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Abstract It is well know that the convergence of the normal extremes to the limiting
Gumbel distribution is extremely slow, at the rate of (log n)−1. We show that after
a monotone transform, the convergence rate of the squared normal extremes can be
improved to (log n)−3. Simulations confirm that the convergence is much faster than
existing results uniformly, especially when the sample is of moderate sizes around
hundreds or thousands. More importantly, it is observed that the convergence rate at
the upper tail is substantially improved, which has direct implications for hypothesis
tests based on maximum type test statistics.

1 Introduction

Let X1, X2, . . . , be a sequence of independent standard normal random variables, and
let Mn := max{X1, X2, . . . , Xn} be the maximum of the first n of them. According
to the extreme value theory (see Leadbetter et al., 1983, for an overview), after
proper centering and rescaling, the limiting distribution of Mn is the extreme value
distribution of type I, or the so called Gumbel distribution, with the distribution
function G1(x) = exp(−e−x ). In fact, if we define

αn = (2 log n)−1/2

βn =
√

2 log n −
log(log n) + log(4π)

2
√

2 log n

then α−1
n (Mn − βn) converges to G1 in distribution, i.e.
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lim
n→∞

P
[
α−1
n (Mn − βn) ≤ x

]
= lim

n→∞
Φ

n(αnx + βn) = exp
(
−e−x

)
, x ∈ R, (1)

where Φ(·) is the distribution function of N (0, 1).
The rate of convergence in (1) is extremely slow. The fact was noted by Fisher

and Tippett (1928), and studied more precisely by Hall (1979), who proved that the
convergence rate in (1) is no better than (log log n)2/ log n. Hall (1979) also found
that if βn1 is the solution of the equation

2π β2
n1 exp(β2

n1) = n2, (2)

and αn1 = β−1
n1 , then

C1
log n

< sup
−∞<x<∞

���P[α−1
n1 (Mn − βn1) ≤ x] − G1(x)��� <

C2
log n

, (3)

where C1 and C2 are absolute constants. In other words, the convergence rate can
be improved to (log n)−1 by choosing a better centering constant βn1. In the same
paper, it was further proved that the rate cannot be better than (log n)−1 by choosing
a different sequence of normalizing constants.

It is equivalent and sometimes more convenient to study the limiting behavior of
Mn through its squared version M2

n . There are counterparts of (1) and (3) for M2
n .

More importantly, Hall (1980) found that with a suitably chosen constants an and bn,
the normalized sequence a−1

n (M2
n − bn) converges to G1(x) with the rate (log n)−2.

A detailed overview of the progression regarding the convergence rates of normal
extremes will be provided in Section 2.3 via the squared version M2

n .
While the aforementioned results are all on the uniform convergence rates, the

convergence to G1 in the upper tail is of particular interests when performing hy-
pothesis tests using maximum type statistics. For example, the stepdown procedure
of Romano and Wolf (2005) for multiple testing requires the knowledge about the
upper quantiles of the maximum test statistic. Cai et al. (2014) used the maxi-
mum coordinate-wise difference of two transformed sample mean vectors to test the
equality of two high dimensional means.

In Figure 1 we plot the empirical distributions of M2
n with difference choices

of normalizing sequences. The black line is the theoretical cumulative distribution
function (CDF) G1, the dashed, red and green lines (labeled by bn1, bn2 and bn3
resp.) are empirical CDF corresponding to convergence rates in (1), (3) and (log n)−2

respectively. Figure 2 zooms in on the upper tails. Despite the fact that the red line
is associated with a faster convergence rate than that of the dashed one, Figure 2
shows that it is consistently farther from the theoretical CDF in the upper tail, even
when the sample size is as large as 105. This needs not contradicts the theories
on the uniform convergence rates, because we see in Figure 1 that the dashed line
deviates apparently from the black one in the lower tail. However, tests based on
the statistic in (3) will be quite off, and have no advantage over the statistic in (1).
On the other hand, the green line, corresponding to the rate (log n)−2, shows the
potential to outperform the dashed one, when the sample size is sufficiently large,
as shown in the bottom right panel of Figure 2. The issue is that the green line is
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below the theoretical CDF, indicating that the corresponding asymptotic test is not
conservative.

Ourmajor finding is that the convergence rate can be further improved to (log n)−3

by applying a monotone transform to M2
n . Let bn := 1

2 [Φ−1(1 − 1/n)]2. Define Yn
through the following transform of M2

n :

Yn :=

1 −

(
1 +

M2
n − 2bn
8b2

n

)−1

(
4b2

n + 2bn − 2
)
,

The results in Section 2 imply the following rate of convergence

sup
−∞<x<∞

|P (Yn ≤ x) − G1(x) | <
C3

(log n)3 .

The blue lines in Figure 1 give empirical CDF of Yn, which are almost identical with
G1 even when the sample size is as small as 200. When zoomed into the upper tail
in Figure 2, the faster convergence of Yn is more clearly seen. Furthermore, if Yn is
used as the test statistic for the asymptotic test, it is not only more accurate, but also
always conservative, since the blue curve sits above the black one (for G1) in the
upper tail.

The rest of this article is organized as follows. We present and prove the pointwise
and uniform convergence rates of Yn in Section 2.1 and Section 2.2 respectively. In
Section 2.3 we demonstrate how the faster convergence rate is achieved by com-
paring with existing results. Similar convergence rates regarding the k-th maxima
are presented in Section 2.4. Numerical analysis and an application on testing the
covariance structure are given in Section 3. Additional figures, tables, and some
technical results are relegated in the Appendix.

We conclude this section by a brief reviewof the literature on the convergence rates
of normal extremes. Cohen (1982b) showed that the penultimate approximation can
achieve the (log n)−2 rate, and considered the extension to other types of extreme
value distributions in Cohen (1982a). Daniels (1982) proposed another nonlinear
transformation which leads to faster convergence. Rootzén (1983) investigated the
convergence rates of the extremes from a stationary Gaussian process. Hall (1991)
found that the extreme of a continuous time Gaussian process also has a logarithmic
convergence rate. For convergence rates of extremes from a non-Gaussian sequence,
we refer to Hall and Wellner (1979), Smith (1982), Leadbetter et al. (1983), de Haan
and Resnick (1996), Peng et al. (2010) and references therein.

2 Main results

We will first consider the pointwise convergence rates in Section 2.1, and then
illustrate how the faster rates are achieved by modifying the normalizing constants
and applying a transform of M2

n in Section 2.3. The uniform convergence rates are
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given in Section 2.2. In Section 2.4 we present the corresponding results for the k-th
maxima. We make the convention that C,C1,C2, . . . are generic absolute constants,
whose values may vary from place to place.

2.1 Pointwise convergence rates

Let bn be the solution of the equation 1 − Φ(
√

2bn) = 1/n. Recall that Yn is defined
as:

Yn :=

1 −

(
1 +

M2
n − 2bn
8b2

n

)−1

(
4b2

n + 2bn − 2
)
. (4)

According to the definition,
√

2bn is the (1− 1/n)-th quantile of the standard normal
distribution. Since M2

n ≥ 0 and b5 ≈ .35, the transform given in (4) is strictly
monotone when n ≥ 5, which we shall assume in the sequel.

Using the Newton-Raphson approximation (see Appendix 5.1 for detailed deriva-
tions), it can be shown that

bn = log n − 1
2 log log n − 1

2 log 4π +O(log log n/ log n).

We first prove the pointwise convergence rate of Yn to G1. It is convenient to express
the result through bn, which is of the order log n.

Theorem 1 For each fixed −∞ < x < ∞,

P(Yn ≤ x) − G1(x) = G1(x)e−x ·
4x3 + 15x2 + 30x

24b3
n

+O(b−4
n ).

Proof Define the function gn(x) as the inverse transform of (4)

gn(x) =


(
1 −

x
4b2

n + 2bn − 2

)−1
− 1


· 8b2

n + 2bn (5)

Since (4) is a monotone transform, the event [Yn ≤ x] is equivalent to [M2
n ≤ gn(x)].

It can be shown that

gn(x) = 2bn + 2x −
x

bn
+

x2 + 3x
2b2

n

−
2x2 + 5x

4b3
n

+O(b−4
n ). (6)

When n is large enough, gn(x) > 0, and we let xn = [gn(x)]1/2. Note that

P(Mn ≤ xn) > P(M2
n ≤ x2

n) = P(Mn ≤ xn)−P(Mn < −xn) > P(Mn ≤ xn)−2−n.
(7)

According to Lemma 2.4.1 in Leadbetter et al. (1983), for any 0 ≤ z ≤ n,
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0 ≤ e−z −
(
1 −

z
n

)n
≤

z2e−z

2
·

1
n − 1

. (8)

Let τn(x) = n [1 − Φ(xn)], it follows that

P(Mn ≤ xn) = [1 − (1 − Φ(xn))]n = exp[−τn(x)] +O(n−1). (9)

To evaluate τn(x), we make use the following series expansion of the normal tail
probability (Abramowitz and Stegun, 1964): for any z > 0, and any positive integer
m,

1 − Φ(z) =
φ(z)

z

{
1 −

1
z2 +

1 · 3
z4 + · · · +

(−1)m1 · 3 . . . (2n − 1)
z2m + Rm

}
,

where
Rm = (−1)m+1(2m + 1)!!

∫ ∞

z

φ(t)
t2m+2 dt,

which is less in absolute value than the first neglected term. In particular, when
m = 3, it holds that for any z > 0,(

1
z
−

1
z3 +

3
z5 −

15
z7

)
φ(z) < 1 − Φ(z) <

(
1
z
−

1
z3 +

3
z5 −

15
z7 +

105
z9

)
φ(z) (10)

According to the definition of τn(x) and (10), we first do the Taylor expansion (up
to the order b−4

n ) for

φ(xn) =
1
√

2π
· exp

(
−bn − x +

x
2bn
−

x2 + 3x
4b2

n

+
2x2 + 5x

8b3
n

)
=

e−xe−bn

√
2π

·

(
1 +

x
2bn
−

x2 + 6x
8b2

n

−
5x3 + 6x2 − 30x

48b3
n

+O(b−4
n )

)
,

and

1
xn
=

(
2bn + 2x −

x
bn
+

x2 + 3x
2b2

n

−
2x2 + 5x

4b3
n

)−1/2

=
1
√

2bn

(
1 −

x
2bn
+

3x2 + 2x
8b2

n

−
5x3 + 8x2 + 6x

16b3
n

+O(b−4
n )

)
.

Combining the two preceding equations and rearranging the terms, we have

φ(xn)
xn

=
e−xe−bn

√
4πbn

·

(
1 −

x
2b2

n

−
4x3 + 3x2 − 6x

24b3
n

+O(b−4
n )

)
.

According to (10), we also calculate
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1 −
1
x2
n

+
3
x4
n

−
15
x6
n

= 1 −
1

2bn
+

2x + 3
4b2

n

−
4x2 + 14x + 15

8b3
n

+O(b−4
n )

=

(
1 −

1
2bn
+

3
4b2

n

−
15
8b3

n

)
·

(
1 +

x
2b2

n

−
x2 + 3x

2b3
n

+O(b−4
n )

)
Recall bn is the solution of the equation 1 − Φ(

√
2bn) = 1/n. According to the

approximation to normal probability function in (10), we have

ne−bn

√
4πbn

=

(
1 −

1
2bn
+

3
4b2

n

−
15
8b3

n

+O(b−4
n )

)−1
. (11)

Therefore,(
1 −

1
x2
n

+
3
x4
n

−
15
x6
n

)
nφ(xn)

xn

= e−x ·
(
1 −

x
2b2

n

−
4x3 + 3x2 − 6x

24b3
n

+O(b−4
n )

)
·

(
1 −

1
2bn
+

3
4b2

n

−
15
8b3

n

+O(b−4
n )

)−1

·

(
1 −

1
2bn
+

3
4b2

n

−
15
8b3

n

)
·

(
1 +

x
2b2

n

−
x2 + 3x

2b3
n

+O(b−4
n )

)
= e−x

(
1 −

4x3 + 15x2 + 30x
24b3

n

+O(b−4
n )

)
Since nφ(xn)/x9

n = O(b−4
n ), we have by (10)

τn(x) = e−x
(
1 −

4x3 + 15x2 + 30x
24b3

n

)
+O(b−4

n ).

According to (9), it follows that

P(Yn ≤ x) − G1(x) = exp(−τn(x)) +O(n−1) − G1(x)

= G1(x)e−x ·
4x3 + 15x2 + 30x

24b3
n

+O(b−4
n ).

The proof is complete. �

Using (10) and Newton-Raphson method, we have the following expansions for bn

bn = log n −
∆

2
+
∆ − 2
4 log n

+
∆2 − 6∆ + 14

16(log n)2 +O *
,

(
log log n

)3

(2 log n)3
+
-
, (12)

where
∆ = log log n + log 4π.
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Therefore, Theorem 1 implies that Yn converges to G1 with the rate (log n)−3. The
detailed derivation of (12) is given in the Appendix.

2.2 Uniform convergence rate

In this section we establish the uniform convergence rate.

Theorem 2 There exists an absolute constant c1, such that

sup
−∞<x<∞

|P(Yn ≤ x) − G1(x) | <
c1

(log n)3 .

We prove Theorem 2 using two lemmas. Recall that gn(x), defined in (5), is the
inverse transform of (4).

Lemma 1 Let {cn} be an increasing sequence of positive integers such that c4
n/bn →

0, then

gn(x) = 2bn + 2x −
x

bn
+

x2 + 3x
2b2

n

−
2x2 + 5x

4b3
n

+
d1n(x)

b3
n

,

where limn→∞ sup−cn≤x≤cn |d1n(x) | = 0.

Proof According to (5), for −cn ≤ x ≤ cn, we can obtain the following expansion:

gn(x) = 2bn + 8b2
n ·



(
1 −

x
4b2

n + 2bn + 2

)−1
− 1



= 2bn + 2xγn +
x2γ2

n

2b2
n

+
x3γ3

n

8b4
n

·

(
1 −

xγn
4b2

n

)−1
, (13)

where

γn =

(
1 +

1
2bn
−

1
2b2

n

)−1
.

When n ≥ 13, bn > 1, by series expansion of γn, we have

γn = 1 −
1

2bn
+

3
4b2

n

−
5

8b3
n

+
e1n

b4
n

γ2
n = 1 −

1
bn
+

e2n

b2
n

γ3
n

(
1 −

xγn
4b2

n

)−1
= 1 + e3n.

The following bounds can be easily verified: |e1n | ≤ 1, |e2n | ≤ 2 and |e3n | ≤ 1.
Then by simplifying (13) we have
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gn(x) = 2bn + 2x −
x

bn
+

x2 + 3x
2b2

n

−
2x2 + 5x

4b3
n

+
16xe1n + 4x2e2n + x3(1 + e3n)

8b4
n

.

The proof is completed by noting that

sup
−cn≤x≤cn

�����
16xe1n + 4x2e2n + x3(1 + e3n)

8bn

�����
≤

8cn + 4c2
n + c3

n

4bn
→ 0

under the condition c4
n/bn → 0.

Lemma 2 Let {cn} be the same sequence as used in Lemma 1, then

τn(x) = e−x
(
1 −

4x3 + 15x2 + 30x
24b3

n

+
d2n(x)

b3
n

)
,

where limn→∞ sup−cn≤x≤cn |d2n(x) | = 0 for all −cn ≤ x ≤ cn.

Proof Recall that xn := [gn(x)]1/2. Using the normal tail probability bound in (10),
we have �����

τn(x) − nφ(xn)
(

1
xn
−

1
x3
n

+
3
x5
n

−
15
x7
n

) �����
≤

105nφ(xn)
x9
n

. (14)

Write

nφ(xn)
(

1
xn
−

1
x3
n

+
3
x5
n

−
15
x7
n

)
=

(
xn
√

2bn

)−1
·
nφ(xn)
√

2bn
·

(
1 −

1
x2
n

+
3
x4
n

−
15
x6
n

)
. (15)

Let
x1n :=

x
bn
−

x
2b2

n

+
x2 + 3x

4b3
n

−
2x2 + 5x

8b4
n

+
d1n(x)

2b4
n

,

where d1n(x) is defined in Lemma 1. For the first term on the right hand side of
(15), by Lemma 1,(

xn
√

2bn

)−1
= (1 + x1n)−1/2 = 1 −

x1n
2
+

3x1n
8
−

5x3
1n

16
+ R1n(x1n). (16)

Under the condition c4
n/bn → 0, it holds that sup−cn≤x≤cn |x1n | ≤ 5cn/bn, and thus

sup
−cn≤x≤cn

|R1n(x) | =
o(1)
b3
n

.

The terms on the right hand side of (16) except for R1n(x1n) can be expanded as(
xn
√

2bn

)−1
− R1n(x1n) = 1 −

x
2bn
+

3x2 + 2x
8b2

n

−
5x3 + 8x2 + 6x

16b3
n

+
d3n(x)

b3
n

.

Note that for each fractional term in x1n, the power of x is no greater than that of
bn, and the same claim holds for the series d3n(x)/b3

n. Furthermore, the first term
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(of the smallest power of x) in the expansion of d3n(x) is x3/bn, which goes to 0
uniformly over −cn ≤ x ≤ cn. Therefore, we conclude

lim
n→∞

sup
−cn≤x≤cn

|d3n(x) | = 0

The other two terms in (15) can be treated similarly:

nφ(xn)
√

2bn
=

ne−xe−bn

√
4πbn

·

(
1 +

x
2bn
−

x2 + 6x
8b2

n

−
5x3 + 6x2 − 30x

48b3
n

+
d4n(x)

b3
n

+ R2n(x)
)
,

1 −
1
x2
n

+
3
x4
n

−
15
x6
n

=

(
1 −

1
2bn
+

3
4b2

n

−
15
8b3

n

)
·

(
1 +

x
2b2

n

−
x2 + 3x

2b3
n

+
d5n(x)

b3
n

+ R3n(x)
)
,

where

sup
−cn≤x≤cn

|d4n(x) | → 0 and |R2n(x) | =
o(1)
b3
n

,

sup
−cn≤x≤cn

|d5n(x) | → 0 and |R3n(x) | =
o(1)
b3
n

.

Combining all the preceding bounds together with (11), we have

nφ(xn)
(

1
xn
−

1
x3
n

+
3
x5
n

−
15
x7
n

)
= e−x

(
1 −

4x3 + 15x2 + 30x
24b3

n

+
d6n(x)

b3
n

)
.

Using similar arguments as those for d3n, we can verify that

lim
n→∞

sup
−cn≤x≤cn

|d6n(x) | = 0.

It is easy to show that sup−cn≤x≤cn nφ(xn)/x9
n = o(b−3

n ). So the proof is complete
in view of (14).

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2) Let c1 be a generic absolute constant which may vary
from place to place. We consider three scenarios: x < −cn, −cn ≤ x ≤ cn and
x > cn, with cn = 4 log bn. Obviously, this choice of cn satisfies the condition
c4
n/bn → 0.
We begin with the situation −cn ≤ x ≤ cn. By (7), it holds that

�����
P(Yn ≤ x) −

(
1 −

τn(x)
n

)n�����
≤ 2−n.

By (8) and Lemma 2, we have
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|P(Yn ≤ x) − G1(x) | ≤ 2G1(x)e−x
(
|4x3 + 15x2 + 30x |

24b3
n

+
|d2n(x) |

b3
n

)
+

1
2n
+

1
n
,

when n is large enough. Since sup−cn≤x≤cn |d2n(x) | → 0, it suffices to show that

sup
−cn≤x≤cn

���G1(x)e−x (4x3 + 15x2 + 30x)��� < ∞.

Numerical evaluations show that

sup
−∞<x<∞

���G1(x)e−x (4x3 + 15x2 + 30x)��� < 20

Therefore, we have

sup
−cn<x<cn

|P(Yn ≤ x) − G1(x) | <
c1

(log n)3 .

Now we consider the second scenario x > cn. We will show that both G1(x) and
P(Yn ≤ x) are close to 1, and their differences from 1 are of the order 1/(log n)3.
Since x > cn = 4 log bn,

G1(x) = exp(−e−x ) > exp(−b4
n) ≥ 1 − 1/b4

n. (17)

On the other hand, recall the definition of g(·) in (5)

1 − P(Yn ≤ x) ≤ P(Yn ≥ 4 log bn) = P
[
M2

n ≥ g(4 log bn)
]

≤ P
(
M2

n ≥ 2bn + 4 log bn ·
8b2

n

4b2
n + 2bn − 2

)
Note that 8b2

n/(4b2
n + 2bn − 2) > 1.5 for n ≥ 33. Let y2

n = 2bn + 6 log bn, then

P(M2
n ≥ y2

n) ≤ P(Mn ≥ yn) + 1/2n.

Let τn = n[1 − Φ(yn)]. Using the normal tail probability bounds (10), we have

τn ≤
n
√

2π
(
2bn + 6 log bn

)−1/2
· exp(−bn − 3 log bn)

=
ne−bn

√
3πbn

(
1 +

3 log bn
bn

)−1/2
· exp(−3 log bn)

Recall 1 − Φ(
√

2bn) = 1/n, so that by (10)

ne−bn

√
4πbn

(
1 −

1
2bn

)
< 1.

When n ≥ 33, we have
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1 +

3 log bn
bn

)−1/2
·

(
1 −

1
2bn

)−1
< 1,

and it follows that
τn < exp(−3 log bn) = 1/b3

n.

Using (8), we deduce that when n is large enough

P(Mn ≥ yn) = 1 − (Φ(yn))n = 1 −
(
1 −

τn
n

)n
≤ 1 − e−τn +

1
n − 1

≤ τn +
1

n − 1
.

Therefore, we conclude

1 − P(Yn ≤ x) <
1
b3
n

+
1

n − 1
+

1
2n

<
c1

(log n)3 ,

for some absolute constant c1. The preceding inequality, together with (17), com-
pletes the proof for x > cn.

Finally we consider x < −cn by showing that both G1(x) and P(Yn ≤ x) converge
to 0 faster than 1/(log n)3. Using the definition of bn, we have when n ≥ 33, and
x < −cn = −4 log bn,

G1(x) = exp(−e−x ) < exp(−b4
n) < 1/b4

n.

On the other hand, when x ≤ −4 log bn,

P(Yn ≤ x) ≤ P[M2
n ≤ g(−4 log bn)] ≤ P

(
M2

n ≤ 2bn − 4 log bn ·
8b2

n

4b2
n + 2bn − 2

)
.

Again since 8b2
n/(4b2

n + 2bn − 2) > 1.5 when n ≥ 33, if we let y′n
2 = 2bn − 6 log bn,

then
P(Yn ≤ x) ≤ P(Mn ≤ yn).

Let τ′n = n[1 − Φ(y′n)], we have by (10)

exp(−τ′n) < exp


−

ne−bn

√
4πbn

(
1 −

3 log bn
bn

)−1/2

·

(
1 −

1
(2bn − 6 log bn)2

)
· exp(3 log bn)

}
< exp

{
− exp(3 log bn)

}
< 1/b3

n,

when n is large enough. We conclude by (8)

P(Yn ≤ x) <
1
b3
n

+
1
n
<

c1

(log n)3 ,
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which completes the proof. �

2.3 Comparisons of different convergence rates

The best uniform convergence rate that can be obtained for M2
n , if only centering and

rescaling is allowed, is (log n)−2. We will give a summary of the progression in the
literature. We also explain why the transformed M2

n can have a faster convergence
rate (log n)−3.

In order for M2
n to have the limiting distribution G1, the simplest option is to

choose
bn1 = log n − log(log n)/2 − log(4π)/2;

then as a counterpart of (1), it holds that 1
2 (M2

n − 2bn1) ⇒ G1, where we use ⇒
to denote the convergence in distribution. Using similar arguments as given in Hall
(1979), it can be shown that the convergence rate is (log log n)2/ log n. Similarly as
(2), if bn1 is the solution of the equation

4πbn2 exp(2bn2) = n2,

and M2
n is centered by bn2, then the rate of convergence is analogous to (3)

C1
log n

< sup
−∞<x<∞

���P
[

1
2 (M2

n − 2bn2) ≤ x
]
− G1(x)��� <

C2
log n

. (18)

Again (18) can be established following the proof in Hall (1979).
We note that

√
2bn1 is an approximation of the (1 − 1/n)-th quantile of stan-

dard normal distribution obtained by using the following approximation of the tail
probability:

1 − Φ
(√

2bn1
)
≈

1
√

2π
·

1√
2 log n

· exp(−bn1) =
1
n

;

and bn2 is obtained by the following approximation of 1 − Φ(
√

2bn2):

1 − Φ
(√

2bn2
)
≈

1
√

2π
·

1
√

2bn2
· exp(−bn2) =

1
n
.

If we choose bn3 through a more precise approximation of 1 − Φ(
√

2bn3):

1 − Φ
(√

2bn3
)
≈

1
√

4πbn3

(
1 −

1
2bn3

)
exp (−bn3) =

1
n
,

and set an3 = 2 − 1/bn3, then a−1
n3 (M2

n − 2bn3) ⇒ G1 with the convergence rate
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C1

(log n)2 < sup
−∞<x<∞

���P
[
a−1
n3 (M2

n − 2bn3) ≤ x
]
− G1(x)��� <

C2

(log n)2 . (19)

The way we represent the preceding result is slightly different from the original one
given by Hall (1980). The choices of an3 and bn3 differ from those in Hall (1980)
by smaller order terms, which do not affect the convergence rates. We choose the
current formulation in order to have a better comparison with our main result.

To achieve a better rate of convergence, we first choose bn precisely through
1 −Φ(

√
2bn) = 1/n. Second, observe that the events in (18) and (19) can be written

as

M2
n ≤ 2bn2 + 2x

M2
n ≤ 2bn3 + 2x − x/bn3

respectively. According to (6), the event [Yn ≤ x] implies that

M2
n ≤ 2bn + 2x −

x
bn
+

x2 + 3x
2b2

n

+O
(
b−3
n

)
. (20)

We see that a term of order O(b−2
n ) is needed on the right hand side to achieve the

convergence rate (log n)−3 in Theorem 1. In fact, it is this expansion which motivates
the proposed nonlinear transform Yn.

2.4 k-th maxima

In this section we present pointwise and uniform convergence rates for the k-th
maxima Mn,k , defined as the k-th largest among the first n variables {X1, X2, . . . , Xn}.
These results follow from almost the same arguments as those for the maxima, so
we state them without proofs.

Theorem 3 Let bn be the solution of the equation 1−Φ(
√

2bn) = 1/n. For an given
positive integer k, define

Yn,k :=

1 − *

,
1 +

M2
n,k
− 2bn

8b2
n

+
-

−1

(
4b2

n + 2bn − 2
)
.

(i) For each fixed −∞ < x < ∞, it holds that

P(Yn,k ≤ x) − Gk (x) = G1(x)
e−kx

(k − 1)!
·

4x3 + 15x2 + 30x
24b3

n

+O(b−4
n ),

where Gk (x) := G1(x)
∑k−1

j=0 e−jx/ j!.
(ii) There exists a constant c2 > 0, such that
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sup
−∞<x<∞

|P(Yn,k ≤ x) − Gk (x) | <
c2

(log n)3 .

3 Applications and numerical comparisons

3.1 Numerical comparisons

In this section, we numerically compare the convergence rates of different versions of
the normalized M2

n , introduced in Section 2.3. Specifically, we compare with G1(x),
the CDF of Yn1 := 1

2 (M2
n − 2bn1), Yn2 := 1

2 (M2
n − 2bn2), Yn3 := (2 − 1/bn3)−1(M2

n −

2bn3), and Yn, labeled by bn1, bn2, bn3 and bn respectively in Figure 1. The vertical
lines mark 90%, 95% and 99% quantiles of the Gumbel distribution. We see that
the distribution of Yn (blue curve) is uniformly closer to G1(x), no matter what
the sample size is. Figure 2 zooms into the upper tail for a clearer visualization.
An interesting finding is that the faster theoretical convergence rates of Yn2 and Yn3
over Yn1, are not reflected through the plots for Yn2 even when the sample size is as
large as 105. The distribution of Yn3 starts to be closer to G1(x) in the upper tail
when n = 105. We remark that the inferior performances of Yn2 and Yn3 need not
necessarily contradicts the theoretical convergence rates: from Figure 1 it is seen that
the convergence of Yn1 is much slower in the left tail. On the other hand, in Figure 2
it is more clearly seen that Yn always has a faster convergence rate, compared with
the rest. Further more, the CDF ofYn lies above G1(x), indicating that if a hypothesis
test is based on the maximum type statistic, then it is guaranteed to be conservative
by using Yn. This is in contrast to Yn3, which is always below G1(x). Similar patterns
are observed for the second maxima in Figure 3. Two additional figures for the 3rd
and 4th maxima are given in the Appendix.

Let cα be the (1 − α)-th quantile of G1(x). We find the smallest sample size n
such that P(Yn > cα) reaches ±10% of α. The results are summarized in Table 1 for
all of Yni, i = 1, 2, 3 and Yn. Overall Yn needs much smaller sample sizes. Such sizes
do not exist for Yn2 when n ≤ 106, so we choose not to report them.

Table 1: Smallest sample size to reach ±10% of the nominal level.

α Yn1 Yn2 Yn3 Yn

10% 92 - 1230 293
5% 995 - 3639 686
1% 359965 - 38208 4126
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Fig. 1: Comparison of the CDFs. The black line is the true CDF of the Gumbel distribution. The
dashed, red and green (labeled by bn1, bn2 and bn3) curves are the empirical CDFs, corresponding
to the convergence rates (log log n)2/ log n, (log n)−1 and (log n)−2 respectively. The blue line
depicts the empirical CDF of the proposed Yn , of convergence rate (log n)−3.

3.2 An example

In this section, we consider an example on testing the covariance structure. Suppose
x1, . . . , xN is a sequence of independent and identically distributed p-dimensional
random vectors. Let R = {ρi j }1≤i, j≤p be the correlation matrix of x1. Consider the
hypothesis testing problem:

H0 : R = Ip vs H1 : R , Ip .

Jiang et al. (2004) proposed to use the maximum absolute sample correlation LN =

max1≤i< j≤p | ρ̂i j | as the test statistic, and proved that 1
2 (N L2

N − 2bn1) converges in
distribution to G1, where n = p(p− 1). We consider the test statistics TNi, i = 1, 2, 3
and TN , which are defined in the same way asYni andYn in Section 3.1, but replacing
M2

n therein by N L2
N . The p-values are calculated by comparing the test statistics

with the Gumbel distribution G1. By treating the sample correlations N ρ̂i j as iid
standard normal random variables, we obtain another approximation of the p-value,
given by 1 − [Φ(N L2

N )]n. The test done this way is named as T0.
For the asymptotic tests considered here, two approximations are involved: (i)

Gaussian approximation of ρ̂i j , and (ii) approximation of the maximum by the
Gumbel distribution. It has been understood that Gaussian approximation usually
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Fig. 2: Comparison of the CDFs in the upper tail. The black line is the true CDF of the Gumbel
distribution. The vertical lines mark 90%, 95% and 99% quantiles of the Gumbel distribution. The
dashed, red and green (labeled by bn1, bn2 and bn3) curves are the empirical CDFs, corresponding
to the convergence rates (log log n)2/ log n, (log n)−1 and (log n)−2 respectively. The blue line
depicts the empirical CDF of the proposed Yn , of convergence rate (log n)−3.

has a much higher convergence rate, especially in view of the recent development
on the topic (see for example Chernozhukov et al., 2013, and a series of follow-up
works). Therefore, the bottleneck is the convergence rate of the maximum to the
Gumbel distribution. We report the empirical rejection probabilities based on 5000
repetitions in Table 2 and Table 3, where xi ∼ N (0, Ip), and xi has iid t7 entries,
respectively. We see that the empirical sizes of TN , TN1 and T0 are in general close
to the nominal ones, and their performances are stable across different sample sizes
and dimensions. The results are also consistent with our findings in Section 3.1.
More extensive simulations, covering more sample sizes and dimensions, continue
to support the observations above. These results are omitted for the sake of space.

4 Conclusion

We propose a monotone transform of the squared normal extreme, and prove that
its pointwise and uniform convergence rates are both of the order (log n)−3, which
improves the existing results in the literature. The theoretical improvements are also
demonstrated and supported numerically.
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Fig. 3: Comparison of CDFs for second maxima.
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Table 2: The empirical rejection probabilities (%) when xi is N(0, Ip).

p Test n = 256 n = 512 n = 1024

10% 5% 1% 10% 5% 1% 10% 5% 1%
32 T0 8.96 4.42 0.72 9.64 4.86 0.94 10.74 5.60 1.28

TN1 8.62 4.02 0.62 8.94 4.48 0.78 10.28 5.02 1.10
TN2 7.10 3.36 0.48 7.72 3.80 0.54 8.48 4.18 0.80
TN3 10.06 5.12 1.02 10.64 5.46 1.16 11.92 6.42 1.62
TN 8.94 4.28 0.66 9.46 4.72 0.88 10.64 5.36 1.20

64 T0 7.68 3.78 0.80 9.94 5.34 0.80 9.42 4.74 1.00
TN1 7.48 3.30 0.66 9.46 4.72 0.70 9.02 4.44 0.84
TN2 6.26 2.76 0.62 8.42 3.96 0.66 7.88 3.84 0.70
TN3 8.44 4.10 0.96 10.60 5.88 0.90 10.06 5.12 1.10
TN 7.68 3.76 0.72 9.88 5.24 0.80 9.36 4.70 0.96

128 T0 7.60 3.32 0.62 9.30 4.86 0.80 9.86 4.82 0.98
TN1 7.34 3.12 0.60 8.90 4.52 0.72 9.56 4.58 0.82
TN2 6.26 2.72 0.60 7.86 3.82 0.66 8.20 4.00 0.68
TN3 8.16 3.82 0.66 9.78 5.14 0.90 10.14 5.30 1.14
TN 7.60 3.32 0.62 9.30 4.78 0.78 9.86 4.76 0.92

256 T0 6.44 2.94 0.34 8.64 3.96 0.62 8.54 4.22 0.74
TN1 6.08 2.70 0.28 8.46 3.78 0.58 8.38 3.98 0.64
TN2 5.40 2.38 0.24 7.42 3.28 0.52 7.48 3.64 0.42
TN3 6.80 3.10 0.42 8.92 4.26 0.72 9.16 4.42 0.80
TN 6.44 2.92 0.34 8.66 3.94 0.60 8.54 4.20 0.70

Table 3: The empirical rejection probabilities (%) when xi has iid t7 entries.

p Test n = 256 n = 512 n = 1024

10% 5% 1% 10% 5% 1% 10% 5% 1%
32 T0 9.84 4.82 1.02 9.18 4.70 1.24 10.22 5.28 1.12

TN1 9.28 4.36 0.76 8.82 4.34 1.06 9.58 4.66 0.92
TN2 7.84 3.74 0.66 7.28 3.72 0.92 8.26 3.90 0.68
TN3 10.74 5.70 1.36 10.04 5.32 1.40 11.38 6.12 1.20
TN 9.70 4.66 0.84 9.14 4.44 1.16 10.02 5.02 0.98

64 T0 9.28 4.28 0.94 10.18 5.02 0.82 9.02 4.78 1.00
TN1 8.96 3.88 0.70 9.80 4.50 0.68 8.46 4.54 0.78
TN2 7.70 3.44 0.52 8.42 3.94 0.56 7.44 3.82 0.70
TN3 9.72 4.74 1.04 10.76 5.44 0.98 9.82 5.28 1.14
TN 9.24 4.22 0.84 10.18 4.94 0.78 9.00 4.74 0.88

128 T0 9.14 4.64 0.82 9.74 4.90 1.30 9.96 4.76 0.94
TN1 8.90 4.32 0.76 9.32 4.60 1.14 9.58 4.44 0.84
TN2 7.82 3.90 0.56 8.10 3.76 0.84 8.26 3.84 0.70
TN3 9.64 4.84 0.90 10.20 5.16 1.50 10.32 5.10 1.08
TN 9.14 4.58 0.80 9.74 4.80 1.20 9.96 4.66 0.90

256 T0 9.08 4.32 0.94 10.20 4.98 0.98 9.98 5.36 1.30
TN1 8.80 4.02 0.88 9.96 4.74 0.84 9.68 5.02 1.18
TN2 7.92 3.50 0.86 8.82 4.18 0.80 8.84 4.52 1.10
TN3 9.36 4.72 1.04 10.58 5.30 1.04 10.48 5.62 1.38
TN 9.08 4.30 0.94 10.20 4.98 0.94 9.98 5.30 1.20
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5 Appendix

5.1 Expansion of bn

Recall bn is the solution of the equation 1 − Φ(
√

2bn) = 1/n. We use the following
approximation to the normal density:

1 − Φ(z) =
(
1
z
−

1
z3 +

3
z5 −

15
z7

)
φ(z).

Then
√

2bn is the solution of the following equation:

1
√

2π
e−

x2
2

(
1
x
−

1
x3 +

3
x5 −

15
x7

)
= 1/n. (21)

Our goal is to use three consecutive applications of the Newton-Rhapson approx-
imation method to obtain the solution of (21) and then calculate bn accordingly.
Let

f (x) =
1
√

2π
e−

x2
2

(
1
x
−

1
x3 +

3
x5 −

15
x7

)
.

then the derivative of f (x) is:

f ′(x) =
1
√

2π
e−

x2
2

(
−1 +

105
x8

)
.

We start from
x0 =

√
2 log n −

∆

2
√

2 log n
,

where
∆ = log log n + log 4π.

By Newton-Rhapson approximation method,

f (x0) + f ′(x0)(x1 − x0) = 1/n.

Then we can obtain:

x1 =
√

2 log n −
∆

2
√

2 log n
−
∆2 − 4∆ + 8
8
(
2 log n

)3/2 .

Repeat this procedure for two more times, we have

x2 =
√

2 log n −
∆

2
√

2 log n
−
∆2 − 4∆ + 8
8
(
2 log n

)3/2 −
∆3 − 8∆2 + 32∆ − 56

16
(
2 log n

)5/2 .
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x3 =
√

2 log n −
∆

2
√

2 log n
−
∆2 − 4∆ + 8
8
(
2 log n

)3/2 −
∆3 − 8∆2 + 32∆ − 56

16
(
2 log n

)5/2

−
15∆4 − 184∆3 + 1152∆2 − 4128∆ + 7040

384
(
2 log n

)7/2 .

Then by bn = x2
3/2, it can be easily calculated:

bn = log n −
∆

2
+
∆ − 2
4 log n

+
∆2 − 6∆ + 14

16(log n)2 +O *
,

(
log log n

)3

(2 log n)3
+
-
.

5.2 Additional Figures

In this section we provide comparisons of the CDFs of the third and fourth maxima.
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Fig. 4: Comparison of the CDFs for third maxima.
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Fig. 5: Comparison of the CDFs for fourth maxima.
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