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Abstract

We consider asymptotic distributions of maximum deviations of sample covariance matrices, a fun-
damental problem in high-dimensional inference of covariances. Under mild dependence conditions on
the entries of the data matrices, we establish the Gumbel convergence of the maximum deviations. Our
result substantially generalizes earlier ones where the entries are assumed to be independent and identi-
cally distributed, and it provides a theoretical foundation for high-dimensional simultaneous inference of
covariances.
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1. Introduction

Let Xn =

X i j


1≤i≤n,1≤ j≤m be a data matrix whose n rows are independent and identically
distributed (i.i.d.) as some population distribution with mean vector µn and covariance matrix Σn .
High dimensional data increasingly occur in modern statistical applications in biology, finance
and wireless communication, where the dimension m may be comparable to the number of
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observations n, or even much larger than n. Therefore, it is necessary to study the asymptotic
behavior of statistics of Xn under the setting that m = mn grows to infinity as n goes to infinity.

In many empirical examples, it is often assumed that Σn = Im , where Im is the m ×m identity
matrix, so it is important to perform the test

H0 : Σn = Im (1)

before carrying out further estimation or inference procedures. Due to high dimensionality,
conventional tests often do not work well or cannot be implemented. For example, when m > n,
the likelihood ratio test (LRT) cannot be used because the sample covariance matrix is singular;
and even when m < n, the LRT is drifted to infinity and leads to many false rejections if m is
also large [1]. Ledoit and Wolf [16] found that the empirical distance test [21] is not consistent
when both m and n are large. The problem has been studied by several authors under the “large n,
large m” paradigm. Bai et al. [1] and Ledoit and Wolf [16] proposed corrections to the LRT and
the empirical distance test respectively. Assuming that the population distribution is Gaussian
with µn = 0, [14] used the largest eigenvalue of the sample covariance matrix X⊤

n Xn as the test
statistic, and proved that its limiting distribution follows the Tracy–Widom law [27]. Here we
use the superscript ⊤ to denote the transpose of a matrix or a vector. His work was extended to
the non-Gaussian case by Soshnikov [24] and Péché [22], where they assumed the entries of Xn
are i.i.d. with sub-Gaussian tails.

Let x1, x2, . . . , xm be the m columns of Xn . In practice, the entries of the mean vector µn are
often unknown, and are estimated by x̄i = (1/n)

n
k=1 Xki . Write xi − x̄i for the vector xi − x̄i 1n ,

where 1n is the n-dimensional vector with all entries being one. Let σi j = Cov(X1i , X1 j ),
1 ≤ i, j ≤ m, be the covariance function, namely, the (i, j)th entry of Σn . The sample co-
variance between columns xi and x j is defined as

σ̂i j =
1
n
(xi − x̄i )

⊤(x j − x̄ j ).

In high-dimensional covariance inference, a fundamental problem is to establish an asymptotic
distributional theory for the maximum deviation

Mn = max
1≤i< j≤m

|σ̂i j − σi j |.

With such a distributional theory, one can perform statistical inference for structures of covari-
ance matrices. For example, one can use Mn to test the null hypothesis H0 : Σn = Σ (0), where
Σ (0) is a pre-specified matrix. Here the null hypothesis can be that the population distribution is
a stationary process so that Σn is Toeplitz, or that Σn has a banded structure.

It is very challenging to derive an asymptotic theory for Mn if we allow dependence among
X11, . . . , X1m . Many of the earlier results assume that the entries of the data matrix Xn are i.i.d..
In this case σi j = 0 if i ≠ j . The quantity

Ln = max
1≤i< j≤m

|σ̂i j |

is referred to as the mutual coherence of the matrix Xn , and is related to compressed sensing (see
for example [9]). Jiang [13] derived the asymptotic distribution of Ln .

Theorem 1 ([13]). Suppose X i, j , i, j = 1, 2, . . . are independent and identically distributed as
ξ which has variance one. Suppose E|ξ |

30+ϵ < ∞ for some ϵ > 0. If n/m → c ∈ (0, ∞), then
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for any y ∈ R,

lim
n→∞

P


nL2
n − 4 log m + log(log m) + log(8π) ≤ y


= exp


−e−y/2


.

Jiang’s work has attracted considerable attention, and been followed by Li et al. [17], Liu
et al. [19], Zhou [30] and Li and Rosalsky [18]. Under the same setup that Xn consists of i.i.d.
entries, these works focus on three directions (i) reduce the moment condition; (ii) allow a wider
range of m; and (iii) show that some moment condition is necessary. In a recent article, [5]
extended those results in two ways: (i) the dimension m could grow exponentially as the sam-
ple size n provided exponential moment conditions; and (ii) they showed that the test statistic
max|i− j |>sn |σ̂i j | also converges to the Gumbel distribution if each row of Xn is Gaussian and is
sn-dependent. The latter generalization is important since it is one of the very few results that
allow dependent entries.

In this paper we shall show that a self-normalized version of Mn converges to the Gumbel
distribution under mild dependence conditions on the vector (X11, . . . , X1m). Thus our result
provides a theoretical foundation for high-dimensional simultaneous inference of covariances.

Besides testing covariance structure and simultaneous inference, the limiting behavior of Mn
is also useful in several other applications. Liu et al. [19] and Tony Cai et al. [26] discussed
the connection with the compressed sensing matrices. Kramer et al. [15] proposed to use the
maximum cross correlation between a pair of time series to identify the edge between the corre-
sponding nodes for electrocorticogram data. They employed the false discovery rate procedure
to control for multiple testing, whilst the family-wise error rate is related to a quantity similar
to Mn . Fan et al. [10] showed that the distance between theoretical and empirical risks of min-
imum variance portfolios is controlled by Mn , and thus provided a mathematical understanding
of the finding of [12]. Cai et al. [7] studied a related test for the equality of two high dimensional
covariance matrices.

The rest of this article is organized as follows. We present the main result in Section 2. In
Section 3, we use two examples on linear processes and nonlinear processes to demonstrate that
the technical conditions are easily satisfied. We discuss three tests for the covariance structure
using our main result in Section 4. The proof is given in Section 5, and some auxiliary results
are collected in Section 6. There is a supplementary file, which contains the technical proofs of
several lemmas.

2. Main result

We consider a general situation where population distribution can depend on n. Recall that
the dimension m = mn depends on n, but we will suppress the subscript and use m for ease of
notation. Let Xn = (Xn,k,i )1≤k≤n,1≤i≤m be a data matrix whose n rows are i.i.d. m-dimensional
random vectors with mean µn = (µn,i )1≤i≤m and covariance matrix Σn = (σn,i, j )1≤i, j≤m . Let
x1, x2, . . . , xm be the m columns of Xn . Let x̄i = (1/n)

n
k=1 Xn,k,i , and write xi − x̄i for the

vector xi − x̄i 1n . The sample covariance between xi and x j is defined as

σ̂n,i, j =
1
n
(xi − x̄i )

⊤(x j − x̄ j ).

It is unnatural to study the maximum of a collection of random variables which are on different
scales, so we consider the normalized version |σ̂n,i, j − σn,i, j |/

√
τn,i, j , where

τn,i, j = Var

(Xn,1,i − µn,i )(Xn,1, j − µn, j )


.
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In practice, τn,i, j are usually unknown, and can be estimated by

τ̂n,i, j =
1
n

(xi − x̄i ) ◦ (x j − x̄ j ) − σ̂n,i, j · 1n
2

where ◦ denotes the Hadamard product defined as A ◦ B := (ai j bi j ) for two matrices A = (ai j )

and B = (bi j ) with the same dimensions. We thus consider

Mn = max
1≤i< j≤m

|σ̂n,i, j − σn,i, j |
τ̂n,i, j

. (2)

Due to the normalization procedure, we can assume without loss of generality that σn,i,i = 1 and
µn,i = 0 for each 1 ≤ i ≤ m.

Define the index set In = {(i, j) : 1 ≤ i < j ≤ m}, and for α = (i, j) ∈ In , let Xn,α :=

Xn,1,i Xn,1, j . Define

Kn(t, p) = sup
1≤i≤m

E exp

t |Xn,1,i |

p ,
Mn(p) = sup

1≤i≤m
E(|Xn,1,i |

p),

τn = inf
1≤i< j≤m

τn,i, j ,

γn = sup
α,β∈In and α≠β

Cor(Xn,α, Xn,β)
 ,

γn(b) = sup
α∈In

sup
A⊂In ,|A|=b

inf
β∈A

Cor(Xn,α, Xn,β)
 .

We need the following technical conditions.

(A1) lim infn→∞ τn > 0.
(A2) lim supn→∞ γn < 1.
(A3) γn(bn) log bn = o(1) for any sequence (bn) such that bn → ∞.

(A3′) γn(bn) = o(1) for any sequence (bn) such that bn → ∞, and for some ϵ > 0,
α,β∈In


Cov(Xn,α, Xn,β)

2
= O(m4−ϵ).

(A4) For some constants t > 0 and 0 < p ≤ 2, lim supn→∞ Kn(t, p) < ∞, and

log m =

o


n p/(4+p)


when 0 < p < 2

o


n1/3(log n)−2/3


when p = 2.

(A4′) log m = o

n p/(4+3p)


and lim supn→∞ Kn(t, p) < ∞ for some constants t > 0 and

p > 0.
(A4′′) m = O(nq) and lim supn→∞ Mn(4q + 4 + δ) < ∞ for some constants q > 0 and δ > 0.

The two conditions (A3) and (A3′) require that the dependence among Xn,α, α ∈ In , are not
too strong. They are translations of (B1) and (B2) in Section 6.1 (see Remark 2 for some equiv-
alent versions), and either of them will make our results valid. We use (A2) to get rid of the case
where there may be lots of pairs (α, β) ∈ In such that Xn,α and Xn,β are perfectly correlated.
Assumptions (A4), (A4′) and (A4′′) connect the growth speed of m relative to n and the moment
conditions. They are typical in the context of high dimensional covariance matrix estimation.
Condition (A1) excludes the case that Xn,α is a constant.
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Theorem 2. Suppose that Xn = (Xn,k,i )1≤k≤n,1≤i≤m is a data matrix whose n rows are i.i.d.
m-dimensional random vectors, and whose entries have mean zero and variance one. Assume
the dimension m = mn grows to infinity as n → ∞, and (A1), (A2), then under any one of the
following conditions:

(i) (A3) and (A4),
(ii) (A3′) and (A4′),

(iii) (A3) and (A4′′),
(iv) (A3′) and (A4′′);

we have for any y ∈ R,

lim
n→∞

P


nM2
n − 4 log m + log(log m) + log(8π) ≤ y


= exp


−e−y/2


.

3. Examples

Except for (A4) and (A4′), which put conditions on every single entry of the random vec-
tor (Xn,1,i )1≤i≤m , all the other conditions of Theorem 2 are related to the dependence among
these entries, which can be arbitrarily complicated. In this section we shall provide examples
which satisfy the four conditions (A1)–(A3′). Observe that if each row of Xn is a random vector
with uncorrelated entries (specifically, the entries are independent), then all these conditions are
automatically satisfied. They are also satisfied if the number of non-zero covariances is bounded.

3.1. Stationary processes

Suppose (Xn,k,i ) = (Xk,i ), and each row of (Xk,i )1≤i≤m is distributed as a stationary process
(X i )1≤i≤m of the form

X i = g(ϵi , ϵi−1, . . .)

where ϵi ’s are i.i.d. random variables, and g is a measurable function such that X i is well defined.
Let (ϵ′

i )i∈Z be an i.i.d. copy of (ϵi )i∈Z, and X ′

i = g(ϵi , . . . , ϵ1, ϵ
′

0, ϵ−1, ϵ−2, . . .). Following [2],
define the physical dependence measure of order p by

δp(i) = ∥X i − X ′

i∥p.

Define the squared tail sum

Ψp(k) =


∞

i=k

(δp(i))
2

1/2

,

and use Ψp as a shorthand for Ψp(0).
We give sufficient conditions for (A1)–(A3′) in the following lemma and leave its proof to the

supplementary file.

Lemma 3. (i) If 0 < Ψ4 < ∞ and Var(X i X j ) > 0 for all i, j ∈ Z, then (A1) holds.
(ii) If in addition, |Cor(X i X j , Xk Xl)| < 1 for all i, j, k, l such that they are not all the same,

then (A2) holds.
(iii) Assume that the conditions of (i) and (ii) hold. If Ψp(k) = o(1/ log k) as k → ∞, then (A3)

holds. If
m

j=0(Ψ4( j))2
= O(m1−δ) for some δ > 0, then (A3′) holds.
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Remark 1. Let g be a linear function with g(ϵi , ϵi−1, . . .) =


∞

j=0 a jϵi− j , where ϵ j are i.i.d.

with mean 0 and E(|ϵ j |
p) < ∞ and a j are real coefficients with


∞

j=0 a2
j < ∞. Then the

physical dependence measure δp(i) = |ai | ∥ϵ0 − ϵ′

0∥p. If ai = i−βℓ(i), where 1/2 < β < 1 and
ℓ is a slowly varying function, then (X i ) is a long memory process. Smaller β indicates stronger
dependence. Condition (iii) holds for all β ∈ (1/2, 1). Moreover, if ai = i−1/2(log(i))−2, i ≥ 2,
which corresponds to the extremal case with very strong dependence β = 1/2, we also have
Ψp(k) = O((log k)−3/2) = o(1/ log k). So our dependence conditions are actually quite mild.

If (X i ) is a linear process which is not identically zero, then the following regularity conditions
are automatically satisfied: Ψ4 > 0, Var(X i X j ) > 0 for all i, j ∈ Z, and |Cor(X i X j , Xk Xl)| < 1
for all i, j, k, l such that they are not all the same.

3.2. Non-stationary linear processes

Assume that each row of (Xn,k,i ) is distributed as (Xn,i )1≤i≤m , which is of the form

Xn,i =


t∈Z

fn,i,tϵi−t ,

where ϵi , i ∈ Z are i.i.d. random variables with mean zero, variance one and finite fourth mo-
ment, and the sequence ( fn,i,t ) satisfies


t∈Z f 2

n,i,t = 1. Denote by κ4 the fourth cumulant of
ϵ0. For 1 ≤ i, j, k, l ≤ m, we have

σn,i, j =


t∈Z

fn,i,i−t fn, j, j−t ,

Cov(Xn,i Xn, j , Xn,k Xn,l) = Cum(Xn,i , Xn, j , Xn,k, Xn,l) + σn,i,kσn, j,l + σn,i,lσn, j,k,

where Cum(Xn,i , Xn, j , Xn,k, Xn,l) is the fourth order joint cumulant of the random vector
(Xn,i , Xn, j , Xn,k, Xn,l)

⊤, which can be expressed as

Cum(Xn,i , Xn, j , Xn,k, Xn,l) =


t∈Z

fn,i,i−t fn, j, j−t fn,k,k−t fn,l,l−tκ4,

by the multilinearity of cumulants. In particular, we have

Var(X i X j ) = 1 + σ 2
n,i, j + κ4 ·


t∈Z

f 2
n,i,t f 2

n, j,t .

Since κ4 = Var(ϵ2
0) − 2


Eϵ2

0

2
≥ −2, the condition

κ4 > −2 (3)

guarantees (A1) in view of

Var(X i X j ) ≥ (1 + σ 2
n,i, j )(1 + min{κ/2, 0}) ≥ min{1, 1 + κ/2} > 0.

To ensure the validity of (A2), it is natural to assume that no pairs Xn,i and Xn, j are strongly
correlated, i.e.

lim sup
n→∞

sup
1≤i< j≤m


t∈Z

fn,i,i−t fn, j, j−t

 < 1. (4)

We need the following lemma, whose proof is elementary and will be given in the supplementary
file.
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Lemma 4. The condition (4) suffices for (A2) if ϵi ’s are i.i.d. N (0, 1).

As an immediate consequence, when ϵi ’s are i.i.d. N (0, 1), we have

ℓ := lim sup
n→∞

inf
∗

inf
ρ∈R

Var

Xn,i Xn, j − ρXn,k Xn,l


> 0,

where inf∗ is taken over all 1 ≤ i, j, k, l ≤ m such that i < j , k < l and (i, j) ≠ (k, l). Observe
that when ϵi ’s are i.i.d. N (0, 1),

Var

Xn,i Xn, j − ρXn,k Xn,l


= 2 ·


t∈Z

( fn,i,i−t fn, j, j−t − ρ fn,k,k−t fn,l,l−t )
2

+


s<t


fn,i,i−t fn, j, j−s + fn,i,i−s fn, j, j−t

− ρ fn,k,k−t fn,l,l−s − ρ fn,k,k−s fn,l,l−t
2

; (5)

and when ϵi ’s are arbitrary variables, the variance is given by the same formula with the number
2 in (5) being replaced by 2 + κ4. Therefore, if (3) holds, then

lim sup
n→∞

inf
∗

inf
ρ∈R

Var

Xn,i Xn, j − ρXn,k Xn,l


≥ min{1, 1 + κ4/2} · ℓ > 0,

which implies (A2) holds. To summarize, we have shown that (3) and (4) suffice for (A2).
Now we turn to Conditions (A3) and (A3′). Set

hn(k) = sup
1≤i≤m


∞

|t |=⌊k/2⌋

f 2
n,i,t

1/2

,

where ⌊x⌋ = max{y ∈ Z : y ≤ x} for any x ∈ E, then we have

|σn,i, j | ≤ 2hn(0)hn(|i − j |) = 2hn(|i − j |).

Fixing a subset {i, j}, for any integer b > 0, there are at most 8b2 subsets {k, l} such that
{k, l} ⊂ B(i; b) ∪ B( j; b), where B(x; r) is the open ball {y : |x − y| < r}. For all other subsets
{k, l}, we have

|Cov(Xn,i Xn, j , Xn,k Xn,l)| ≤ (4 + 2κ4)hn(b),

and hence (A3) holds if we assume hn(kn) log kn = o(1) for any positive sequence (kn) such that
kn → ∞. The condition (A3′) holds if we assume

m
k=1

[hn(k)]2
= O


m1−δ


for some δ > 0, becauseCov(Xn,i Xn, j , Xn,k Xn,l)

 ≤ 2κ4hn(|i − j |) + 2hn(|i − k|) + 2hn(|i − l|).

4. Testing for covariance structures

The asymptotic distribution given in Theorem 2 has several statistical applications. One of
them is in high dimensional covariance matrix regularization, because Theorem 2 implies a
uniform convergence rate for all sample covariances. Recently, [6] explored this direction, and
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proposed a thresholding procedure for sparse covariance matrix estimation, which is adaptive
to the variability of each individual entry. Their method is superior to the uniform thresholding
approach studied by Bickel and Levina [3].

Testing structures of covariance matrices is also a very important statistical problem. As men-
tioned in the introduction, when the data dimension is high, conventional tests often cannot be
implemented or do not work well. Let Σn and Rn be the covariance matrix and correlation matrix
of the random vector (Xn,1,i )1≤i≤m respectively. Two types of tests have been studied under the
large n, large m paradigm. Chen et al. [8], Bai et al. [1], Ledoit and Wolf [16] and Johnstone [14]
considered the test

H0 : Σn = Im; (6)

and [19,23,25,13] studied the problem of testing for complete independence

H0 : Rn = Im . (7)

Their testing procedures are all based on the critical assumption that the entries of the data ma-
trix Xn are i.i.d., while the hypotheses themselves only require the entries of (Xn,1,i )1≤i≤m to
be uncorrelated. Evidently, we can use Mn in (2) to test (7), and we only require the uncorrelat-
edness for the validity of the limiting distribution established in Theorem 2, as long as the mild
conditions of the theorem are satisfied. On the other hand, we can also take the sample variances
into consideration, and use the following test statistic

M ′
n = max

1≤i≤ j≤m

|σ̂n,i, j − σn,i, j |
τ̂n,i, j

to test the identity hypothesis (6), where σn,i, j = I {i = j}. It is not difficult to verify that M ′
n

has the same asymptotic distribution as Mn under the same conditions with the only difference
being that we now have to take sample variances into account as well, namely, the index set In
in Section 2 is redefined as In = {(i, j) : 1 ≤ i ≤ j ≤ m}. Clearly, we can also use M ′

n to test
H0 : Σn = Σ 0 for some known covariance matrix Σ 0.

By checking the proof of Theorem 2, it can be seen that if instead of taking the maximum
over the set In = {(i, j) : 1 ≤ i < j ≤ m}, we only take the maximum over some subset
An ⊂ In whose cardinality |An| approaches infinity, then the maximum also has the Gumbel
type convergence with normalization constants which are functions of the cardinality of the set
An . Based on this observation, we are able to consider three more testing problems.

4.1. Test for stationarity

Suppose we want to test whether the population is a stationary time series. Under the null hy-
pothesis, each row of the data matrix Xn is distributed as a stationary process (X i )1≤i≤m . Let γl =

Cov(X0, Xl) be the autocovariance at lag l. In principle, we can use the following test statistic

T̃n = max
1≤i≤ j≤m

|σ̂n,i, j − γi− j |
τ̂n,i, j

.

The problem is that γl are unknown. Fortunately, they can be estimated with higher accuracy
than σn,i, j

γ̂n,l =
1

nm

n
k=1

m
i=|l|+1

(Xn,k,i−|l| − µ̂n)(Xn,k,i − µ̂n),
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where µ̂n = (1/nm)
n

k=1
m

i=1 Xn,k,i , and we are lead to the test statistic

Tn = max
1≤i≤ j≤m

|σ̂n,i, j − γ̂i− j |
τ̂n,i, j

.

Using similar arguments of Theorem 2 of [28], under suitable conditions, we have

max
0≤l≤m−1

|γ̂n,l − γl | = OP (


log m/nm).

Therefore, the limiting distribution for Mn in Theorem 2 also holds for Tn .

4.2. Test for bandedness

In time series and longitudinal data analysis, it can be of interest to test whether Σm has the
banded structure. The hypothesis to be tested is

H0 : σn,i, j = 0 if |i − j | > B, (8)

where B = Bn may depend on n. Cai and Jiang [5] studied this problem under the assump-
tion that each row of the data matrix Xn is a Gaussian random vector. They proposed to use the
maximum sample correlation outside the band

T̃n = max
|i− j |>B

σ̂n,i, j
σ̂n,i,i σ̂n, j, j

as the test statistic, and proved that Tn also has the Gumbel type convergence provided that
Bn = o(m) and several other technical conditions hold.

Apparently, our Theorem 2 can be employed to test (8). If all the conditions of the theorem
are satisfied, the test statistic

Tn = max
|i− j |>Bn

|σ̂n,i, j |
τ̂n,i, j

has the same asymptotic distribution as Mn as long as Bn = o(m). Our theory does not need the
normality assumption.

4.3. Assess the tapering procedure

Banding and tapering are commonly used regularization procedures in high dimensional co-
variance matrix estimation. Convergence rates were first obtained by Bickel and Levina [4],
and later on improved by Cai et al. [26]. Let us introduce a weaker version of the latter result.
Suppose each row of Xn is distributed as the random vector X = (X i )1≤i≤m with mean µ and co-
variance matrix Σ = (σi j ). Let K0, K and t be positive constants, and Cη(K0, K , t) be the class
of m-dimensional distributions which satisfy the following conditions

max
|i− j |=k

|σi j | ≤ K k−(1+η) for all k; (9)

λmax(Σ ) ≤ K0;

P

|v⊤(X − µ)| > x


≤ e−t x2/2 for all x > 0 and ∥v∥ = 1;
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where λmax(Σ ) is the largest eigenvalue of Σ . For a given even integer 1 ≤ B ≤ m, define the
tapered estimate of the covariance matrix Σ

Σ̂n,Bn =

wi j σ̂n,i, j


,

where the weights correspond to a flat top kernel and are given by

wi j =

1, when |i − j | ≤ Bn/2,

2 − 2|i − j |/Bn, when Bn/2 < |i − j | ≤ Bn,

0, otherwise.

Theorem 5 ([26]). If m ≥ n1/(2η+1), log m = o(n) and Bn = n1/(2η+1), then there exists a
constant C > 0 such that

sup
Cη

E

λ(Σ̂n,Bn − Σ )

2
≤ Cn−2η/(2η+1)

+ C
log m

n
.

We see that it is the parameter η that decides the convergence rate under the operator norm.
After such a tapering procedure has been applied, it is important to ask whether it is appropriate,
and in particular, whether (9) is satisfied. We propose to use

Tn = max
|i− j |>Bn

|σ̂n,i, j |
τ̂n,i, j

as the test statistic. According to the observation made at the beginning of Section 4, if the con-
ditions of Theorem 2 are satisfied, then

T ′
n = max

|i− j |>Bn

|σ̂n,i, j − σi, j |
τ̂n,i, j

has the same limiting law as Mn . On the other hand, (9) implies that

max
|i− j |>Bn

|σi, j | = O


n−(1+η)/(2η+1)


,

so Tn has the same limiting distribution as T ′
n if we further assume log m = o


n2/(4η+2)


.

5. Proof

The proofs of Theorem 2 under various conditions are similar, and they share a common Pois-
son approximation step, which we will formulate in Section 5.1 under a more general context,
where the limiting distribution of the maximum of sample means is obtained. Since the proof
of (i) is more involved, we provide the detailed proof under this assumption in Section 5.2. The
proof of (ii) is almost the same, which we point out in Section 5.3. The proofs of (iii) and (iv)
are provided in Section 5.4.

5.1. Maximum of sample means: an intermediate step

In this section we provide a general result on the maximum of sample means. Let Yn =

(Yn,k,i )1≤k≤n, i∈In be a data matrix whose n rows are i.i.d., and whose entries have mean zero
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and variance one, where In is an index set with cardinality |In| = sn . For each i ∈ In , let yi be
the i-th column of Yn , ȳi = (1/n)

n
k=1 Yn,k,i .

Define

Wn = max
i∈In

|ȳi |. (10)

Let Σn be the covariance matrix of the sn-dimensional random vector (Yn,1,i )i∈In .

Lemma 6. Assume Σn satisfies either (B1) or (B2) of Section 6.1 and log sn = o(n1/3). Suppose
there is a constant C > 0 such that Yn,k,i ∈ B(1, Ctn) for each 1 ≤ k ≤ n, i ∈ In , with

tn =

√
nδn

(log sn)3/2 ,

where (δn) is a sequence of positive numbers such that δn = o(1), and the definition of the
collection B(d, τ ) is given in (27) below. Then

lim
n→∞

P


nW 2
n − 2 log sn + log(log sn) + log π ≤ z


= exp


−e−z/2


. (11)

We remark that if |Yn,k,i | ≤ K , then Yn,k,i ∈ B(1, K ). The condition log sn = o(n1/3) is
implicitly used to guarantee the existence of δn such that δn = o(1) and t−1

n = O(1).

Proof. For each z ∈ R, let zn = (2 log sn − log(log sn) − log π + z)1/2. Let (Zn,i )i∈In

be a mean zero normal random vector with covariance matrix Σn . For any subset A =

{i1, i2, . . . , id} ⊂ In , let yA =
√

n(ȳi1 , ȳi2 , . . . , ȳid )
⊤ and Z A = (Zi1 , Zi2 , . . . , Zid ). For a

vector x = (x1, . . . , xd)⊤ ∈ Rd , define |x|• := min{|x j | : 1 ≤ j ≤ d}. By Lemma 9, we have

for θn = δ
1/2
n /


log sn that

P (|yA|• > zn) ≤ P(|Z A|• > zn − θn) + Cd exp

−

θn

Cdδn(log sn)−3/2


≤ P(|Z A|• > zn − θn) + Cd exp


−(log sn)δ

−1/2
n


.

Therefore,
A⊂In ,|A|=d

P (|yA|• > zn) ≤


A⊂In ,|A|=d

P(|Z A|• > zn − θn)

+ Cdsd
n exp


−(log sn)δ

−1/2
n


.

Similarly, we have
A⊂In ,|A|=d

P (|yA|• > zn) ≥


A⊂In ,|A|=d

P(|Z A|• > zn + θn)

− Cdsd
n exp


−(log sn)δ

−1/2
n


.

Since (zn ± θn)2
= 2 log sn − log(log sn) − log π + z + o(1), by Lemma 7, under either of (B1)

and (B2), we have

lim
n→∞


A⊂In ,|A|=d

P(|Z A|• > zn ± θn) =
e−dz/2

d !
,
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and hence

lim
n→∞


A⊂In ,|A|=d

P (|yA|• > zn) =
e−dz/2

d !
.

The proof is complete in view of Lemma 10. �

5.2. Proof of (i)

We divide the proof into three steps. The first one is a truncation step, which will make the
Gaussian approximation result Lemma 9 and the Bernstein inequality applicable, so that we can
prove Theorem 2 under the assumption that all the involved mean and variance parameters are
known. In the next two steps we show that plugging in estimated mean and variance parameters
does not change the limiting distribution.

Step 1: Truncation. Let

Mn,0 = max
1≤i< j≤m

1
√

τn,i, j

1n
n

k=1

Xn,k,i Xn,k, j − σn,i, j

 .
In this step, we show that

lim
n→∞

P


nM2
n,0 − 4 log m + log(log m) + log(8π) ≤ y


= exp


−e−y/2


. (12)

Let us define the operator E0 as E0(X) := X − E(X) for any random variable X . Set
εn = n−(2−p)/[4(p+4)] when 0 < p < 2, and εn = n−1/6(log n)1/3(log m)1/2 when p = 2.
Observe that (εn) converges to zero because of (A4). Define

X̃n,k,i = E0


Xn,k,i I

|Xn,k,i | ≤ Tn


, where Tn = εn


n/(log m)3

1/4

where I [·] denotes the indicator function. Define σ̃n,i, j = E


X̃n,1,i X̃n,1, j


, and τ̃n,i, j =

Var


X̃n,1,i X̃n,1, j


, and

Mn,1 = max
1≤i< j≤m

1
√

τn,i, j

1n
n

k=1

X̃n,k,i X̃n,k, j − σ̃n,i, j

 ;
Mn,2 = max

1≤i< j≤m

1
τ̃n,i, j

1n
n

k=1

X̃n,k,i X̃n,k, j − σ̃n,i, j

 .
For α = (i, j) ∈ In , let X̃n,α = X̃n,1,i X̃n,1, j . Elementary calculation shows that for some
constant C

max
α,β∈In

Cov(X̃n,α, X̃n,β) − Cov(Xn,α, Xn,β)

 ≤ C exp

−C−1T p

n


. (13)

Because of (A3), (13) and the assumption log m = o(n p/(p+4)), we know the covariance matrix
of (X̃n,α)α∈In satisfies (B1). On the other hand, sinceX̃n,α

 ≤ 4T 2
n = 4ε2

n


n/(log m)3,
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the condition of Lemma 6 is satisfied. It follows that (12) holds if we replace Mn,0 therein by
Mn,2. Furthermore, by (13) we know Mn,1 and Mn,2 have the same limiting distribution. There-
fore, in order to obtain (12), it suffices to show

Mn,0 − Mn,1 = oP


(n log m)−1/2


. (14)

For notational simplicity, we let Yn,k,i = Xn,k,i − X̃n,k,i . Write

n
k=1

(Xn,k,i Xn,k, j − σn,i, j ) −

n
k=1

(X̃n,k,i X̃n,k, j − σ̃n,i, j )

=

n
k=1

E0(Yn,k,i Xn,k, j ) +

n
k=1

E0(X̃n,k,i Yn,k, j ) =: In,i, j + Nn,i, j .

For any s ≤ t/4 (t is used in the definition of (A4)), we have

∞
r=1

sr

r !

Xn,k,i I

|Xn,k,i | > Tn


Xn,k, j

pr/2
≤

∞
r=1

sr

r !

Xn,k,i Xn,k, j
pr/2 es|Xn,k,i |

p

esT p
n

≤ e−sT p
n · exp


s|Xn,k,i Xn,k, j |

p/2
+ s|Xn,k,i |

p


≤ e−sT p
n · exp


2s|Xn,k,i |

p
+ s|Xn,k, j |

p ,

and it follows that for some constant C ,

E exp


t/8 · |E0(Yn,k,i Xn,k, j )|
p/2


≤ exp


Ce−C−1T p
n


.

Let (δn) be a sequence of positive numbers which converges to zero, we have

max
1≤i< j≤m

P

|In,i, j | > δn


n/ log m


≤ exp


n · Ce−C−1T p

n − C−1δ
p/2
n (n/ log m)p/4


≤ C exp


−(Cδn)−1 log m


,

where the last inequality is obtained by letting (δn) converge to zero slowly enough, which is
possible because we have assumed that log m = o(n p/(p+4)) and log m = o(n1/3). It follows that

max
1≤i< j≤m

|In,i, j | = oP


n/ log m


,

which together with a similar result on max1≤i< j≤m |Nn,i, j | implies (14), and hence the proof of
(12) is complete.

Step 2: Effect of estimated means. Set X̄n,i = (1/n)
n

k=1 Xn,k,i . Define

Mn,3 = max
1≤i< j≤m

1
√

τn,i, j

1n
n

k=1

(Xn,k,i − X̄n,i )(Xn,k, j − X̄n, j ) − σn,i, j

 .
In this step we show that (12) also holds for Mn,3. Observe that

Mn,3 − Mn,2
 ≤ max

1≤i< j≤m

|X̄n,i X̄n, j |
√

τn,i, j
≤ max

1≤i≤m
|X̄n,i |

2
·


min

1≤i< j≤m
τn,i, j

−1/2

.



2912 H. Xiao, W.B. Wu / Stochastic Processes and their Applications 123 (2013) 2899–2920

By Lemma 8 and the Bernstein inequality, for any constant K > 0, there is a constant C which
does not depend on K such that

max
1≤i≤m

P


|X̄n,i | > K


log m

n


≤ C exp


−

C−1 K 2n log m

n + (K 2n log m)1−p/2 + K


n log m


+ Cn exp


−C−1 K p(n log m)p/2


≤ Cm−K 2/C ,

and hence

max
1≤i≤m

|X̄n,i | = OP


log m

n


, (15)

which implies that

Mn,3 − Mn,2
 = OP


log m

n


= oP


1

n log m


.

Therefore, (12) also holds for Mn,3.
Step 3: Effect of estimated variances. In this step we show that (12) holds for M̃n . Since

n
M2

n,3 − M2
n

 ≤ nM2
n,3 · max

1≤i< j≤m
|1 − τn,i, j/τ̂n,i, j |,

it suffices to show that

max
1≤i< j≤m

τ̂n,i, j − τn,i, j
 = oP (1/ log m). (16)

Set

τ̂n,i, j,1 =
1
n

n
k=1


(Xn,k,i − X̄n,i )(Xn,k, j − X̄n, j ) − σn,i, j

2
τ̂n,i, j,2 =

1
n

n
k=1


Xn,k,i Xn,k, j − σn,i, j

2
.

Observe that

τ̂n,i, j,1 − τ̂n,i, j = (σ̂n,i, j − σn,i, j )
2

which together with (12) implies that

max
1≤i< j≤m

τ̂n,i, j,1 − τ̂n,i, j
 = OP (log m/n) . (17)

Let (δn) be a sequence of positive numbers which converges to zero slowly, by Lemma 8 and the
Bernstein inequality, there exist a constant C such that

max
1≤i< j≤m

P

|τ̂n,i, j,2 − τn,i, j | ≥ δn/ log m


≤ exp


−C−1 (nδn/ log m)2

n + (nδn/ log m)2−p/4 + nδn/ log m
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+ Cn exp


−C−1


nδn

log m

p/4


≤ C exp


−C−1


nδn

log m

p/4


+ C exp

−

nδ2
n

C(log m)2


≤ C exp


−(Cδn)−1 log m


,

where the last inequality is obtained by letting (δn) converge to zero slowly enough, which is
possible because we have assumed that log m = o(n p/(p+4)) and log m = o(n1/3). It follows
that

max
1≤i< j≤m

τ̂n,i, j,2 − τn,i, j
 = oP (1/ log m). (18)

In view of (17) and (18), and the assumption log m = o(nq), we know to show (16), it remains
to prove

max
1≤i< j≤m

τ̂n,i, j,1 − τ̂n,i, j,2
 = oP (1/ log m). (19)

Elementary calculations show that

max
1≤i< j≤m

τ̂n,i, j,1 − τ̂n,i, j,2
 ≤ 4h2

n,1hn,2 + 3h4
n,1 + 4h1/2

n,4 h1/2
n,2 hn,1 + 2hn,3h2

n,1,

where

hn,1 = max
1≤i≤m

|X̄n,i |

hn,2 = max
1≤i≤m

1
n

n
k=1

X2
n,k,i

hn,3 = max
1≤i≤ j≤m

1n
n

k=1

Xn,k,i Xn,k, j − σn,i, j


hn,4 = max

1≤i≤ j≤m
τ̂n,i, j,2.

By (15), we know hn,1 = OP (


log m/n). By (18) we have hn,4 = OP (1). Using Lemma 8 and
the Bernstein inequality, we can show that

hn,3 = OP


log m/n


.

As an immediate consequence, we know hn,2 = OP (1). Therefore,

max
1≤i< j≤m

τ̂n,i, j,1 − τ̂n,i, j,2
 = OP


log m/n


,

and (19) holds by using the assumption log m = o(n1/3). The proof of Theorem 2 under (A3)
and (A4) is now complete.

5.3. Proof of (ii)

The same proof from Section 5.2 applies with the following modification. In the definition
of the truncation threshold Tn , we now update εn as εn = (log m)1/2n−p/(6p+8). We also need
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(A3′), (13) and the assumption log m = o(n p/(3p+4)), which is given in (A4′), to guarantee that
the covariance matrix of (X̃n,α)α∈In satisfies (B2).

5.4. Proofs of (iii) and (iv)

For notational simplicity, we let p = 4(1 + q) + δ.
Step 1: Truncation. We truncate Xn,k,i by

X̃n,k,i = Xn,k,i I

|Xn,k,i | ≤ n1/4/ log n


.

Define M̃n similarly as Mn with Xn,k,i being replaced by its truncated version X̃n,k,i , we have

P


M̃n ≠ Mn


≤ nmMn(p)n−p/4(log n)p

≤ C Mn(p)n−δ/4(log n)p
= o(1).

Therefore, in the rest of the proof, it suffices to consider X̃n,k,i . For notational simplicity, we still
use X̃n,k,i to denote its centered version with mean zero.

Define σ̃n,i, j = E


X̃n,1,i X̃n,1, j


, and τ̃n,i, j = Var


X̃n,1,i X̃n,1, j


. Set

Mn,1 = max
1≤i< j≤m

1
τ̃n,i, j

1n
n

k=1

X̃n,k,i X̃n,k, j − σ̃n,i, j

 ;
Mn,2 = max

1≤i< j≤m

1
τ̃n,i, j

1n
n

k=1

X̃n,k,i X̃n,k, j − σn,i, j

 .
Elementary calculations show that

max
1≤i≤ j≤m

|σ̃n,i, j − σn,i, j | ≤ Cn−(p−2)/4(log n)p−2
; (20)

max
α,β∈In

Cov(X̃n,α, X̃n,β) − Cov(Xn,α, Xn,β)

 ≤ Cn−(p−4)/4(log n)p−4. (21)

By (21), we know the covariance matrix of (X̃n,α)α∈In satisfies either (B1) or (B2) if Σn satisfies
(B1) or (B2) correspondingly. Since

E0 X̃n,α ∈ B

1, 8

√
n/(log n)2


,

we know all the conditions of Lemma 6 are satisfied, and hence (12) holds if we replace Mn,0
therein by Mn,1. Combining (20) and (21), we know (12) also holds with Mn,0 being replaced by
Mn,2.

Step 2: Effect of estimated means. Set X̄n,i = (1/n)
n

k=1 X̃n,k,i . Define

Mn,3 = max
1≤i< j≤m

1
τ̃n,i, j

1n
n

k=1

(X̃n,k,i − X̄n,i )(X̃n,k, j − X̄n, j ) − σn,i, j

 .
In this step we show that (12) also holds for Mn,3. Observe that

Mn,3 − Mn,2
 ≤ max

1≤i< j≤m

|X̄n,i X̄n, j |
τ̃n,i, j

≤ max
1≤i≤m

|X̄n,i |
2
·


min

1≤i< j≤m
τ̃n,i, j

−1/2

.
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Using Bernstein’s inequality, we can show

max
1≤i≤m

|X̄n,i | = OP


log n

n


,

which in together with (21) implies thatMn,3 − Mn,2
 = OP


log n

n


and hence (12) also holds for Mn,3.

Step 3: Effect of estimated variances. Denote by σ̌n,i, j the estimate of σ̃n,i, j

σ̌n,i, j =
1
n

n
k=1

(X̃n,k,i − X̄n,i )(X̃n,k, j − X̄n, j ).

In the definition of M̃n , τ̃n,i, j is unknown, and is estimated by

τ̌n,i, j =
1
n

n
k=1


(X̃n,k,i − X̄n,i )(X̃n,k, j − X̄n, j ) − σ̌n,i, j

2
.

In order to show that (12) holds for M̃n , it suffices to verify

max
1≤i< j≤m

τ̌n,i, j − τ̃n,i, j
 = oP (1/ log n). (22)

Set

τ̌n,i, j,1 =
1
n

n
k=1


(X̃n,k,i − X̄n,i )(X̃n,k, j − X̄n, j ) − σ̃n,i, j

2

τ̌n,i, j,2 =
1
n

n
k=1


X̃n,k,i X̃n,k, j − σ̃n,i, j

2
.

Using (12), we know

max
1≤i< j≤m

τ̌n,i, j,1 − τ̌n,i, j
 = OP (log n/n) . (23)

Since 
X̃n,k,i X̃n,k, j − σ̃n,i, j

2
≤ 64n/(log n)4.

By Corollary 1.6 of [20] (with x = n/(log n)2 and y = n/[2(log n)3
] in their inequality (1.22)),

we have

max
1≤i< j≤m

P

|τ̌n,i, j,2 − τ̃n,i, j | ≥ (log n)−2


≤


Cn

n(log n)−2 · [n(log n)−3]q∧1

log n

≤


C(log n)5

nq∧1

log n

,
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where x ∧ y := min{x, y} for any x, y ∈ R. It follows that

max
1≤i< j≤m

τ̌n,i, j,2 − τ̃n,i, j
 = OP


(log n)−2


. (24)

In view of (23) and (24), we know to show (22), it remains to prove

max
1≤i< j≤m

τ̌n,i, j,1 − τ̌n,i, j,2
 = oP (1/ log n). (25)

Elementary calculations show that

max
1≤i< j≤m

τ̌n,i, j,1 − τ̌n,i, j,2
 ≤ 4h2

n,1hn,2 + 3h4
n,1 + 4h1/2

n,4 h1/2
n,2 hn,1 + 2hn,3h2

n,1,

where

hn,1 = max
1≤i≤m

|X̄n,i |

hn,2 = max
1≤i≤m

1
n

n
k=1

X̃2
n,k,i

hn,3 = max
1≤i≤ j≤m

1n
n

k=1

X̃n,k,i X̃n,k, j − σ̃n,i, j


hn,4 = max

1≤i≤ j≤m
τ̌n,i, j,2.

We know hn,1 = OP (


log n/n) and hn,4 = OP (1). Using Bernstein’s inequality, we can show
that

hn,3 = OP


log n/n


,

and it follows that hn,2 = OP (1). Therefore,

max
1≤i< j≤m

τ̌n,i, j,1 − τ̌n,i, j,2
 = OP


log n/n


,

and (25) holds. The proofs of (iii) and (iv) of Theorem 2 are now complete.

6. Some auxiliary results

In this section we provide a normal comparison principle and a Gaussian approximation result,
and a Poisson convergence theorem.

6.1. A normal comparison principle

Suppose for each n ≥ 1, (Xn,i )i∈In is a Gaussian random vector whose entries have mean
zero and variance one, where In is an index set with cardinality |In| = sn . Let Σn = (rn,i, j )i, j∈In

be the covariance matrix of (Xn,i )i∈In . Assume that sn → ∞ as n → ∞.
We impose either of the following two conditions.

(B1) For any sequence (bn) such that bn → ∞, γ (n, bn) = o (1/ log bn) ;

and lim sup
n→∞

γn < 1.
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(B2) For any sequence (bn) such that bn → ∞, γ (n, bn) = o(1);
i≠ j∈In

r2
n,i, j = O


s2−δ

n


for some δ > 0; and lim sup

n→∞

γn < 1

where

γ (n, bn) := sup
i∈In

sup
A⊂In ,|A|=bn

inf
j∈A

rn,i, j


and γn := sup
i, j∈In; i≠ j

|rn,i, j |.

Lemma 7. Assume either (B1) or (B2). For a fixed z ∈ R and a sequence (zn) satisfying
z2

n = 2 log sn − log log sn − log π + 2z + o(1), define

A′

n,i = {|Xn,i | > zn} and Q′

n,d =


A⊂In ,|A|=d

P


i∈A

A′

n,i


;

then for all d ≥ 1, it holds that

lim
n→∞

Q′

n,d =
e−dz

d !
.

Lemma 7 is a refined version of Lemma 20 in [28], so we omit the proof and put the details in a
supplementary file.

Remark 2. The conditions imposed on γ (n, bn) seem a little involved. We have the following
equivalent versions. Define

Gn(t) = max
i∈In


j∈In

I {|rn,i, j | > t}.

Then (i) γ (n, bn) = o(1) for any sequence bn → ∞ if and only if the sequence [Gn(t)]n≥1 is
bounded for all t > 0; and (ii) γ (n, bn)(log bn) = o(1) for any sequence bn → ∞ if and only if
Gn(tn) = exp{o(1/tn)} for any positive sequence (tn) converging to zero.

6.2. Bernstein inequality under fractal exponential moments

The following inequality, taken from [11], is an extension of the Bernstein inequality.

Lemma 8. Let X, X1, . . . , Xn be i.i.d. random variables with mean zero and unit variance.
Assume that for some 0 < α < 1,

E

|X |

3(1−α)et |X |
α


≤ A, for 0 ≤ t < T . (26)

Let Sn = X1 + · · · + Xn . If x1−α
≥ 2A/T 2, then we have

P[Sn ≥ x] ≤ exp

−

x2

2(n + x2−α/T )


+ n P(X ≥ x).
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6.3. A Gaussian approximation result

For a positive integer d, let Bd be the Borel σ -field on the Euclidean space Rd . Denote by |x |

the Euclidean norm of a vector x ∈ Rd . For two probability measures P and Q on

Rd , Bd


and

λ > 0, define the quantity

π(P, Q; λ) = sup
A∈Bd


max


P(A) − Q


Aλ

, Q(A) − P


Aλ


,

where Aλ is the λ-neighborhood of A

Aλ
:=


x ∈ Rd

: inf
y∈A

|x − y| < λ


.

For τ > 0, let B(d, τ ) be the collection of d-dimensional random variables which satisfy
the multivariate analogue of the Bernstein’s condition. Denote by (x, y) the inner product of two
vectors x and y.

B(d, τ ) =


ξ is a random variable : Eξ = 0, and

E (ξ, t)2(ξ, u)m−2


≤
1
2

m!τm−2
|u|

m−2E

(ξ, t)2


for every m = 3, 4, . . . and for all t, u ∈ Rd


. (27)

The following Lemma on the Gaussian approximation is taken from [29].

Lemma 9. Let τ > 0, and ξ1, ξ2, . . . , ξn ∈ Rd be independent random vectors such that
ξi ∈ B(d, τ ) for i = 1, 2, . . . , n. Let S = ξ1+ξ2+· · ·+ξn , and L (S) be the induced distribution
on Rd . Let Φ be the Gaussian distribution with the zero mean and the same covariance matrix
as that of S. Then for all λ > 0

π [L (S),Φ; λ] ≤ c1,d exp


−
λ

c2,dτ


,

where the constants c j,d , j = 1, 2 may be taken in the form c j,d = c j d5/2.

6.4. Poisson approximation: moment method

Lemma 10. Suppose for each n ≥ 1, (An,i )i∈In is a finite collection of events. Let IAn,i be the
indicator function of An,i , and Wn =


i∈I IAn,i . For each d ≥ 1, define

Qn,d =


A⊂In ,|A|=d

P


i∈A

An,i


.

Suppose there exists a λ > 0 such that

lim
n→∞

Qn,d = λd/d ! for each d ≥ 1.

Then

lim
n→∞

P(Wn = k) = λke−λ/k ! for each k ≥ 0.
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Observe that for each d ≥ 1, the d-th factorial moment of Wn is given by

E [Wn(Wn − 1) · · · (Wn − d + 1)] = d ! · Qn,d ,

so Lemma 10 is essentially the moment method. The proof is elementary, and we omit details.

Acknowledgments

Han Xiao’s research was supported in part by the US National Science Foundation (DMS-
1209091). Wei Biao Wu’s research was supported in part by the US National Science Foundation
(DMS-0906073 and DMS-1106970).

Appendix. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.spa.2013.03.012.

References

[1] Zhidong Bai, Dandan Jiang, Jian-Feng Yao, Shurong Zheng, Corrections to LRT on large-dimensional covariance
matrix by RMT, Ann. Statist. 37 (6B) (2009) 3822–3840.

[2] Wei Biao Wu, Nonlinear system theory: another look at dependence, Proc. Natl. Acad. Sci. USA 102 (40) (2005)
14150–14154 (electronic).

[3] Peter J. Bickel, Elizaveta Levina, Covariance regularization by thresholding, Ann. Statist. 36 (6) (2008) 2577–2604.
[4] Peter J. Bickel, Elizaveta Levina, Regularized estimation of large covariance matrices, Ann. Statist. 36 (1) (2008)

199–227.
[5] Tony Cai, Tiefeng Jiang, Limiting laws of coherence of random matrices with applications to testing covariance

structure and construction of compressed sensing matrices, Ann. Statist. 39 (3) (2011) 1496–1525.
[6] Tony Cai, Weidong Liu, Adaptive thresholding for sparse covariance matrix estimation, J. Amer. Statist. Assoc. 106

(494) (2011) 672–684.
[7] T. Cai, W. Liu, Y. Xia, Two-sample covariance matrix testing and support recovery in high-dimensional and sparse

settings, J. Amer. Statist. Assoc. 108 (2013) 265–277.
[8] Song Xi Chen, Li-Xin Zhang, Ping-Shou Zhong, Tests for high-dimensional covariance matrices, J. Amer. Statist.

Assoc. 105 (490) (2010) 810–819.
[9] David L. Donoho, Michael Elad, Vladimir N. Temlyakov, Stable recovery of sparse overcomplete representations

in the presence of noise, IEEE Trans. Inform. Theory 52 (1) (2006) 6–18.
[10] J. Fan, J. Zhang, K. Yu, Vast portfolio selection with gross-exposure constraints, J. Amer. Statist. Assoc. 107 (498)

(2012) 592–606.
[11] Ning Hao, Hao H. Zhang, Interaction screening for ultra-high dimensional data, 2012, Preprint.
[12] R. Jagannathan, T. Ma, Risk reduction in large portfolios: why imposing the wrong constraints helps, J. Finance 58

(2003) 1651–1683.
[13] Tiefeng Jiang, The asymptotic distributions of the largest entries of sample correlation matrices, Ann. Appl. Probab.

14 (2) (2004) 865–880.
[14] Iain M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist. 29

(2) (2001) 295–327.
[15] Mark A. Kramer, Uri T. Eden, Sydney S. Cash, Eric D. Kolaczyk, Network inference with confidence from

multivariate time series, Phys. Rev. E (3) 79 (6) (2009) 061916. 13.
[16] Olivier Ledoit, Michael Wolf, Some hypothesis tests for the covariance matrix when the dimension is large

compared to the sample size, Ann. Statist. 30 (4) (2002) 1081–1102.
[17] Deli Li, Wei-Dong Liu, Andrew Rosalsky, Necessary and sufficient conditions for the asymptotic distribution of

the largest entry of a sample correlation matrix, Probab. Theory Related Fields 148 (1–2) (2010) 5–35.
[18] Deli Li, Andrew Rosalsky, Some strong limit theorems for the largest entries of sample correlation matrices, Ann.

Appl. Probab. 16 (1) (2006) 423–447.

http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012
http://dx.doi.org/10.1016/j.spa.2013.03.012


2920 H. Xiao, W.B. Wu / Stochastic Processes and their Applications 123 (2013) 2899–2920

[19] Wei-Dong Liu, Zhengyan Lin, Qi-Man Shao, The asymptotic distribution and Berry–Esseen bound of a new test for
independence in high dimension with an application to stochastic optimization, Ann. Appl. Probab. 18 (6) (2008)
2337–2366.

[20] S.V. Nagaev, Large deviations of sums of independent random variables, Ann. Probab. 7 (5) (1979) 745–789.
[21] Hisao Nagao, On some test criteria for covariance matrix, Ann. Statist. 1 (1973) 700–709.
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