5 and over 5 configurations of K-rank 2 under C6 are shown in Figure 9. With K-rank 1 (left panel),

big pixels are observed in the reconstructed image but are less noisy than the ones in Figure 7.

With K-rank 2 (right panel), more details are added, resulting in a smoother reconstructed image.

Figure 8: (Left) Reconstruction error and (Right) cross-validation error (CV-MSE) of the averaged

matrix against the number of configurations.

Figure 9: (Left) Average reconstructed image over 4 configurations of K-rank 1. (Right) Average

reconstructed image over 5 configurations of K-rank 2.
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7 Conclusion

In this article, we study matrix completion problem assuming the underlying complete signal matrix

is of a low rank Kronecker product form, extending the classical assumption of low rank signal

matrix. The new model includes the low rank model as a special case. Such an extension brings a

significantly greater modeling flexibility which leads to more effective dimension reduction, a flexible

mechanism for aggregated recovery, and a significant reduction in the number of unrecoverable

entries when the observing rate is very low. It also allows a wide range of applications in signal

processing, image analysis and many other fields, where data often appear to have the Kronecker

product structure, which the classical low rank matrix completion methods may not be able to

handle effectively. We also propose a MSE based criterion to determine the unknown configuration

of the underlying Kronecker product.

There are a number of directions to further extend and explore the capability of the Kronecker

product based matrix completions. First, it is of interest to devise a procedure/algorithm for the

joint selection of the configuration and the K-rank. Second, to demonstrate the potential advantage

of the aggregated estimation, we have used the equal weight of different configurations. A better

aggregation can possibly be achieved by using weighted average, where the weights reflect the

accuracy of different models, and can be determined by the cross validation. Last but not least,

Similar structure can be introduced for tensors, leading to new tensor completion methods. We

anticipate that the algorithm and the analysis will be substantially different, because it is known

that tensor decomposition is very different from the matrix decomposition. We plan to follow out

these ideas in the future work.
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Appendix

We make the convention that C,C1, C2, . . . denote absolute constants, whose values may change

from place to place.

A Proof of Theorem 1

We first prove several technical lemmas.

Lemma 2 (Over-representation). Let Q be a m× n matrix with IID Bernoulli random variables

with success rate τ . Define

A =

i ∈ [m] :
n∑
j=1

Qij < 2τn

 .

Then we have

P [|A| = m] > 1− exp

{
logm− 3nτ

8(1− τ)

}
.

Proof. If τ > 1/2, then |A| = m has probability one. Therefore, we only consider τ 6 1/2. Let

Zij = Qij − τ . We have E[Zij ] = 0, Var[Zij ] = τ(1− τ) and |Zij | 6 1− τ . By Bernstein’s inequality,

we have

P

 n∑
j=1

Zij > t

 6 exp

{
− t2/2

nτ(1− τ) + (1− τ)t/3

}
.

Therefore

P

 n∑
j=1

Qij > 2τn

 6 exp

{
− 3nτ

8(1− τ)

}
.

Using union bound, we have

P

max
i∈[m]

n∑
j=1

Qij > 2τn

 6 exp

{
lnm− 3nτ

8(1− τ)

}
.

The matrix Q is row over-represented if |A| < m. Similarly, a matrix PΩM is over-represented

if either PΩM is row over-represented or [PΩM ]T is row over-represented. We restate the theorem

on ‖PΩM‖S from Keshavan et al. (2010a) in Lemma 3. Recall that ‖ · ‖max denotes the maximum

absolute entry of a matrix.
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Lemma 3 (Keshavan et al. (2010a)). Suppose M is a m × n (m > n) matrix with elements

observed IID with probability τ . Denote the partially observed matrix as PΩM . If PΩM is not

over-represented, then there exists a constant C > 0 such that, with probability larger than 1− 1/n3

|‖PΩM‖S − τ‖M‖S |√
τmn‖M‖max

6 Cm1/4n−3/4.

Lemma 4 (Max bound on Gaussian matrix). If E is a m× n matrix with IID standard Gaussian

random variables, then there exists a constant C > 0 such that, with probability larger than

1− 1/(mn)3,

‖E‖max 6 C
√

logmn.

Proof. Since Eij is standard Gaussian, we have P [|Eij | > t] 6 2 exp{−t2/2}. Using union bound,

we have

P [‖E‖max > t] 6 exp{log(2mn)− t2/2}.

The lemma follows immediately by choosing C > 2
√

2.

From Lemma 2, we have that for any configuration (p, q) ∈ Cδ,

P [Rp,q[PΩY ] is over-represented] 6 2 exp

{(
3

4
− δ
)

logPQ− 3τ

8(1− τ)
(PQ)1/4+δ

}
6 exp

{
−C1τ(PQ)1/4+δ

}
for some constant C1. Therefore, from Lemma 3, for (p, q) ∈ Cδ, with probability larger than

1− (PQ)−3/4−3δ − exp{−C1τ(PQ)1/4+δ} we have

|‖Rp,q[PΩX]‖S − τ‖Rp,q[X]‖S | 6 C2

√
τ ·
√
PQ‖X‖max · PQ1/4 · (pq ∧ p∗q∗)−1, (22)

for some constant C2, where X = λA⊗B is the signal part. Noticing that ‖X‖max = λ‖A‖max‖B‖max

and pq ∧ p∗q∗ > (PQ)1/4+δ, (22) can be further revised to

|‖Rp,q[PΩX]‖S − τ‖Rp,q[X]‖S | 6 C2λ
√
τµ2 · (PQ)−δ. (23)

Similarly, for the noise part, according to Lemma 3 and Lemma 4, for (p, q) ∈ Cδ with probability

larger than 1− (PQ)−3/4−3δ − (PQ)−3

‖Rp,q[PΩE]‖S 6 τ‖Rp,q[E]‖S + C3

√
τ
√

logPQ · (PQ)1/2−δ, (24)

for some constant C3.
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For the true configuration (p0, q0), using (23) and (24), we have

E[‖Rp0,q0 [PΩY ]‖S ]

> E[‖Rp0,q0 [PΩX]‖S ]− σ(PQ)−1/2E[‖Rp0,q0 [PΩE]‖S ]

>
(

1− (PQ)−3/4−3δ − exp{−C1τ(PQ)1/4+δ}
)(

τλ− C2λ
√
τµ2(PQ)−δ

)
+
(

(PQ)−3/4−3δ + exp{−C1τ(PQ)1/4+δ
)
· 0

− σ(PQ)−1/2
(

1− (PQ)−3/4−3δ − (PQ)−3
)(

τ(
√
p0q0 +

√
p∗0q
∗
0) + C3

√
τ
√

logPQ(PQ)1/2−δ
)

− σ(PQ)−1/2
(

(PQ)−3/4−3δ + (PQ)−3
)√

τPQ

> τλ−O
((
λµ2 + σ

√
logPQ

)√
τ(PQ)−δ

)
Similarly, for any (p, q) ∈ Wδ, we have

E[‖Rp,q[PΩY ]‖S ] 6 τλφ+O
((
λµ2 + σ

√
logPQ

)√
τ(PQ)−δ

)
.

Therefore,

E[‖Rp0,q0 [PΩY ]‖S ]− max
(p,q)∈Wδ

E[‖Rp,q[PΩY ]‖S ]

> τλ(1− φ) ·
(

1 +O
(
ψ−2

(
µ2 +

σ

λ

√
logPQ

)
τ−1/2(PQ)−δ

))
.

Here we use ψ2 = 1− φ2 � 1− φ. Assumption 4 ensures the term in big O notation is minor.

B Proof of Theorem 2

For the true configuration (p0, q0), using (23) and (24), we have

P [G(p0, q0) 6 τλ(1 + φ)/2]

6P [‖Rp0,q0 [E]‖S >
√
p0q0 +

√
p∗0q
∗
0 +R1] + (PQ)−3/4−3δ + exp{−C1τ(PQ)1/4+δ}+ (PQ)−3

6 exp{−R2
1/2}+ 2(PQ)−3/4−3δ + exp{−C1τ(PQ)1/4+δ}+ (PQ)−3

6C4(PQ)−3/4−3δ

for some constant C4, where

R1 = (PQ)1/2

[
λ(1− φ)

2σ
− (PQ)−δτ−1/2

(
C2
λ

σ
µ2 + C3

√
logPQ

)]
−√p0q0 −

√
p∗0q
∗
0

= O

(
(PQ)1/2λ(1− φ)

2σ

)
.
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Similarly, for a wrong configuration (p, q) ∈ Wδ, using (23) and (24), we have

P [G(p, q) > τλ(1 + φ)/2]

6P [‖Rp,q[E]‖S >
√
pq +

√
p∗q∗ +R1] + (PQ)−3/4−3δ + exp{−C1τ(PQ)1/4+δ}+ (PQ)−3

6 exp{−R2
1/2}+ 2(PQ)−3/4−3δ + exp{−C1τ(PQ)1/4+δ}+ (PQ)−3

6C4(PQ)−3/4−3δ.

Therefore, for any (p, q) ∈ Wδ,

P [G(p0, q0) 6 G(p, q)] 6 P [G(p0, q0) 6 τλ(1+φ)/2]+P [G(p, q) > τλ(1+φ)/2] 6 2C4(PQ)−3/4−3δ.

Using the union bound we have

P [G(p0, q0) 6 max
(p,q)∈Wδ

G(p, q)] 6 2|Wδ|C4(PQ)−3/4 − 3δ,

where |Wδ| is the number of wrong configurations. Applying |Wδ| < |d(P )||d(Q)| yields the theorem.

C Proof of Lemma 1

All entries of PΩY is equivalent to Rp0,q0 [PΩY ] has no missing column or missing row. Noticing

that Rp0,q0 [PΩY ] is a p0q0 × p∗0q∗0 matrix with entries observed IID with probability τ , we have

P [Rp0,q0 [PΩY ] has no missing column] > [1− (1− τ)p0q0 ]p
∗
0q
∗
0 > 1− PQ(1− τ)p0q0

p0q0
.

The right hand side is a increasing function of p0q0 and τ . From Assumption 1 we know p0q0 >

(PQ)1/4+δ and Assumption 3 gives τ > logPQ · (PQ)−2δ. Therefore,

(1− τ)p0q0

p0q0
= exp{p0q0 log(1− τ)− log p0q0} 6 exp

{
−(PQ)1/4−δ logPQ−

(
1

4
+ δ

)
logPQ

}
.

Using a similar argument for missing row, the Lemma follows immediately.

D Proof of Theorem 3

We first restate the major result of Gunasekar et al. (2013) for rank-1 case in the following lemma.

Lemma 5. Let M = λuvT be a rank-1 m× n (m 6 n), incoherent matrix with both u and v being

µ incoherent. Furthermore, it is assumed that the noise matrix N satisfies ‖PΩN‖S/τ 6 Cλ for

some constant C. Additionally, let each entry of M̃ = M + N be observed IID with probability

τ > C
µ4 log n log λ

ε

m
,
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where C > 0 is a global constant. Then with high probability, the output matrix M̂ from Algorithm 1

satisfies
1√
mn
‖M − M̂‖F 6 ε+ 20µ

‖PΩN‖S
|Ω|

.

Apply Lemma 5 directly and we have with high probability

‖X − X̂‖F 6 λ
√
PQ exp

{
−C τ(p0q0 ∧ p∗0q∗0)

µ4 logPQ

}
+ 20µσ

‖Rp0,q0 [PΩE]‖S
|Ω|

.

From Lemma 3, we have with high probability,

‖Rp0,q0 [PΩE]‖S 6 C1

√
τ
√

logPQ · (PQ)3/4(p0q0 ∧ p∗0q∗0)−1,

for some constant C1, and with high probability

|Ω| > C2τPQ

for some constant 0 < C2 < 1. Therefore, with high probability,

‖X−X̂‖F 6 λ
√
PQ exp

{
−C τ(p0q0 ∧ p∗0q∗0)

µ4 logPQ

}
+

20C1

C2
µστ−1/2

√
logPQ · (PQ)−1/4(p0q0∧p∗0q∗0)−1.
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