
Reduced-Rank Autoregressive Models for Matrix Time Series

Abstract. Matrix time series is a series of matrix data observed over time. Analytical tools for

such time series is needed in many applications in finance, economics, engineering and many other

fields. To avoid the use of vectorization of the matrices which loses the column and row informa-

tion, and the vector autoregression framework in traditional time series analysis, Chen et al. (2021a)

proposed the Matrix Autoregressive (MAR) Model. The model maintains and utilizes the matrix

structure, leading to a substantial dimensional reduction and admitting explicit interpretations,

comparing with the vector autoregressive model on the vectorized data. However, the MAR model

still encounters difficulties in dealing with large dimensional matrix time series as the coefficient

matrices in MAR models are also large. In this paper we propose to achieve further dimension

reduction through reduced-rank constraints of the coefficient matrices in the MAR model. Esti-

mation and rank determination procedures are studied. Theoretical investigation and empirical

examples show that the reduced-rank constraint can achieve higher statistical efficiency than the

MAR model.
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1 Introduction

Observations in matrix and tensor (multi-dimensional array) forms have been generated and col-

lected more and more abundantly in many fields including biological/medical research, economics,

engineering, finance, signal processing, social sciences etc. In response to the urgent need of analyt-

ical tools for analyzing such type of data in various applications, many optimization and statistical

methods/procedures have been proposed and studied. Similar to the use of matrix decomposition

for analysis of vector observations, tensor decomposition and estimation methods play a princi-

pal role in analyzing matrix/tensor data (Anandkumar et al., 2014; Cichocki et al., 2015, 2009;

De Lathauwer et al., 2000a,b; De Silva and Lim, 2008; Sidiropoulos et al., 2017).

In many applications, the matrices are observed through time, and hence form a matrix-valued

time series. Although it is possible and perhaps convenient to treat time as another mode and apply

the tensor methods to such a three-way tensor, the time dimension is intrinsically different, and

the temporal dependence requires careful modeling and analysis to aid practitioners on acquiring a

diagnostic understanding of the dynamics and making reliable forecasts. It has been witnessed that

multilinear models can reduce the dimension and improve the estimation stability for matrix/tensor

data (Ding and Dennis Cook, 2018; Raskutti et al., 2019; Zhao and Leng, 2014; Zhou et al., 2013).

For dependent data, there has been many recent works on factor models of matrix/tensor time

series, see Chen et al. (2021b); Gao and Tsay (2021); Han et al. (2020b,c); Wang et al. (2019)

among others. On the other hand, Hoff (2015) pioneered in suggesting the multilinear model for

longitudinal tensor data. Chen et al. (2021a) proposed the matrix autoregressive model (MAR),

which retains the matrix form of the data and specifies the autoregressive relationship through a

bilinear matrix product. Besides the interpretations adherent to its matrix and bilinear form, the

MAR also reduces the model complexity significantly, comparing to the approach of concatenating

the matrix observation into a long vector and then using the traditional vector autoregressive (VAR)

model (Hannan, 1970; Lütkepohl, 2005; Tiao and Box, 1981; Tsay, 2014).

When the matrix observations are themselves of large dimensions, the MAR model still involves

a large number of parameters. It is desirable and sometimes necessary to reduce the dimension

even further. In this paper, we propose the reduced-rank matrix autoregressive model (RRMAR),

which assumes the form of MAR, but requires in addition that the coefficient matrices have ranks

smaller than their dimensions.
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We note that another natural approach to reducing the model complexity is to impose sparsity

on the MAR. This approach is closely related to recent works on sparse VAR models (Basu and

Michailidis, 2015; Davis et al., 2016; Han et al., 2015; Kock and Callot, 2015; Lin and Michailidis,

2017; Loh and Wainwright, 2011; Melnyk and Banerjee, 2016; Nicholson et al., 2017). In addition,

Basu et al. (2019) and Lin and Michailidis (2020) considered additional low rank constraints on

the coefficient matrices, Hall et al. (2018) introduced the generalized VAR model, and Han et al.

(2020a) focused on the nonlinear sparse VAR model. Ghosh et al. (2019) and Ghosh et al. (2021)

considered the high dimensional VAR from a Bayesian perspective.

In contrast to the aforementioned works based on sparsity, the thrust of the present paper

hinges upon the low rank structure of the coefficient matrices in MAR. As will be elaborated in

Section 2, the low rank matrices in RRMAR continue to admit natural interpretations, and lead

to a greater dimension reduction compared to MAR. It also relates to and provides a generative

mechanism for the dynamic matrix factor models of Wang et al. (2019), and has a close connection

to the hierarchical factor models.

The proposed model and estimation procedure are related to the reduced-rank regression (An-

derson, 1951; Izenman, 1975; Reinsel and Velu, 1998). We consider two estimators: one based on

least squares (RR.LS) and one based on maximum likelihood (RR.CC). It is worth pointing out

that they correspond to two different algorithms for vector reduced-rank regression: one minimizing

the trace of the sample covariance matrix, and the other the determinant, where the latter also

corresponds to the canonical correlation analysis (see for example Reinsel and Velu (1998) for more

details). The likelihood-based RR.CC is indeed the maximum likelihood estimator if the covariance

tensor of the error matrix has the form of a tensor product of two covariance matrices. Even when

this assumption does not hold, the RR.CC nevertheless can be viewed as an estimator obtained

together with a regularized estimation of the covariance tensor, and can still potentially lead to

superior performances over the RR.LS.

Here we shall emphasize two significant differences between our model and the classical reduced-

rank regression. First, the observations are in matrix form, and the model takes a bilinear form.

Second, the algorithms requires running reduced-rank least squares/maximum likelihood iteratively.

We develop central limit theorems for the estimators of the coefficient matrices, as well as their

singular vectors. The bilinear form of the matrix model also makes the analysis substantially
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different from the vector case.

The estimation procedures depend on the ranks of the two coefficient matrices in the RRMAR

model. We propose to use information criterion based procedures to identify the ranks of these

matrices. Since two ranks are to be determined, a thorough search over all possible pairs of ranks

can be very costly, so we also introduce procedures to select the two ranks separately. Asymptotic

consistency of these selection procedures are established.

The rest of this article is organized as follows. The RRMAR model is introduced in Section 2,

together with its basic properties, interpretations and connections with other models. In Section 3

we propose two estimators, RR.LS and RR.CC. Asymptotic distributions are provided for both

of them in Section 4, as well as corresponding estimators of the leading singular vectors of the

coefficient matrices. The model/rank selection procedures based on information criterion are in-

troduced in Section 5, with their consistency properties. We use an extensive numerical study and

an example in finance to demonstrate the performances of the proposed models and estimators in

Section 6. All the proofs are collected in the Appendix.

1.1 Notations

We gather the notations and the definitions of some special matrices in this section.

We use } ¨ }F to denote the Frobenius norm of a matrix, and ρp¨q the spectral radius. We use b

to denote the Kronecker product, and ˝ the (point-wise) Hadamard product of two matrices. The

notation 1k stands for a k-dimensional vector with all entries equal to one. For any matrix M , we

use M ri, s and M r, js to denote its i-th row and j-th column respectively. The column space of M

is denoted by colpMq. The matrix vectorization, denoted by vecp¨q, turns a matrix into a vector

by stacking its columns.

For any positive integer p, let ep,j P Rp be the j-th base vector whose j-the entry is 1, and

others zero. For any two positive integers p and q, let Jp,q be the ppqq ˆ ppqq permutation matrix

defined as

Jp,q “ rIq b ep,1, Iq b ep,2, . . . , Iq b ep,ps . (1)

The permutation Jp,q does the following: for any pˆq matrix M , Jp,qvecpM 1q “ vecpMq. In other

words, Jp,q connects the vectorization of a matrix and its transpose.
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Let Lp be the p2 ˆ p matrix whose j-th column is given by ep,j b ep,j , i.e.

Lp “ rep,1 b ep,1, ep,2 b ep,2, . . . , ep,p b ep,ps. (2)

For any pˆ p matrix M “ pmjkq, the following operation extracts its diagonals:

L1pvecpMq “ pm11, . . . ,mppq
1,

and furthermore,

vec´1rLpL
1
pvecpMqs “ diagpMq,

where diagpMq is the pˆ p diagonal matrix keeping M ’s diagonal elements.

2 Reduced-Rank MAR Model

The reduced-rank matrix autoregressive model (RRMAR) takes the form

Xt “ A1Xt´1A
1
2 `Et, (3)

where Ai are diˆdi autoregressive coefficient matrices of ranks ki ď di, and Et P Rd1ˆd2 is a matrix

white noise. It is the same as the MAR model proposed by Chen et al. (2021a), except for the

additional low rank assumption that rankpAiq “ ki ď di, for i “ 1, 2. It is worth observing that the

number of parameters to determine Ai under the rank constraint is d2i ´ pdi ´ kiq
2 “ p2di ´ kiqki

(see for example Camba-Mendez et al., 2003; Reinsel and Velu, 1998), as opposed to d2i for the

unconstrained Ai, and the former can be much smaller if ki ! di. We also assume that }A1}F “ 1,

so that A1 and A2 are identified up to a sign change. To guarantee that the model (3) is causal

and stationary, we require that ρpA1q ¨ ρpA2q ă 1.

To better understand the implication of the low rank assumption, we write Ai “ AilA
1
ic, where

Ail and Aic are both di ˆ ki full rank matrices. The model (3) is then written as

Xt “ A1l A
1
1cXt´1A2c A

1
2l `Et. (4)

The boxed part F t :“ A11cXt´1A2c is a k1 ˆ k2 matrix, which can be viewed as a composite and

much smaller version of the d1ˆd2 matrix Xt´1. The conditional expectation of Xt given Xt´1 is

then given by loading on F t from left by A1l, and from right by A12l. The RRMAR model therefore

provides a generating mechanism for the matrix factor model Xt “ Al1F tA
1
l2 `Et, introduced in

5



Wang et al. (2019), in which the factor process F t is assumed to be latent and unobserved. In the

RRMAR model in (4), F t depends on Xt´1 hence is observed given the parameters. Due to this

connection, we call Aic the composition matrix, and Ail the loading matrix.

The RRMAR model is also related to the hierarchical factor models in the econometrics litera-

ture (Moench et al., 2013). Specifically, let F ˚t “ A
1
1cXt´1A

1
2, then

Xt “ A1lF
˚
t `Et,

which means that the j-th column of Xt follows a factor model with loading A1l, and factors

F ˚t r, js, the j-th column of F ˚t . In the next layer, we have

F ˚
1

t “ A2lF
1
t,

which says that the d2ˆk1 factor matrix F ˚
1

t is further driven by a smaller factor matrix F 1t (defined

by the boxed part in (4)), the j-th column of F ˚
1

t corresponding to the loading A2l, and factors

F 1tr, js. Therefore, the model (3) also gives a generating mechanism of a special instance of the

hierarchical factor model.

Remark 1. Again we emphasize that RRMAR is strictly an AR model, with the conditional mean

of Xt given the past information solely depending on Xt´1. As in all traditional AR models, we

assume the noise process Et is white (in time), though the elements in Et are allowed to have

(strong) correlations among them. It is possible to extend the model to have an ARMA form to

allow non-white error processes, but such an ARMA model is extremely difficult to analyze and

typically less useful in practice even for vector time series, due to various ambiguities. Although

RRMAR can be written in a factor model form, strictly speaking, it is not a factor model, as it is

generative in which F t is based on the past information Xt´1. On the other hand, a typical factor

model is often descriptive, with the factor process F t being latent and its estimator is typically a

linear combination of the current observation Xt.

There are many potential extensions of model (3). The first is the extension to RRMARppq

model:

Xt “

p
ÿ

j“1

A1jXt´jA
1
2j `Et, (5)

where all Aij are of low ranks. The RRMARppq model also extends the reduced-rank vector

autoregressive models (Al-Sadoon, 2019; Camba-Mendez et al., 2003; Velu et al., 1986). The second
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extension is more subtle. Although only the lag-1 observation Xt´1 is involved on the right hand

side of (3), there can be multiple terms in the form

Xt “

r
ÿ

j“1

A
pjq
1 Xt´1

´

A
pjq
2

¯1

`Et. (6)

To see this extension more clearly, we take vectorization on both sides of (6):

vecpXtq “

˜

r
ÿ

j“1

A
pjq
2 bA

pjq
1

¸

vecpXt´1q `Et.

It is seen from the preceding equation that the RRMAR model (3) amounts to restricting the

coefficient matrix of the VAR(1) model to the form of a Kronecker product, and the model (6) is

more flexible by representing the coefficient matrix as a sum of r Kronecker products.

The extension to AR(p) in (5) is quite straightforward, and the alternating estimation algorithms

and rank determination procedures proposed below can be easily extended for this model, with

heavier computational cost. It can help to make the model more parsimonious by requiring (i) the

matrices Aij to have the same ranks across 1 ď j ď p, or (ii) the rank of Aij decreases as the lag

j increases, or (iii) the matrices Aij have the same column/row spaces across j. The extension to

(6) is more intricate, as certain identifiability constraints are needed. We shall focus in this paper

on model (3) only, and leave the extensions (5) and (6) for future studies. Finally, we add that the

two extensions (5) and (6) can be combined to give a more comprehensive model.

3 Estimation

Suppose a matrix time series tXtu of length T is observed. To estimate the coefficient matrices Ai,

we propose to use the alternating reduced-rank regression, updating one, while holding the other

fixed. Specifically, suppose A2 is given, we discuss how to estimate A1. Recall that Ar, js denotes

the j-th column of a matrix A. We also make the convention that A1r, js denotes the j-th column

of A1, i.e. the j-th row of A as a column vector. The j-th column of the model equation (3) is

Xtr, js “ A1 Xt´1A
1
2r, js `Etr, js.

Since A2 is fixed, the preceding equation can be viewed as the reduced-rank regression involving

pT ´ 1qd2 sample units, where each column Xtr, js is a response vector, the boxed vector is the

covariate, and A1 is the coefficient matrix. In Section 3.1 we consider the estimation of A1 by
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least squares. On the other hand, under normality, the classical reduced-rank regression minimizes

the determinant of the sample covariance matrix of the error vectors, under the rank constraint,

which is related and in fact equivalent to canonical correlation analysis (Anderson, 2003; Reinsel

and Velu, 1998). In Section 3.2 we introduce a special covariance structure of Et, under which we

seek to estimate A1 by the Gaussian MLE.

In this section we focus on the estimation of the coefficient matrices given the ranks k1 and k2.

The determination of the ranks will be discussed in Section 5.

3.1 Alternating least squares

The least squares method minimizes the trace of the sample covariance matrix of the residuals

under the rank constraint:

min
A1: rankpA1q“k1

T
ÿ

t“2

›

›Xt ´A1Xt´1A
1
2

›

›

2

F
(7)

ðñ min
A1: rankpA1q“k1

tr

«

T
ÿ

t“2

d2
ÿ

j“1

`

Xtr, js ´A1Xt´1A
1
2r, js

˘ `

Xtr, js ´A1Xt´1A
1
2r, js

˘1

ff

.

We denote the least squares estimator by Â
ls

i , and will refer to it as the RR.LS estimator. Suppose

A2 is given, let Sxx “
ř

tXt´1A
1
2A2X

1
t´1, Syx “

ř

tXtA2X
1
t´1, and U :“ rU1, U2, . . . , Uk1s,

where Uj is the j-th leading normalized eigenvector of SyxS
´1
xxSxy. Then A1 can be updated as

Ǎ
ls

1 “ UU
1SyxS

´1
xx ,

see for example Equation (2.15) of Reinsel and Velu (1998). Given A1, an update of A2 can be

similarly obtained. We therefore use the alternating least squares to find the minimizer of (7).

3.2 Alternating canonical correlation analysis

The classical reduced-rank regression has also been situated under normality, leading to the Gaus-

sian MLE of the coefficient matrix. To introduce the MLE for the RRMAR model, we need to

assume that the covariance matrix Σe of vecpEtq takes the form of a product

Σe “ Σ2 b Σ1, (8)

where Σ1 and Σ2 are d1 ˆ d1 and d2 ˆ d2 positive definite matrices respectively. This is equivalent

to assuming Et “ Σ
1{2
1 ZtΣ

1{2
2 , where Z has iid standard normal entries. This assumption allows us
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to separate the row and column dependence within the error matrix, with Σ1 and Σ2 corresponding

to the row-wise and column-wise correlations among the entries of Et respectively. This type of

covariance model has been proposed and studied in the literature as the “transposable” (Allen and

Tibshirani, 2010), “array normal” (Hoff, 2011), “separable” (Tsiligkaridis and Hero, 2013; Zhou,

2014), and “Kronecker product” (Hafner et al., 2020; Linton and Tang, 2019) covariance structure.

We refer the readers to Hoff (2011) and Linton and Tang (2019) for a more detailed account on the

history of the separable covariance matrix. Chen and Chen (2019) also considered the MAR model

under this covariance structure.

Remark 2. To introduce the Gaussian MLE, we have assumed that Zt in the expression Et “

Σ
1{2
1 ZtΣ

1{2
2 has iid standard normal entries. Note that it is also possible to impose additional

structures on Zt. For example, Zt can have a rank one structure Zt “ z1tz
1
2t where z1t and z1t

are random vectors of dimensions d1 and d2, respectively, with all elements independent and of

unit-variance. In this case, Et is a rank-one error matrix, with separated row noises and column

noises. One difficulty of using this structure is that it implies that Xt ´A1Xt´1A
1
2 is of rank one

for all t. Additional error terms may be needed. We leave such an extension to the future research.

Under the normality and error structure (8), the log likelihood of the RRMAR model is (up to

some additive constants)

´pT ´ 1qpd2 log |Σ1| ` d1 log |Σ2|q ´

T
ÿ

t“2

tr
“

Σ´11 pXt ´A1Xt´1A
1
2qΣ

´1
2 pXt ´A1Xt´1A

1
2q
1
‰

. (9)

We will introduce an alternating algorithm to find the MLE, maximizing (9) alternatively over

one pair pAi,Σiq while holding the other fixed. As will be seen, each iteration can be viewed as

a reduced-rank regression, which is equivalent to the canonical correlation analysis (Reinsel and

Velu, 1998). We therefore denote the minimizer of (9) by Â
cc

i and Σ̂i, and refer to it as the RR.CC

estimator.

We now describe how to estimate A1 and Σ1 when A2 and Σ2 are known. Under assumption

(8), we can rewrite the model as

´

XtΣ
´1{2
2

¯

r, js “ A1

´

Xt´1A
1
2Σ
´1{2
2

¯

r, js `
´

EtΣ
´1{2
2

¯

r, js.

Note that the columns of the transformed error matrix EtΣ
´1{2
2 are iid Np0,Σ1q. If we let

ytj “
´

XtΣ
´1{2
2

¯

r, js, xtj “
´

Xt´1A
1
2Σ
´1{2
2

¯

r, js and εtj “
´

EtΣ
´1{2
2

¯

r, js, then the preceding
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equation can be viewed as a reduced-rank regression with i.i.d. errors:

ytj “ A1xtj ` εtj , 2 ď t ď T, 1 ď j ď d2. (10)

The MLE of A1 based on (10) with i.i.d. normal errors has been well studied in the classical

reduced-rank regression. Here we only define necessary notations to introduce the final expression

of the MLE. We refer the readers to the classical texts Anderson (2003) and Reinsel and Velu (1998)

for more details. Let

S̃xx “
ÿ

t

ÿ

j

xtjx
1
tj “

ÿ

t

Xt´1A
1
2Σ
´1
2 A2X

1
t´1,

S̃yx “
ÿ

t

ÿ

j

ytjx
1
tj “

ÿ

t

XtΣ
´1
2 A2X

1
t´1.

The least squares estimator (with no rank constraint) of A1 based on (10) is then given by Ã1 “

S̃yxS̃
´1
xx . To get the MLE of A1 under the constraint rankpA1q “ k1, let

Σ̃εε “
ÿ

t

ÿ

j

´

ytj ´ Ã1xtj

¯´

ytj ´ Ã1xtj

¯1

“
ÿ

t

´

Xt ´ Ã1Xt´1A
1
2

¯

Σ´12

´

Xt ´ Ã1Xt´1A
1
2

¯1

.

Take Ũ :“ rŨ1, Ũ2, . . . , Ũk1s, where Ũj is the j-th leading unit eigenvector of Σ̃
´1{2
εε S̃yxS̃

´1
xx S̃xyΣ̃

´1{2
εε .

Then A1 is updated as

Ǎ
cc

1 “ Σ̃1{2
εε ŨŨ

1
Σ̃´1{2εε S̃yxS̃

´1
xx . (11)

For the derivation of this update, see for example Equation (2.15) of Reinsel and Velu (1998).

Subsequently, the covariance matrix Σ1 is updated as

Σ̌1 “
1

T ´ 1

ÿ

t

`

Xt ´ Ǎ
cc

1Xt´1A
1
2

˘

Σ´12

`

Xt ´ Ǎ
cc

1Xt´1A
1
2

˘1
.

Given A1 and Σ1, an update of A2 and Σ2 can be similarly obtained. Therefore, we use the

alternating algorithm to find the minimizer of (9).

Remark 3. Note that each step of the algorithms reduces the corresponding objective functions,

hence the algorithms are likely to converge to a local/global minimum. To ensure the estimators do

not oscillating among equivalent solutions, proper constraints need to be enforced. We have assumed

that A1 is always normalized so that }A1}F “ 1, and will require the same for its estimates in the

algorithm. Similarly, for the MLE we require }Σ1}F “ 1 and }Σ̂1}F “ 1. On the other hand, since

the noise covariance matrix is full rank and the ranks k1 and k2 are the correct ranks, there is no

identifiability issue related to rank deficiency.
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Remark 4. Since the objective functions are not convex, care needs to be taken to reach the global

minimum. Using multiple random initial values is one possible approach. Another approach is to

use the projection estimator of A1 and A2 in Chen et al. (2021a) (by ignoring the rank constraints),

as the initial values of both alternating algorithms. The projection estimator of A1 and A2 are

derived from a global (one-step) estimation of A2 bA1, though they are not efficient.

4 Asymptotics

The asymptotic analysis is substantially different from the classical reduced-rank regression, due

to the alternating nature of the estimation. For example, the gradient condition for the LSE Â
ls

1

is Â
ls

1 “ ÛÛ
1
ŜyxŜ

´1
xx , where Û , Ŝxx and Ŝyx are defined as the U , Sxx and Syx in Section 3 with

the modification that all A2 therein need to be replaced by Â
ls

2 . In other words, the asymptotic

behaviors of Â
ls

1 and Â
ls

2 are intertwined.

The asymptotics for Als
i and Acc

i involve heavy notations. First of all, recall that we assume

}A1}F “ 1 for the parameter identifiability, so we rescale Â
ls

i and Â
cc

i so that }Â
ls

1}F “ 1 and

}Â
cc

1 }F “ 1. In the table below, we list notations that appear in both Theorem 1 and Theorem 2,

but with different definitions in these theorems.

Notations Theorem 1 Theorem 2

Γ1 EpX 1
tA
1
1A1Xtq EpX 1

tA
1
1Σ
´1
1 A1Xtq

Γ2 EpXtA
1
2A2X

1
tq EpXtA

1
2Σ
´1
2 A2X

1
tq

Pi orthogonal projection to colpAiq orthogonal projection to colpΣ
´1{2
i Aiq

Pi Pi Σ
´1{2
i PiΣ

1{2
i

α1 vecpA1q Same

γ1 pα11,0
1q1 Same

W t rpA2X
1
tq b Id1 , Id2 b pA1Xtqs

1 Same

H EpW tW
1
tq ` γ1γ

1
1 EpW tΣ

´1
e W

1
tq ` γ1γ

1
1

Define

Qt :“

¨

˝

XtA
1
2 b P1 ` rΓ2A

1
1pA1Γ2A

1
1q
`A1XtA

1
2s b pI ´ P1q

P2 bX
1
tA
1
1 ` pI ´ P2q b rΓ1A

1
2pA2Γ1A

1
2q
`A2X

1
tA
1
1s

˛

‚,

where M` denotes the Moore-Penrose inverse of M . Note that Qt will appear in both Theorem 1

and Theorem 2. Although it seems to have the same definition in both theorems, the two versions
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actually differ because the Γi and Pi involved have different definitions.

Theorem 1. Assume that tEtu are i.i.d. with mean zero and finite second moments, and absolutely

continuous. Assume that 0 ă rankAi “ ki ď di, ρpA1qρpA2q ă 1, where ρp¨q denotes the spectral

radius of a matrix, and Σe is non-singular. Also assume that the nonzero eigenvalues of A1Γ2A
1
1

are distinct, and the same for A2Γ1A
1
2. Then

?
T

¨

˝

vec
”

Â
ls

1 ´A1

ı

vec
”

pÂ
ls

2q
1 ´A12

ı

˛

‚ñ Np0,Ξlsq,

where

Ξls :“H´1EpQtΣeQ
1
tqH

´1. (12)

Theorem 2. Assume that tEtu are i.i.d. with mean zero and finite second moments, and absolutely

continuous. Assume that 0 ă rankAi “ ki ď di, ρpA1qρpA2q ă 1, and Σe is of the form (8), and

is non-singular. Also assume that the nonzero eigenvalues of Σ
´1{2
1 A1Γ2A

1
1Σ
´1{2
1 are distinct, and

the same for Σ
´1{2
2 A2Γ1A

1
2Σ
´1{2
2 . Then

?
T

¨

˝

vec
”

Â
cc

1 ´A1

ı

vec
”

pÂ
cc

2 q
1 ´A12

ı

˛

‚ñ Np0,Ξccq,

where

Ξcc :“H´1EpQtΣ
´1
e Q

1
tqH

´1. (13)

Besides the usual regularity conditions, we also assume in Theorem 1 and Theorem 2 that

certain matrices have distinct eigenvalues. While this assumption holds for generic positive definite

matrices, it is even easier to be fulfilled by the aforementioned matrices since they involve Γi.

As mentioned before, the RRMAR model is a MAR model with additional low rank constraints

on the coefficient matrices Ai. If the estimation is carried out without the rank constraints, then

the procedure of Chen et al. (2021a) applies and so does its asymptotic result (e.g. Theorem 4 in

Chen et al. (2021a)). In fact, if the estimation of Ai is given by the MLE without imposing the

low rank constraints, the asymptotic covariance matrix would take the same form as Ξcc, by setting

Pi “ I in the definition of Qt. Denote this covariance matrix by Ξ̃. The following theorem asserts

that the MLE Â
cc

i under the RRMAR model are asymptotically more efficient.
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Theorem 3. Under the assumptions of Theorem 2, it holds that Ξ̃ ľ Ξcc, i.e. the difference Ξ̃´Ξcc

is positive semi-definite.

Remark 5. Since Σe in Theorem 1 can be arbitrary, as long as it is non-singular, the LSE does not

correspond to the MLE, and thus there is no similar result to Theorem 3 regarding the comparison

of the LSE under the RRMAR model and the MAR model without rank constraints. On the other

hand, if the entries of Et are IID, we can show a similar result to Theorem 3 for the LSE, which is

not presented here since it is too special.

We now consider the asymptotics of the composition and loading matrices Ail and Aic in (4).

The following discussion works the same for either Â
ls

i or Â
cc

i . Therefore, we will use the unified

notations Âi and Ξ, dropping the superscripts ls and cc. Since Aic and Ail cannot be identified

as seen from AilA
1
ic “ AilMM´1A1ic for any invertible ki ˆ ki matrix M , we consider instead

the singular value decomposition (SVD) of Ai. Write Ai “ U iDiV
1
i, where both U i and V i

are di ˆ ki ortho-normal matrices. Denote the j-th diagonal element of Di by dij , and define

di “ pdi1, . . . , di,kiq
1. Comparing (4), we see that V i corresponds to the composition matrix Aic,

U i corresponds to the loading matrix Ail, and Di can be absorbed into either Ail or Aic. Let

Âi “ Û iD̂ipV̂ iq
1 be the SVD of Âi. Since ÂiÂ

1

i “ Û iD̂
2
i pÛ iq

1, the asymptotic distribution of

Û i can be obtained based on that of ÂiÂ
1

i. Similarly, the asymptotic distribution of V̂ i can be

derived from that of Â
1

iÂi. Note that the asymptotic covariance matrix of vecpÂiq (for i “ 1, 2)

is a submatrix of Ξ and can be extracted from (12) or (13). Following that, we let Ξi1 be the

asymptotic covariance matrix of vecpÂiÂ
1

iq, which can be obtained through the expansion

ÂiÂ
1

i “ AiA
1
i ` pÂi ´AiqA

1
i `AipÂi ´Aiq

1 ` oP pT
´1{2q.

More specifically, when i “ 1,

Ξ11 “ rA1 b Id1 ` pId1 bA1qJd1,d1s
 

Ξr1 : d21, 1 : d21s
(

rA1 b Id1 ` pId1 bA1qJd1,d1s
1 ,

where Ξr1 : d21, 1 : d21s is the upper left d21ˆd
2
1 block of Ξls or Ξcc, and the matrix Jd1,d1 is defined in

(1). The asymptotic covariance matrix of Â
1

1Â1, denoted by Ξ12, has a similar expression. When

i “ 2, the matrices Ξ21 and Ξ22, related to Â2, are also defined similarly.

Define the matrix Ri1 as

Ri1 “ pIki bU i, Iki bU
K
i q

¨

˝

pD2
i b Iki ´ Iki bD

2
i `LkiL

1
ki
q´1pIk2i

´LkiL
1
ki
qpU 1i bU

1
iq

pD´2
i U

1
iq b pU

K
i q
1

˛

‚,
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and define Ri2 similarly, but replacing U i with V i.

Note that even when Ai has distinct singular values, the columns of U i and V i are only

identified up to sign changes. We shall adopt the following convection to identify U i: the first

nonzero element of each column of U i is positive. Since A1 and A2 are also only identified up to

sign changes, we make one more requirement to identify V i: the first nonzero element of the first

column of V 2 is positive. Subsequently, we also require the estimators Û i and V̂ i to satisfy these

identifiability conditions.

Now, as a consequence of Theorem 1 and Theorem 2, we have the following result regarding Û i

and V̂ i.

Corollary 4. Assume the conditions of Theorem 1 or Theorem 2 hold, and that the singular values

of A1 are distinct, and so are those of A2. For each of i “ 1, 2, it holds that

?
TvecpÛ i ´U iq ñ N

`

0,Ri1Ξi1R
1
i1

˘

,

and
?
TvecpV̂ i ´ V iq ñ N

`

0,Ri2Ξi2R
1
i2

˘

,

and
?
T pd̂i ´ diq ñ N

ˆ

0,
1

4
D´1
i L

1
ki
pU 1i bU

1
iqΞi1pU i bU iqLkiD

´1
i

˙

.

Remark 6. Let Gi be the ki ˆ ki matrix defined as

Girj, ks “

$

&

%

pd2ik ´ d
2
ijq
´1 when j ‰ k,

0 when j “ k.

Furthermore, let UKi be the diˆ pdi´ kiq orthonormal matrix such that pU i,U
K
i q is an orthogonal

matrix. The asymptotic distribution of Û i can also be obtained from the following equation

Û i ´U i “ pU i,U
K
i q

¨

˝

Gi ˝

”

U 1ipÂiÂ
1

i ´AiA
1
iqU i

ı

pUKi q
1pÂiÂ

1

i ´AiA
1
iqU iD

´2
i

˛

‚` oP

ˆ

1
?
T

˙

,

where ˝ denotes the entry-wise Hadamard or Schur product of two matrices.

Remark 7. The joint distribution of Û i and V̂ i can also be derived. However, we choose not to

spell the details out here for two reasons: the notations are already very complicated, and more

importantly, there does not seem to be any direct applications of such a joint distribution.
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5 Identification of the Rank

In most applications the ranks of Ai are unknown, and it is important to determine them from

the data. This problem has been considered for multivariate reduced-rank regression by Anderson

(1951) and Anderson (2003), and for reduced-rank autoregressive model by Kohn (1979), Rein-

sel and Velu (1998), Tiao and Tsay (1989) and Tsay and Tiao (1985), among others. For high

dimensional reduced-rank regression based on independent samples, penalized least squares can

select the ranks along with the estimation, where the penalty is based on nuclear norm (Negahban

and Wainwright, 2011; Yuan et al., 2007), `0 norm (Bunea et al., 2011), or Schatten-q quasi-norm

(Rohde and Tsybakov, 2011). Basu et al. (2019) and Lin and Michailidis (2020) considered low

rank VAR and tensor models, combining least squares estimation with the nuclear norm penalty.

We propose to use an information criterion to select the ranks. For a given pair of ranks pr1, r2q,

it is defined as

EBICpr1, r2q “ log

«

1

Td1d2

T
ÿ

t“2

}Xt ´ Â
ls

1Xt´1pÂ
ls

2 q
1}2F

ff

`
1

Td1d2
¨ rlogpTd2q ¨ r1p2d1 ´ r1q ` logpTd1q ¨ r2p2d2 ´ r2qs.

(14)

This can be viewed as an extended version of the Bayesian Information Criterion (Schwarz, 1978),

so we use the acronym EBIC. Here the likelihood is calculated for the model where the entries of

Et are iid Np0, σ2q, so it is best viewed as a “quasi”-likelihood. It is not precisely derived according

to the posterior probability under the Bayesian framework (Haughton, 1988). Instead, we combine

the quasi-log-likelihood and a penalty term where the numbers of parameters are multiplied by the

logarithm of the sample sizes. Instead of simply counting the number of parameters, the effective

number of parameters (Mukherjee et al., 2015; Yuan, 2016) can also be used in the EBIC. However,

we choose the current version for simplicity. The selected pair of ranks pk̂1, k̂2q minimizes the EBIC

over all the pairs pr1, r2q such that 1 ď r1 ď r1max and 1 ď r2 ď r2max, where r1max and r2max

are pre-determined maximum ranks of A1 and A2, respectively. If no information is available and

the dimensions d1 and d2 are not too large, we can simply use r1max “ d1 and r2max “ d2. The

following Theorem 5 confirms that the EBIC in (14) does achieve the consistency. Its empirical

performances are also outstanding, as will be shown in Section 6.1.

Since there are two ranks to be determined, a direct search via (14) over all possible pairs of

ranks can be very costly when both r1max and r2max are large. We also consider selecting these two
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ranks separately. Specifically, the selected ranks are

r̂1 “ arg min
r1

EBICpr1, r2maxq r̂2 “ arg min
r2

EBICpr1max, r2q.

Theorem 5. Assume that tEtu are i.i.d. with mean zero and finite second moments. Also assume

that 0 ă rankAi “ ki ď di, ρpA1qρpA2q ă 1, and Σe is non-singular. Then both the joint EBIC

and the separate EBICi select the true ranks consistently, given that ki ď rimax.

Remark 8. Theorem 5 continues to hold if the penalty term in EBIC (14) (the second term) is

scaled by any positive constant c. The finite sample performance of EBIC may depend on such

a constant. The resampling based tuning method introduced by Hallin and Lǐska (2007) can be

adopted here to determine c. The benefit of using a data-driven penalty can be significant when

the dimension is high.

Remark 9. If the second term in (14) is replaced by 2pTd1d2q
´1rr1p2d1 ´ r1q ` r2p2d2 ´ r2qs, the

criterion is similar to AIC. Although it may not be consistent, it often works well in small sample

(Brockwell and Davis, 1991; Shao, 1997).

6 Numerical Studies

6.1 Simulations

In this section, we investigate the finite sample performance of the proposed estimation and rank

determination procedures for the RRMAR models under various simulation setups. The simulation

study consists of three parts. The first part is designed to compare the empirical behavior of the

proposed alternating least square estimator Â
ls

i , labelled as RR.LS in the figures, and the alternating

MLE Â
cc

i , labelled as RR.CC. The true ranks are taken as known. The least squares estimator

without rank constraints (labelled as LSE) in Chen et al. (2021a) is also included as a benchmark

for comparison. In the second part, we report the coverage probabilities of the confidence intervals

constructed based on Theorem 1, Theorem 2 and Corollary 4. The third part examines the rank

determination based on the EBIC proposed in Section 5. We also experiment with rank selection

by rolling forecasting.

For given dimensions di and ranks ki, the observed data Xt are simulated according to model

(3). The matrix A1 is generated according to A1 “ Q1ΛQ
1
2, where the entries of the k1 ˆ k2
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diagonal matrix Λ are sampled from the uniform distribution over the interval r0.5, 1.5s, and the

d1ˆ k1 orthonormal matrices Q1 and Q2 are generated randomly from the Haar distribution. The

matrix A2 is generated in the same way. The two matrices A1 and A2 are then rescaled so that

ρ :“ ρpA1qρpA2q ă 1 and ||A1||F “ 1. Throughout all the simulation studies, two different settings

of the covariance structure of the innovation matrix Et are considered:

(I) The covariance matrix Σe “ CovpvecpEtqq is randomly generated according to Σe “ QΛQ1,

where the entries of the diagonal matrix Λ are equally spaced over r1, 10s, and Q is a random

orthogonal matrix generated from the Haar distribution.

(II) The covariance matrix Σe takes the form (8), where each of Σ1 and Σ2 is generated in the

same way as the Σe in Setting I, except that the diagonal entries of Λ are equally spaced over

r1, 5s.

For a particular simulation setting with multiple repetitions, the matrices Ai and Σe are fixed.

Remark 10. We randomize the population parameters in the simulation, while controlling the

key parameters (e.g. ρpA1qρpA2q and the entries of the diagonal matrix Λ in the noise covariance

structure). The main reason is that the theoretical results show that the estimation performance

mainly depend on these controlled parameters. Due to the large number of “free parameters”, it is

difficult to construct a specific design of the parameter set, and the individual parameter is of less

importance and interests. Also one won’t be able to cover all possible combinations. In a way, the

randomly generated population parameter set can be viewed as a “representative” set.

In the first experiment, for each configuration of sample size T , dimensions di and ranks ki, we

repeat the simulation 100 times, and show a box plot of the estimation error

logp}Â2 b Â1 ´A2 bA1}
2
F q.

The spectral radius is fixed at ρ “ .75. Figure 1 and Figure 2 use the boxplots1 to compare LSE,

RR.LS and RR.CC, under Settings (I) and (II) respectively. It is seen from both figures that the

1Each boxplot shows the distribution of the log errors from 100 repeated experiments in each setting. The box in

the middle shows the range of 1-st quartile to 3-rd quantile, and the stems extends to the minimum of 1.5 interquartile

range (IQR) and the maximum/minimum of the data. The (rare) dots show the observations outside the 1.5 IRQ

range (often considered as outliers).
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advantage of RR.LS and RR.CC over LSE gets bigger as the dimensions grow higher. On the other

hand, for fixed dimensions, this advantage becomes smaller as the ranks increase. From Figure 1

we also find that, under Setting (I) of the error covariance matrix, RR.CC performs similarly as

RR.LS does, even though the covariance matrix Σe does not have the form (8), which is assumed

for RR.CC. On the other hand, Figure 2 clearly demonstrates the advantage of RR.CC over RR.LS

under setting (II), when Σe does bear the form (8). In addition, it is seen from Figure 2 that the

differences (in log error) between LSE and RR.LS/RR.CC remain roughly the same for difference

sample sizes. This confirms the results in Theorem 3, which states that the gain in efficiency (in

terms of reduction in variance of the estimators) is proportional to T , hence the absolute difference

between the full model in Chen, Xiao and Yang (2019) and the reduced-rank model becomes smaller

as T increases, but their ratio or log difference remain roughly the same.

In the second part, we consider the coverage probabilities of the confidence intervals based on

Theorem 1, Theorem 2 and Corollary 4. In this experiment the true ranks are fixed at k1 “ 3 and

k2 “ 2. We run simulations 1000 times for sample size T “ 200, 400, 1000, and consider the cases of

dimension pd1, d2q “ p6, 4q, p9, 6q, p15, 10q and ρ “ 0.25, 0.5, 0.75. For RR.LS, the error covariance

matrix settings (I) and (II) are considered. For RR.CS, we consider two ‘correct’ settings (II’) and

(II), where in (II’) we use Σe “ Id2 b Id1 . The confidence intervals of the entries of the matrices

A1,A2,U1,V 1,U2,V 2 are constructed. Table 1 shows the percentage that the true parameters

fall within their corresponding marginal 95% confidence intervals. Each percentage records the

average empirical coverage over all involved matrix entries. It can be seen from the table that the

coverage is quite accurate, especially when the sample size is large (T “ 1000). The empirical

coverage probabilities are closer to the nominal ones under Setting (I) for RR.LS and Setting (II’)

for RR.CS than those under Setting (II). This is probably due to the fact that the singulars values

of Σe under Setting (II) are more spread out, making Σe more different from the scalar matrix.

The third part of the simulation considers the performance of the rank determination proce-

dure using the joint EBIC (14) and the separate EBIC. Simulations are conducted under various

configurations of the sample size, dimensions, ranks and signal strength ρ, and the empirical prob-

abilities of selecting the correct ranks out of 100 repetitions are recorded. When the true ranks are

k1 “ k2 “ 1, or when the signal strength ρ is not too small (ρ ě 0.1), both selection procedures are

able to determine the ranks perfectly. Therefore, we choose to report in Table 2 only the results
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RR.LS RR.CC

Setting I II II1 II

T 200 400 1000 200 400 1000 200 400 1000 200 400 1000

ρ pd1, d2q

pA1,A2q

0.75

p6, 4q 93.5 93.8 94.3 92.1 92.3 92.5 93.9 94.2 95.0 91.0 91.3 91.3

p9, 6q 94.3 94.6 95.3 92.2 92.6 92.8 94.0 94.4 95.0 91.8 92.1 92.4

p15, 10q 94.5 94.7 95.5 92.5 92.8 93.3 93.8 94.1 94.9 92.2 92.5 93.0

0.5

p6, 4q 93.5 93.8 94.5 91.4 91.9 92.1 93.7 94.0 94.9 90.5 91.0 91.3

p9, 6q 94.3 94.6 95.4 91.7 92.4 92.6 93.8 94.3 95.0 91.2 92.0 92.2

p15, 10q 94.4 94.7 95.4 92.3 92.8 93.2 93.7 94.1 94.9 92.0 92.5 92.9

0.25

p6, 4q 92.8 93.7 94.6 88.0 90.1 91.3 92.6 93.6 94.7 87.2 89.5 90.8

p9, 6q 93.3 94.4 95.3 88.8 90.9 91.9 92.8 93.8 94.8 88.4 90.7 91.8

p15, 10q 93.8 94.5 95.3 90.6 92.0 92.9 93.1 93.8 94.8 90.4 91.8 92.6

pU1,V 1q

0.75

p6, 4q 94.4 94.2 94.2 92.4 92.7 92.5 94.4 94.3 94.5 91.3 91.5 91.1

p9, 6q 95.0 95.0 95.1 92.4 92.8 92.6 94.5 94.4 94.8 92.0 92.2 92.3

p15, 10q 94.9 95.2 95.3 92.7 92.8 93.3 94.2 94.5 94.8 92.8 93.0 93.3

0.5

p6, 4q 94.6 94.2 94.1 92.9 92.5 92.2 94.5 94.3 94.2 91.8 91.5 91.1

p9, 6q 95.1 95.0 95.1 92.7 93.0 92.6 94.8 94.5 94.9 92.2 92.4 92.3

p15, 10q 94.9 95.0 95.4 92.8 92.7 93.0 94.1 94.4 94.8 92.7 92.6 92.8

0.25

p6, 4q 95.2 94.8 94.7 93.0 92.6 92.4 95.0 94.6 94.4 92.3 91.7 91.6

p9, 6q 95.3 95.3 95.3 92.5 92.8 92.6 94.9 94.8 94.9 92.0 92.4 92.2

p15, 10q 95.0 95.0 95.1 92.4 92.4 92.6 94.3 94.2 94.5 92.3 92.3 92.6

pU2,V 2q

0.75

p6, 4q 94.1 94.3 94.2 91.6 91.7 91.1 94.5 94.5 94.3 91.2 91.3 90.6

p9, 6q 94.7 94.6 95.5 92.0 91.9 92.5 94.4 94.2 94.8 91.9 92.1 92.9

p15, 10q 95.1 95.6 95.3 92.6 93.2 93.1 94.3 95.0 94.7 93.2 93.7 93.6

0.5

p6, 4q 94.3 94.4 94.6 90.9 91.4 91.0 94.1 94.7 94.6 90.8 91.1 90.7

p9, 6q 94.8 94.7 95.3 91.8 91.8 92.3 94.4 94.2 94.5 91.5 91.9 92.4

p15, 10q 95.0 95.5 95.2 92.4 93.1 92.8 94.2 94.9 94.6 92.7 93.4 93.1

0.25

p6, 4q 93.7 93.7 94.8 88.8 89.8 90.6 93.3 93.9 94.7 88.3 89.9 91.0

p9, 6q 93.8 94.7 95.3 89.4 91.0 91.9 93.5 94.1 94.4 89.2 91.2 92.1

p15, 10q 94.6 95.6 95.1 91.0 92.5 92.4 93.7 94.8 94.5 91.5 92.9 92.7

Table 1: Empirical coverage probabilities (in percentage) of the 95% confidence intervals.
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Figure 1: Comparison of LSE, RR.LS and RR.CC. The three panels in each figure correspond to

sample sizes 200, 400 and 1000 respectively. The errors are generated according to Setting I.

for the configurations that are more challenging, with ρ “ .15 when the true ranks are p3, 2q, and

ρ “ .25 when the true ranks are p5, 3q. A closer look of the simulation results (not shown in the

table) reveals that, in these very low signal to noise ratio cases, both EBIC procedures tend to

select ranks smaller than the true ranks. However, larger sampling sizes significantly enhance the

performance. Moreover, when the autocorrelation strength ρ is larger than those reported in Ta-

ble 2, both procedures make nearly perfect choices of the ranks for all configurations and covariance

settings. We also note that the performances of the joint and separate procedures are almost the

same.

It is also observed that the performance under the error covariance setting (II) is worse than

that under Setting (I). This is due to the design of Σe in these two settings. The eigenvalues of Σe
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Figure 2: Comparison of LSE, RR.LS and RR.CC. The three panels in each figure correspond to

sample sizes 200, 400 and 1000 respectively. The errors are generated according to Setting II.

spread over r1, 10s in Setting (I), and over r1, 25s in Setting (II). Therefore, both the estimation

and model selection are more challenging under Setting (II).

We also experiment with using rolling forecasting to choose the ranks. We consider the range

1 ď ri ď mintdi, ki ` 2u, i “ 1, 2, as the candidate set of rankpAiq. For each configuration of

pρ, T, k1, k2, d1, d2q, we choose T {4 as the rolling forecast origin, calculate the entry-wise squared

forecast error (SFE) of the one-step ahead prediction of Xs`1, T {4 ď s ď T , then take the average

over the d1d2 series and over the time,

MSFEpr1, r2q “
1

d1d2p3T {4q

T´1
ÿ

s“T {4

d1
ÿ

i“1

d2
ÿ

j“1

ˇ

ˇ

ˇ
X̂
pr1,r2q
s`1 ri, js ´Xs`1ri, js

ˇ

ˇ

ˇ

2

.

The estimated ranks pk̂1, k̂2q is the pair pr1, r2q with the smallest MSFEpr1, r2q. Table 3 shows the
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proportion of the correct selection out of 100 repetitions. It is seen that, although rolling forecast

criterion still performs very well in most cases, it has a much higher variability than EBIC. It

performs better than EBIC in the case ρ “ .25 and pk1, k2q “ p5, 3q, when the sample size is small.

pr1, r2q “ p3, 2q, ρ “ .15 pr1, r2q “ p5, 3q, ρ “ .25

pd1, d2q 200 400 1000 200 400 1000

I

p6, 4q (.01, .01) (.67, .68) (1, 1) (.36, .36) (.96, .96) (1, 1)

p9, 6q (.15, .15) (.90, .92) (1, 1) (.07, .07) (.71, .71) (1, 1)

p15, 10q (1, 1) (1, 1) (1, 1) (.00, .00) (.47, .48) (1, 1)

II

p6, 4q (.02, .04) (.38, .39) (.99, .99) (.25, .23) (.92, .92) (1, 1)

p9, 6q (.00, .00) (.45, .47) (1, 1) (.10, .09) (.70, .69) (1, 1)

p15, 10q (.98, .99) (1, 1) (1, 1) (.00, .00) (.03, .04) (1, 1)

Table 2: Empirical probabilities of the correct rank selection by the EBIC. I, II stand for different

covariance structures of Et. For each cell, two numbers correspond to the joint and separate

selections respectively. The second row shows the sample sizes.
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p1, 1q p3, 2q p5, 3q

pd1, d2q 200 400 1000 200 400 1000 200 400 1000

ρ “ .5

I

p6, 4q 0.94 0.98 0.98 0.86 0.91 0.92 0.68 0.74 0.78

p9, 6q 0.99 1 1 0.97 0.99 0.99 0.94 0.98 1

p15, 10q 1 1 1 0.99 1 1 1 1 1

II

p6, 4q 0.95 0.97 0.99 0.87 0.88 0.92 0.74 0.77 0.79

p9, 6q 0.99 0.99 1 0.96 0.98 0.98 0.94 0.95 0.96

p15, 10q 1 1 1 0.99 1 1 1 1 1

ρ “ .25

I

p6, 4q 0.95 0.98 0.98 0.81 0.88 0.90 0.62 0.68 0.74

p9, 6q 1 1 1 0.96 0.98 0.99 0.94 0.98 0.98

p15, 10q 1 1 1 1 1 1 0.96 1 1

II

p6, 4q 0.96 0.97 0.98 0.44 0.79 0.93 0.64 0.76 0.82

p9, 6q 0.99 1 1 0.69 0.98 0.98 0.95 0.95 0.95

p15, 10q 1 1 1 0.99 1 1 0.94 1 1

Table 3: Empirical probabilities of the correct rank selection by rolling forecast. I, II stands for

different covariance structures of Et

6.2 Example

We use the RRMAR model to study the eight key short term economic indicators (116 quarters,

from 1991 Q1 to 2019 Q4) from ten countries. The data is downloaded from Organisation for Eco-

nomic Co-operation and Development (OECD, https://www.oecd.org/). The 8 indicators are

Consumer Price Index (CPI, growth rate), GDP (growth rate), 3-month interbank Interest Rate

(IR3, difference), Long Term government bond yield (IRLT, difference), International Trade total

Export Value (ITEX, growth rate) and Import Value (ITIM, growth rate), Total Industrial PRoduc-

tion excludingn construction (PRTI, growth rate) and Total Manufacturing PRoduction (PRTM,

growth rate). The 10 countries are Australia (AUS), Austria (AUT), Canada (CAN), France (FRA),

Germany (DEU), Netherlands (NLD), Norway (NOR), Sweden (SWE), United Kingdom (GBR)

and United States (USA). All the 80 series have been centered before attempting the model. We

also standardize each indicator across all the countries, i.e. the 10 series corresponding to each
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indicator have an overall standard deviation 1.

The EBIC (14) selects the ranks as k1 “ 1 and k2 “ 4 for this data set. Using the RR.CC

approach, the estimated leading singular vectors Û i and V̂ i ofAi (i “ 1, 2), and their corresponding

estimated standard errors are shown in Tables 4 and 5. Entries which are not significant at 10%

level are shown in light gray color.

AUS AUT CAN DEU FRA GBR NLD NOR SWE USA

Û
1

1 0.25 0.30 0.35 0.35 0.31 0.28 0.30 0.28 0.40 0.32

s.e. 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

V̂
1

1 0.09 0.49 0.05 0.08 -0.04 0.61 -0.27 0.01 0.27 0.47

s.e. 0.10 0.12 0.13 0.15 0.17 0.10 0.11 0.07 0.1 0.13

Table 4: Estimated singular vectors of the coefficient matrixA1, with their corresponding estimated

standard errors.

CPI GDP IR3 IRLT ITEX ITIM PRTI PRTM

Û
1

2r1, s 0.25 0.44 0.15 0.21 0.29 0.29 0.45 0.56

s.e. 0.05 0.03 0.05 0.04 0.03 0.03 0.03 0.02

V̂
1

2r1, s -0.05 0.84 -0.43 0.21 0.17 0.14 -0.03 0.08

s.e. 0.06 0.04 0.05 0.07 0.10 0.10 0.08 0.09

Table 5: Estimated leading singular vectors of the coefficient matrix A2, with their corresponding

estimated standard errors.

The implication of using k1 “ 1 and k2 “ 4 is that the observations in the previous quarter

form a 4 composite indexes f t´1 :“ V 11Xt´1V 2, and the conditional expectation EpXt | Xt´1q

is given by d11 ¨ U1f t´1D2U
1
2, where d11 is the largest singular value of A1, and D2 is the 4 ˆ 4

diagonal matrix containing the singular values of A2, see (4) as well. We report the estimated

leading singular vectors of U2 and V 2 in Table 5. It is very interesting to observe that when the

indicators are combined to form the first element of f t´1 using V̂ 2r, 1s, GDP is most dominant,

followed by IR3, IRLT and ITEX, while CPI, ITIM, PRTI, PRTM have less importance. It is also

worth noting that GDP has a positive coefficient, and IR has a negative one in V̂ 2r, 1s. When the

24



countries are combined using V̂ 1 (see Table 4), 5 countries play more important roles (i.e. the 5

significant entries in V̂ 1), and both USA and GBR are among them. At time t, all indicators from

all countries significantly load on f t´1.

iAR(1) VAR(1) PROJ LSE MLE RR.LS RR.CC

MSE 0.5258 3.6988 1.6362 0.5734 0.5187 0.5816 0.5016

# par 80 6,400 163 163 163 102 102

Table 6: Out-sample prediction performance comparison of various models for the matrix series of

8 indicators from 10 OECD countries.

The model selected by the EBIC does not leading to the best rolling forecast performance. For

this purpose, we consider the model with k1 “ 5 and k2 “ 2, which leads to almost the smallest

mean sqaured rolling forecast error, but is still much more parsimonious than the full rank MAR

model. The mean squared errors of the one-step rolling forecast of the last 8 years are summarized

in Table 6, in which we compare the following seven methods.

(i) iAR(1): Fit an AR(1) model to each individual series.

(ii) VAR(1): Fit a VAR(1) model to vecpXtq.

(iii) PROJ, LSE, MLE: Fit the MAR(1) model (without rank constraint) to Xt using projec-

tion, least squares and MLE methods. See Chen et al. (2021a) for details.

(iv) RR.LS: Reduced-rank MAR(1) model, fitted by least squares.

(v) RR.CC: Reduced-rank MAR(1) model, fitted by MLE under the assumption (8).

From Table 6, it is seen that VAR(1) model involves a 80ˆ80 coefficient matrix and significantly

overfits the data, with the worst out-sample prediction performance. The MAR and RRMAR

models with MLE, have better performance than fitting each individual series separately (iAR(1)).

Comparing to the MAR model without rank constraint, the reduced-rank model estimated by MLE

(RR.CC) has the smallest rolling forecast error with less parameters (163 vs 102).
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7 Conclusion

We introduce the reduced-rank matrix autoregressive model, which relies on an autoregressive

term involving bilinear coefficient matrices, and assumes rank deficiency of the coefficient matrices.

Comparing with the MAR model without the low rank structure (Chen et al., 2021a), the RRMAR

model involves a greatly reduced number of parameters and leads to more efficient estimation. On

the other hand, we use the MAR estimates as the warm-start initial values for the estimation of

the RRMAR model. Both LSE and MLE are studied, where the latter is considered under an

additional assumption that the covariance tensor of the error matrix is separable. We propose to

use extended BIC to select the ranks of the coefficient matrices. Our numerical analysis suggests

that even if the separability assumption on the covariance tensor does not hold, MLE still has

reasonable and almost equally good performance, comparing with LSE. On the other hand, MLE

can perform much better when that assumption does stand. Therefore, we would recommend the

use of MLE in practice.

There are a number of directions to extend the study of the reduced-rank autoregressive model.

For example the conditional mean can involve multiple terms of the form
řJ
j“1Aj1Xt´1A

1
j2, and

multiple lagged terms Xt´1, . . . ,Xt´p. The model can be extended for tesor time series as well.

More importantly, the asymptotic analysis has been carried out for the fixed dimensional case in

the current paper. It is interesting and important to study the model under the high dimensional

paradigm. In particular, we would like to understand: (i) what are the convergence rates of Âi;

and (ii) how to obtain initial estimates of Ai to start the alternating algorithm. To select the

ranks, either the information criterion based procedure can be adapted to account for the high

dimensionality, or the singular (eigen-)value based approach (Lam and Yao, 2012; Wang et al.,

2019) can be employed. The relationship between the reduced-rank tensor autoregressive model

and the dynamic tensor factor model (Chen et al., 2021b) is also worth exploring.

In this paper the theoretical results are obtained under the fix data dimension assumption. It

is an interesting and important problem to expand the theoretical results to high and diverging

dimension setting. It is a challenging problem and may require additional structure of the model.

Due to the stationary condition ρpA2 bA1q ă 1 needed for the autoregressive model, the signal

to noise ratio is constrained, different from typical regression models. This is similar to the simple

AR(1) model xt “ φxt´1 ` et, in which the signal to noise ratio is always φ2{p1 ´ φ2q no matter

26



how large or small the noise variance is. In order to achieve consistency results for the diverging

dimensional setting, the reduced-rank structure is not sufficient. It seems that additional sparsity

structure or other type of structure is needed. We are currently investigating this problem.
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comments and suggestions.
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Appendix

The proof of Theorem 1 is similar to that of Theorem 2, and is much simpler since it does not

involve the matrices Σi and Σ̂i. Therefore, we will present the proof of Theorem 2 first and then

point out the major difference for the proof of Theorem 1.

Proof of Theorem 2. Let Â
cc

i and Σ̂i be the MLE under the model (3) and (8). First, using the

arguments of the proof of Theorem 4 in Chen et al. (2021a), we have that Â
cc

i “ Ai `OP pT
´1{2q,

and Σ̂i “ Σi ` oP p1q. For the rest of the proof, we will drop the superscript cc to simplify the

notation. Based on the likelihood function (9), similar to (11) (also see Equation (2.15) of Reinsel

and Velu (1998)), the gradient condition for Â1 is given by:

Â1Ŝ1xx “ Σ̂
1{2
1 Û1Û

1

1Σ̂
´1{2
1 Ŝ1yx, (15)

where

Ŝ1xx “
ÿ

t

Xt´1Â
1

2Σ̂
´1
2 Â2X

1
t´1,

Ŝ1yx “
ÿ

t

XtΣ̂
´1
2 Â2X

1
t´1,

Σ̂1 “
1

T ´ 1

ÿ

t

´

Xt ´ Â1Xt´1Â
1

2

¯

Σ̂´12

´

Xt ´ Â1Xt´1Â
1

2

¯1

,

and Û1 is the d1 ˆ k1 matrix consisting of the first k1 leading eigenvectors (all normalized to have

unit length) of Σ̂
´1{2
1 Ŝ1yxŜ

´1
1xxŜ1xyΣ̂

´1{2
1 . With similarly defined quantities (by swapping A1 and

A2, Σ1 and Σ2, and Xt and X 1
t respectively), we have

Â2Ŝ2xx “ Σ̂
1{2
2 Û2Û

1

2Σ̂
´1{2
2 Ŝ2yx.

Note that Û1 can also be viewed as the first k1 leading left singular vectors (all normalized to

have unit length) of M̂1 :“ Σ̂
´1{2
1 Ŝ1yxŜ

´1{2
1xx . Intuitively, the proof should rely on the expansion of

Û1Û
1

1 around the true value U1U
1
1. However, since the estimates pÂ1, Û1, Σ̂1q and pÂ2, Û2, Σ̂2q

are intertwined, we introduce an intermediate M̃1 :“ Σ̂
´1{2
1 A1

´

ř

tXt´1A
1
2Σ̂
´1
2 Â2X

1
t´1

¯

Ŝ
´1{2
1xx ,

and let Ũ1 be the orthogonal matrix consisting of the normalized left singular vectors of M̃1. The

fact that Σ̂
1{2
1 Ũ1Ũ

1

1Σ̂
´1{2
1 A1 “ A1 will be of critical importance later.

Let M̂1 “ Û1D̂1V̂
1

1 and M̃1 “ Ũ1D̃1Ṽ
1

1 be the SVD of M̂1 and M̃1 respectively. Since

M̂1 ´ M̃1 “ Σ̂
´1{2
1

˜

ÿ

t

EtΣ̂
´1
2 Â2X

1
t´1

¸

Ŝ
´1{2
1xx , (16)
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by the Slutsky’s Theorem, the convergence rates of Âi and Σ̂i imply that M̂1 “ M̃1`OP p1{
?
T q.

It follows that Û1 “ Ũ1 ` OP p1{
?
T q, V̂ 1 “ Ṽ 1 ` OP p1{

?
T q and D̂1 “ D̃1 ` OP p1{

?
T q, by

Wedin’s sin θ Theorem (Wedin, 1972). Therefore, it holds that

M̂1 ´ M̃1 “ Ũ1D̃1pV̂ 1 ´ Ṽ 1q
1 ` Ũ1pD̂1 ´ D̃1qṼ

1

1 ` pÛ1 ´ Ũ1qD̃1Ṽ
1

1 ` oP p1{
?
T q,

and

pI ´ Ũ1Ũ
1

1qpÛ1 ´ Ũ1qŨ
1

1 “ pI ´ Ũ1Ũ
1

1qpM̂1 ´ M̃1qṼ 1D̃
´1
1 Ũ

1

1 ` oP p1{
?
T q. (17)

Note that Ũ
1

1Ũ1 “ Û
1

1Û1 “ Ik1 , hence

Ũ
1

1pÛ1 ´ Ũ1q ` pÛ1 ´ Ũ1q
1Ũ1 “ oP p1{

?
T q.

Using the preceding equation, we have

Û1Û
1

1 “ Ũ1Ũ
1

1 ` Ũ1pÛ1 ´ Ũ1q
1 ` pÛ1 ´ Ũ1qŨ

1

1 ` oP p1{
?
T q

“ Ũ1Ũ
1

1 ` Ũ1pÛ1 ´ Ũ1q
1pŨ1Ũ

1

1 ` I ´ Ũ1Ũ
1

1q ` pÛ1 ´ Ũ1qŨ
1

1 ` oP p1{
?
T q

“ Ũ1Ũ
1

1 ` Ũ1pÛ1 ´ Ũ1q
1pI ´ Ũ1Ũ

1

1q ` pI ´ Ũ1Ũ
1

1qpÛ1 ´ Ũ1qŨ
1

1 ` oP p1{
?
T q. (18)

Combining (17) and (18) leads to

Û1Û
1

1 “ Ũ1Ũ
1

1 ` pI ´ Ũ1Ũ
1

1qpM̂1 ´ M̃1qṼ 1D̃
´1
1 Ũ

1

1

` Ũ1D̃
´1
1 Ṽ

1

1pM̂1 ´ M̃1q
1pI ´ Ũ1Ũ

1

1q ` oP p1{
?
T q.

(19)

Let M1 :“ Σ
´1{2
1 A1Γ

1{2
2 and M1 “ U1D1V

1
1 be its SVD. The consistencies of of Âi and Σ̂i also

imply that M̃1, Ũ1, Ṽ 1 are consistent for M1, U1 and V 1 respectively. This fact, combined with

(19), yields

Û1Û
1

1 “ Ũ1Ũ
1

1 ` pI ´U1U
1
1qΣ

´1{2
1

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

Γ
´1{2
2

´

Σ
´1{2
1 A1Γ

1{2
2

¯`

`

´

Γ
1{2
2 A11Σ

´1{2
1

¯`

Γ
´1{2
2

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸1

Σ
´1{2
1 pI ´U1U

1
1q ` oP p1{

?
T q.

Note that U1U
1
1 “ P1. Let P i “ Σ

1{2
i PiΣ

´1{2
i . Plugging in the preceding equation into (15), and

using the facts that pI ´ U1U
1
1qΣ

´1{2
1 A1Γ2 “ 0 and Σ̂

1{2
1 Ũ1Ũ

1

1Σ̂
´1{2
1 A1 “ A1 (this critical step
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was mentioned earlier in the proof), we get

Â1

˜

ÿ

t

Xt´1Â
1

2Σ̂
´1
2 Â2X

1
t´1

¸

´A1

˜

ÿ

t

Xt´1A
1
2Σ̂
´1
2 Â2X

1
t´1

¸

“pI ´ P 1q

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

Γ
´1{2
2

´

Σ
´1{2
1 A1Γ

1{2
2

¯`

Σ
´1{2
1 A1Γ2

` P 1

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

` oP p
?
T q

“pI ´ P 1q

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

A11pA1Γ2A
1
1q
`A1Γ2 ` P 1

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

` oP p
?
T q,

and

pÂ1 ´A1q

˜

ÿ

t

Xt´1A
1
2Σ
´1
2 A2X

1
t´1

¸

`A1

«

ÿ

t

Xt´1pÂ2 ´A2q
1Σ´12 A2X

1
t´1

ff

“pI ´ P 1q

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

A11pA1Γ2A
1
1q
`A1Γ2 ` P 1

˜

ÿ

t

EtΣ
´1
2 A2X

1
t´1

¸

` oP p
?
T q,

(20)

A similar formula holds for Â2:

˜

ÿ

t

X 1
t´1A

1
1Σ
´1
1 A1Xt´1

¸

pÂ2 ´A2q
1 `

«

ÿ

t

X 1
t´1A

1
1Σ
´1
1 pÂ1 ´A1qXt´1

ff

A12

“Γ1A
1
2pA2Γ1A

1
2q
`A2

˜

ÿ

t

X 1
t´1A

1
1Σ
´1
1 Et

¸

pI ´ P 2q `

˜

ÿ

t

X 1
t´1A

1
1Σ
´1
1 Et

¸

P 2 ` oP p
?
T q.

(21)

Combining (20) and (21), it holds that after vectorization

ÿ

t

¨

˝

pXt´1A
1
2Σ
´1
2 A2X

1
t´1q b I pXt´1A

1
2Σ
´1
2 q b pA1Xt´1q

pA2X
1
t´1q b pX

1
t´1A

1
1Σ
´1
1 q I b pX 1

t´1A
1
1Σ
´1
1 A1Xt´1q

˛

‚

¨

˝

vec
´

Â1 ´A1

¯

vec
´

Â
1

2 ´A
1
2

¯

˛

‚

“
ÿ

t

¨

˝

Xt´1A
1
2Σ
´1
2 b P 1 ` rΓ2A

1
1pA1Γ2A

1
1q
`A1Xt´1A

1
2sΣ

´1
2 b pI ´ P 1q

P 2 bX
1
t´1A

1
1Σ
´1
1 ` pI ´ P 2q b rΓ1A

1
2pA2Γ1A

1
2q
`A2X

1
t´1A

1
1Σ
´1
1 s

˛

‚vecpEtq ` oP p
?
T q.

(22)

Note that Σe “ Σ2 b Σ1. Multiplying both sides of (22) by the matrix

¨

˝

I b Σ´11 0

0 Σ´12 b I

˛

‚,
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then (22) becomes

ÿ

t

pW tΣ
´1
e W

1
tq

¨

˝

vec
´

Â1 ´A1

¯

vec
´

Â
1

2 ´A
1
2

¯

˛

‚“
ÿ

t

Qt´1Σ
´1
e vecpEtq ` oP p

?
T q. (23)

Since }A1}F “ }Â1}F “ 1, it holds that α1vecpÂ1´A1q “ OP p1{T q. By the ergodic theorem, (23)

implies that

H

¨

˝

vec
´

Â1 ´A1

¯

vec
´

Â
1

2 ´A
1
2

¯

˛

‚“
1

T

ÿ

t

Qt´1Σ
´1
e vecpEtq ` oP p1{

?
T q,

and the proof is completed by an application of the martingale central limit theorem.

Proof of Theorem 1. The proof of Theorem 1 is the same as that of Theorem 2 until (22), with the

exception (and simplification) that all Σi and Σ̂i should be replaced by I. Using the definition of

W t given in the table at the beginning of Section 4, it is immediately seen that (22) becomes

ÿ

t

pW tW
1
tq

¨

˝

vec
´

Â
ls

1 ´A1

¯

vec
´

pÂ
ls

2 q
1 ´A12

¯

˛

‚“
ÿ

t

QtvecpEtq ` oP p
?
T q. (24)

Since }Â
ls

1}F “ }A1}F “ 1, it holds that α1vecpÂ
ls

1 ´ A1q “ OP p1{T q. By the ergodic theorem,

(24) implies that

H

¨

˝

vec
´

Â
ls

1 ´A1

¯

vec
´

pÂ
ls

2 q
1 ´A12

¯

˛

‚“
1

T

ÿ

t

Qt´1vecpEtq ` oP p1{
?
T q,

and the proof is completed by an application of the martingale central limit theorem.

Proof of Theorem 3. If the estimation of Ai is done by the MLE without imposing the low rank

constraints, the asymptotic covariance matrix would take the same form as Ξcc, by setting Pi “ I

in the definition of Qt, which we denote by Q̃t. Comparing Theorem 2 with Theorem 3 of Chen

et al. (2021a), it suffices to show that EpQ̃tΣ
´1
e Q̃

1

tq ľ EpQtΣ
´1
e Q

1
tq. By the definition of Qt and

Q̃t, it holds that

Q̃t “ Qt `

¨

˝

rpI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1qXtA

1
2s b pI ´ P1q

pI ´ P2q b rpI ´ Γ1A
1
2pA2Γ1A

1
2q
`A2qX

1
tA
1
1s

˛

‚“: Qt ` Q̄t.
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It now suffices to show that EpQ̄tΣ
´1
e Q

1
tq “ 0. We write Q̄tΣ

´1
e Q

1
t as a 2 ˆ 2 block matrix. The

top-left corner equals to

 

rpI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1qXtA

1
2s b pI ´ P1q

( `

Σ´12 b Σ´11

˘

 

A2X
1
t b P 11 ` rA2X

1
tA
1
1pA1Γ2A

1
1q
`A1Γ2s b pI ´ P 11q

(

.
(25)

Obviously,

 

rpI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1qXtA

1
2s b pI ´ P1q

( `

Σ´12 b Σ´11

˘ `

A2X
1
t b P 11

˘

“
 

rpI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1qXtA

1
2sΣ

´1
2 XtA

1
2

(

b
 

pI ´ P1qΣ
´1
1 P 11

(

“ 0.

For the second term in (25), note that

E
 

rpI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1qXtA

1
2sΣ

´1
2 rA2X

1
tA
1
1pA1Γ2A

1
1q
`A1Γ2s

(

“rI ´ Γ2A
1
1pA1Γ2A

1
1q
`A1sΓ2A

1
1pA1Γ2A

1
1q
`A1Γ2

“Γ
1{2
2

”

I ´ Γ
1{2
2 A11pA1Γ2A

1
1q
`A1Γ

1{2
2

ı ”

Γ
1{2
2 A11pA1Γ2A

1
1q
`A1Γ

1{2
2

ı

Γ
1{2
2 “ 0,

where the last identity is due to the fact that Γ
1{2
2 A11pA1Γ2A

1
1q
`A1Γ

1{2
2 is the orthogonal projection

matrix to the row space of A1Γ
1{2
2 . Therefore, the expectation of (25) is zero. The expectation of

the other three blocks of Q̄tΣ
´1
e Q

1
t can be shown to be zero similarly. The proof is complete.

The proof of Corollary 4 is a direct application of the following lemma and Theorems 1, 2.

Lemma 1 is regarding the central limit theorems of singular vectors under the fixed dimensional

setting. Although some cases are available in the literature, we have not seen any formulation that

is exactly the same. Therefore, we provide Lemma 1 and a proof here for the completeness. The

proof essentially relies on the matrix perturbation theory.

Lemma 1. Suppose M is a p ˆ p symmetric matrix of rank r ď p, and let M “ UΛU 1 be its

spectral decomposition, where U is a pˆ r ortho-normal matrix and Λ is a r ˆ r diagonal matrix.

Denote the j-th diagonal element of Λ by λj, and define λ “ pλ1, . . . , λrq
1. Assume that the λj’s

are distinct. Suppose tM̂nu is a sequence of random matrices and tanu is a sequence of diverging

positive numbers such that

anvecpM̂n ´Mq ñ Np0,Θq.
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Let M̂n “ ÛnΛ̂nÛ
1

n be the spectral decomposition of M̂ corresponding to the r leading eigenvalues.

Define the matrix R as

R “ pIr bU , Ir bU
Kq

¨

˝

pΛb Ir ´ Ir b Λ`LrL
1
rq
´1pIr2 ´LrL

1
rqpU

1 bU 1q

pΛ´1U 1q b pUKq1

˛

‚.

Then

anvecpÛn ´Uq ñ Np0,RΘR1q,

and

anpλ̂´ λq ñ N
“

0,L1rpU
1 bU 1qΘpU bUqLr

‰

.

Proof. Due to the assumption that the λj ’s are distinct, by the Wedin’s Theorem (Wedin, 1972),

it holds that Û “ U `OP p1{anq and λ̂ “ λ`OP p1{anq.

Expand M̂Û “ Û Λ̂ around the true values and omit small order terms, we have

pÛ ´UqΛ`UpΛ̂´ Λq ´MpÛ ´Uq “ pM̂ ´MqU ` oP p1{anq. (26)

Multiplying both sides of (26) by U 1 leads to

U 1pÛ ´UqΛ´ ΛU 1pÛ ´Uq ` pΛ̂´ Λq “ U 1pM̂ ´MqU ` oP p1{anq.

Using the properties of the L matrices introduced at the end of Section 1, it follows that

λ̂´ λ “ L1rpU
1 bU 1qvecpM̂ ´Mq, (27)

and
`

Λb Ir ´ Ir b Λ`LrL
1
r

˘

vec
”

U 1pÛ ´Uq
ı

“ pIr2 ´LrL
1
rqpU

1 bU 1qvecpM̂ ´Mq ` oP p1{anq.

(28)

The asymptotic distribution of λ̂ follows (27) immediately. In deriving (27) and (28), we have

implicitly used the fact that

U 1pÛ ´Uq ` pÛ ´Uq1U “ oP p1{anq.

From (28) we deduce that

vec
”

U 1pÛ ´Uq
ı

“ pIr bU
1qvecpÛ ´Uq

“
`

Λb Ir ´ Ir b Λ`LrL
1
r

˘´1
pIr2 ´LrL

1
rqpU

1 bU 1qvecpM̂ ´Mq ` oP p1{anq.

(29)
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Multiplying both sides of (26) by pUKq1 gives

pUKq1pÛ ´UqΛ “ pUKq1pM̂ ´MqU ` oP p1{anq,

and therefore,

pUKq1pÛ ´Uq “ pUKq1pM̂ ´MqUΛ´1 ` oP p1{anq,

and

vec
”

pUKq1pÛ ´Uq
ı

“
“

Ir b pU
Kq1

‰

vecpÛ ´Uq

“
“

pΛ´1U 1q b pUKq1
‰

vecpM̂ ´Mq ` oP p1{anq.

(30)

Combining (29) and (30), it holds that

¨

˝

Ir bU
1

Ir b pU
Kq1

˛

‚vecpÛ ´Uq

“

¨

˝

pΛb Ir ´ Ir b Λ`LrL
1
rq
´1pIr2 ´LrL

1
rqpU

1 bU 1q

pΛ´1U 1q b pUKq1

˛

‚vecpM̂ ´Mq ` oP p1{anq.

Since
¨

˝

Ir bU
1

Ir b pU
Kq1

˛

‚

´1

“ pIr bU , Ir bU
Kq,

it follows that

vecpÛ ´Uq “ R vecpM̂ ´Mq ` oP p1{anq,

and the proof is complete.

Proof of Theorem 5. We give the proof for the joint EBIC(r1, r2). The proof for separate EBIC

follows similar arguments, and will be skipped.

Let σ20 :“ E}Et}
2
F {pd1d2q. It is straightforward to show that when pr1, r2q “ pk1, k2q

1

Td1d2

T
ÿ

t“2

}Xt ´ Â
ls

1 pr1, r2qXt´1pÂ
ls

2 pr1, r2qq
1}2F

p
Ñ σ20;

when r1 ă k1 or r2 ă k2,

1

Td1d2

T
ÿ

t“2

}Xt ´ Â
ls

1 pr1, r2qXt´1pÂ
ls

2 pr1, r2qq
1}2F

p
Ñ σ21 ą σ20;
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and when r1 ě k1, r2 ě k2, and at least one of the inequalities is strict,

1

Td1d2

T
ÿ

t“2

}Xt ´ Â
ls

1 pr1, r2qXt´1pÂ
ls

2 pr1, r2qq
1}2F “ σ20 `Opp1{T q.

Then a direct calculation shows that the joint EBIC does not under select or over select the ranks

with probability approaching one.
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