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Abstract

In this document we give the proofs of Lemma 3, Lemma 4 and Lemma 7 of the main article.

In this document we give the proofs of Lemma 3, Lemma 4 and Lemma 7 of the main article.
The lemmas and equations introduced in this document are numbered with a “S”-prefix.

Proof of Lemma 3. Assume Xi has mean zero and variance one. Let γk = E(X0Xk) be the auto-
covariance of lag k. Then by Proposition 8, Eq. (34) of [1], we know

|γk| ≤ Ψ2 ·Ψ2(|k|). (S.1)

(i) Since Ψ4 <∞, we know for any η > 0, there exists a N1 > 0 such that |γk| < η when k ≥ N1.
For j ≤ k, define X̃k,j = g(εk, . . . , εj+1, ε

′
j , ε
′
j−1, . . .), where (ε′i)i∈Z is an i.i.d. copy of (εi)i∈Z.

By Eq. (38) of [1], we know there exists a N2 > 0 such that when k ≥ N2, ‖Xk − X̃k‖4 ≤ η.
Set N = max{N1, N2}, when k ≥ N , we have

Var(X0Xk) = E(X2
0X

2
k)− γ2k = E

(
X2
kX

2
k,j

)
+ E

[
X2

0 (X2
k −X2

k,j)
]
− γ2k

≥ 1− η2 − 2‖X0‖34 · η.

Therefore, (A1) holds because η can be arbitrarily small.

(ii) We need to show that

sup
j≥0, 0≤k≤l, (0,j)6=(k,l)

Cor(X0Xj , XkXl) < 1.

It suffices to show that for some N > 0

sup
j≥0, 0≤k≤l, (0,j)6=(k,l), j+k+l≥N

Cor(X0Xj , XkXl) < 1.

If j + k + l ≥ N , then the set {0, j, k, l} can be partitioned into two non-empty subsets B1
and B2 whose distance is no less than N/6. We only consider this type of partitions. If there
is a partition such that one of B1 and B2 has cardinality one, then similarly as (i), we know
for any η > 0, when N is large enough,

|Cov(X0Xj , XkXl)| = |E(X0XjXkXl)− γjγl−k| ≤ η.
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If for any partition both B1 and B2 has cardinality two, there are two sub-cases. (a) j < k ≤ l
and k − j ≥ N/6. For any η > 0, when N is large enough, we have

|Cov(X0Xj , XkXl)| = |E [X0Xj(XkXl −Xk,jXl,j)]| ≤ η.

(b) min{j, l} − k ≥ N/6. As in (i), for any η > 0, when N is large enough, we have
Var(X0Xj) ≥ 1− η, Var(XkXl) ≥ 1− η, and |γjγl−k| < η. On the other hand, the condition
Ψ4 > 0 guarantees that the process is non-deterministic, and hence γ := supt≥1 |γt| < 1. It
follows that when N is large enough

|E(X0XjXkXl)| = |E(X0Xj,kXkXl,k) + E[X0Xk(XjXl −Xj,kXl,k)]|
≤ γ + η.

Therefore,

|Cor(X0Xj , XkXl)| ≤ (γ + 2η)/(1− η) < 1

when η is small enough. The proof of (ii) is now complete.

(iii) We first consider (A3). Note that

Cov(XiXj , XkXl) = Cum(Xi, Xj , Xk, Xl) + γi−kγj−l + γi−lγj−k,

where Cum(Xi, Xj , Xk, Xl) is the fourth order joint cumulant of (Xi, Xj , Xk, Xl)
>. Fix a

subset {i, j}, for any integer b > 0, there are at most 8b2 subsets {k, l} such that {k.l} ⊂
B(i; b)∪B(j; b), where B(x; r) is the open ball {y : |x− y| < r}. For all other subsets {k, l},
by (S.1), we have

|γi−kγj−l + γi−lγj−k| ≤ CΨ4(b).

On the other hand, using similar arguments as Theorem 21 of [1], we can show that

|Cum(Xi, Xj , Xk, Xl)| ≤ CΨ4(bb/2c).

Therefore, if Ψ4(k) = o(1/ log k) as k →∞, then (A3) holds.
Now we turn to (A3′). Write

Cov(XiXj , XkXl) = E(XiXjXkXl)− γi−jγk−l.

By (S.1), it is easily seen that ∑
1≤i,j,k.l≤m

γ2i−jγ
2
k−l = O(m4−2δ).

It then suffices to show ∑
1≤i≤j≤k≤l≤m

[E(XiXjXkXl)]
2 = O(m4−δ),

which is true because by Eq. (38) of [1]

[E(XiXjXkXl)]
2 = [E(XiXjXk(Xl −Xl,k))]

2 ≤ 12‖X0‖64[Ψ4(l − k)]2.
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The proof of Lemma 3 is now complete.

We now give the proof of Lemma 4.

Proof of Lemma 4. Suppose (Y1, Y2, Y3, Y4) has a joint normal distribution. We can write Yi =
α>i Z, where Z is a four dimensional standard Gaussian random vector. For any 0 < ν < 1, define
the subset of R16,

Dν =
{

(α>1 , α
>
2 , α

>
3 , α

>
4 ) : |αi|2 = 1 and |α>i αj | ≤ 1− ν for 1 ≤ i 6= j ≤ 4

}
.

Since |Cor(Y1Y2, Y3Y4)| is a continuous function on Dν , and Dν is compact, the maximum correla-
tion is attained at some point in Dν .

On the other hand, elementary calculation shows that Cor(Y1Y2, Y3Y4) = 1 if and only if
Y1, Y2, Y3, Y4 are all perfectly correlated. The proof is now complete.

The proof of Lemma 7 is a refined version of that of Lemma 20 in [1]. We need the following
bounds on normal tail probabilities, which are taken from Lemma 19 of [1].

Denote by ϕd((rij);x1, . . . , xd) the density of a d-dimensional multivariate normal random vec-
tor X = (X1, . . . , Xd)

> with mean zero and covariance matrix (rij), where we always assume
rii = 1 for 1 ≤ i ≤ d and (rij) is nonsingular. Let

Qd ((rij); z) =

∫ ∞
z
· · ·
∫ ∞
z

ϕd ((rij), x1, . . . , xd) dxd · · · dx1.

Lemma S.1. For every z > 0, 0 < s < 1, d ≥ 1 and ε > 0, there exists positive constants Cd and
εd such that for 0 < ε < εd

1. if |rij | < ε for all 1 ≤ i < j ≤ d, then

Qd ((rij); z) ≤ Cd fd(ε, 1/z) exp

{
−
(
d

2
− Cdε

)
z2
}

(S.2)

where f2k(x, y) =
∑k

l=0 x
ly2(k−l) and f2k−1(x, y) =

∑k−1
l=0 x

ly2(k−l)−1 for k ≥ 1;

2. if for all 1 ≤ i < j ≤ d+ 1 such that (i, j) 6= (1, 2), |rij | ≤ ε, then

Qd+1 ((rij); z) ≤ Cd exp

{
−
(

(1− |r12|)2 + d

2
− Cdε

)
z2
}
. (S.3)

We first give a one-sided version of Lemma 7 and its proof, then we show how it implies
Lemma 7.

Lemma S.2. Assume either (B1) or (B2). For a positive real number zn, define the event An,i
and Qn,d as

An,i = {Xn,i > zn} and Qn,d =
∑

A⊂In,|A|=d

P

(⋂
i∈A

An,i

)
.

If zn satisfies that z2n = 2 log sn − log log sn − log(4π) + 2z + o(1), then for all d ≥ 1

lim
n→∞

Qn,d =
e−dz

d !
.
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Proof. The following facts about normal tail probabilities are well-known:

P (X1 ≥ x) ≤ 1√
2πx

e−x
2/2 for x > 0 and lim

x→∞

P (X1 ≥ x)

(1/x)(2π)−1/2 exp {−x2/2}
= 1. (S.4)

By the assumption on zn, if for each n, Xn,i, i ∈ In are i.i.d., then by (S.4),

lim
n→∞

Qn,d = lim
n→∞

(
n

d

)
Qd(Id, zn)

= lim
n→∞

(
n

d

)
1

(2π)d/2zdn
exp

{
−dz

2
n

2

}
=
e−dz

d!
.

When the Xn,i’s are dependent, the result is still trivially true when d = 1. Now we deal with the
d ≥ 2 case. Suppose (bn) is a sequence of positive numbers which approaches infinity. For each
subset J of In with cardinality |J | = d, we define an undirected graph G (J) by identifying each
i ∈ J with a node and saying i and j are adjacent if |rn,i,j | > γ(n, bn). Suppose the graph G (J) has
d− s connected components B1, . . . ,Bd−s. If s ≥ 1, assume w.l.o.g. that |B1| ≥ 2. Pick k0, k1 ∈ B1,
and kp ∈ Bp for 2 ≤ p ≤ d − s, and set K = {k0, k1, k2, . . . , kd−s}. Define QJ = P (∩k∈JAk) and
QK similarly, then QJ ≤ QK . By (S.3) of Lemma S.1, there exists a number M > 1 depending on
d and the sequences (γn) and (bn), such that when n ≥M ,

QK ≤ Cd−s exp

{
−
(

(1− γn)2 + d− s
2

− Cd−sγ(n, bn)

)
z2n

}
≤ Cd−s exp

{
−
(
d− s

2
+

(1− γn)2

3

)
z2n

}
.

Note that z2n = 2 log sn − log log sn + O(1). Pick bn = bsαnc for some α < (1 − γn)2/3d. For any
1 ≤ a ≤ d− 1, since there are at most O

(
bans

d−a
n

)
subsets J ⊂ In such that |J | = d and the graph

G (L) has d− a connected components, we know the sum of QJ over these J is dominated by

Cd−a exp

{
log sn

(
(d− a) +

2(d− 1)(1− γn)2

3d
− (d− a)− 2(1− γn)2

3

)}
when n is large enough, which converges to zero. Therefore, it remains to consider all the subsets
J ⊂ In such that the graph G (J) has no edges.

Let J ⊂ In be a subset such that |J | = d, and |rn,i,j | < γ(n, bn) for all pairs i, j such that i, j ∈ J
and i 6= j, and J (d, bn) be the collection of all such subsets. Let (rij)i,j∈J be the d-dimensional
covariance matrix of XJ := (Xn,i)i∈J . There exists a matrix RJ = θ(rij)i,j∈J + (1− θ)Id for some
0 < θ < 1 such that

QJ −Qd(Id, zn) =
∑

h,l∈J,h<l

∂Qd
∂rhl

[RJ ; zn]rhl.

Let RH , H = J \ {h, l}, be the correlation matrix of the conditional distribution of XH given Xh

and Xl. By (S.2) of Lemma S.1, for n large enough

∂Qd
∂rhl

[RJ ; zn] ≤ C exp

{
− z2n

1 + |rn,h,l|

}
·Qd−2 (RK ; (1− 3γ(n, bn))zn)

≤ CCd−2fd−2(γ(n, bn), 1/zn) exp

{
− z2n

1 + |rn,h,l|

}
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× exp

{
−
(
d− 2

2
− 2Cd−2γ(n, bn)

)
(1− 3γ(n, bn))2z2n

}
≤ Cdfd−2(γ(n, bn), 1/zn)

× exp

{
−
(
d

2
− (2Cd−2 + 3(d− 2))γ(n, bn)− |rn,h,l|

)
z2n

}
≤ Cdfd−2(γ(n, bn), 1/zn) exp

{
−
(
d

2
− Cdγ(n, bn)

)
z2n

}
.

It follows that ∑
J∈J (d,bn)

|QJ −Qd(Id; zn)|

≤ Cdfd−2(γ(n, bn), 1/zn)

×
∑

J∈J (d,bn)

∑
i,j∈J ; i 6=j

exp

{
−
(
d

2
− Cdγ(n, bn)

)
z2n

}
|rn,i,j |

≤ Cdfd−2(γ(n, bn), 1/zn)sd−2n

×
∗∑

i,j∈In

exp

{
−
(
d

2
− Cdγ(n, bn)

)
z2n

}
|rn,i,j |,

(S.5)

where the sum
∑∗

i,j∈In is over all the pair (i, j) such that |rn,i,j | ≤ γ(n, bn). Under the assumption
(B1), we have ∑

J∈J (d,bn)

|QJ −Qd(Id; zn)|

≤ Cdfd−2(γ(n, bn), 1/zn)(log sn)d/2γ(n, bn) exp {Cdγ(n, bn)(log sn)} .
(S.6)

Since limn→∞ γ(n, bn) log bn = 0, it holds that limn→∞ γ(n, bn) log sn = 0. Using the fact that
limn→∞(log sn)1/2/zn = 2−1/2, we have limn→∞ fd−2(γ(n, bn), 1/zn)(log sn)d/2−1 = 2−d/2+1. There-
fore, the term in (S.6) converges to zero, and the theorem holds under (B1).

Alternatively, if (B2) is true, from (S.5) we have∑
J∈J (d,bn)

|QJ −Qd(Id; zn)|

≤ Cdfd−2(γ(n, bn), 1/zn)s−2n (log sn)d/2
∗∑

i,j∈In

exp {Cdγ(n, bn)(log sn)} |rn,i,j |

≤ Cdfd−2(γ(n, bn), 1/zn)s−1n (log sn)d/2 exp {Cdγ(n, bn)(log sn)}

 ∑
i,j∈In

r2n,i,j

1/2

≤ Cds−δ/2n (log sn) exp {Cdγ(n, bn)(log sn)} = o(1),

and the proof is complete.

Now we give the proof of Lemma 7.
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Proof of Lemma 7. In the proof of Theorem S.2, the upper bounds on QJ and |QJ −Q(Id; zn)| are
expressed through the absolute values of the covariances, so we can obtain the same bounds for
probabilities of the form P (∩1≤i≤d{(−1)aiXti ≥ zn}) for any (a1, . . . , ad) ∈ {0, 1}d. Based on this
observation, Lemma 7 is an immediate consequence of Lemma S.2.

[1] H. Xiao, W. B. Wu, Asymptotic inference of autocovariances of stationary processes, preprint, available at
http://arxiv.org/abs/1105.3423 (2011).
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