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The supplementary file is organized as follows. We first collect in Section S1 some

moment inequalities concerning the sums and quadratic forms of stationary processes,

which might be useful for other studies. We then give the complements of Section 4.1

in Section S2, and the complements of Section 4.2 in Section S3, including the proofs

of intermediate lemmas, as well as other theorems and corollaries from Section 2.1 and

Section 2.2 respectively. In Section S4 we prove a normal comparison principle that is

used in the proof of Theorem 1. We provide a sufficient condition for the summability

of joint cumulants in Section S5. Some auxiliary results are collected in Section S6.

For the readiability and completeness of this document, the statements of Theo-

rem 14 is repeated here. All the section, theorem, lemma and equation numbers refer to

the main article. The sections, theorems, propositions, lemmas and equations introduced

in this document are numbered with a “S”-prefix.

We list some notations here. The operator E0 is defined as E0X := X−EX for any
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random variable X. For a vector x = (x1, . . . , xd)
> ∈ Rd, let |x| be the Euclidean norm,

|x|∞ := max1≤i≤d |xi|, and |x|• := min1≤i≤d |xi|. For a square matrix A, ρ(A) denotes

the operator norm defined by ρ(A) := max|x|=1 |Ax|. Let us make some convention

on the constants. We use C, c and C for constants. The notation Cp is reserved for

the constant appearing in Burkholder’s inequality, see (S.2). The values of C may vary

from place to place, while the value of c is fixed within the statement and the proof of

a theorem (or lemma). A constant with a symbolic subscript is used to emphasize the

dependence of the value on the subscript.

S1 Some Useful Inequalities

We collect in Proposition S.1 some useful facts about physical dependence measures and

martingale and m-dependence approximations. We expect that it will be useful in other

asymptotic problems that involve sample covariances. Hence for convenience of other

researchers, we provide explicit upper bounds.

We first introduce a moment inequality (S.1) which follows from the Burkholder

inequality (see Burkholder, 1988). Let (Di) be a martingale difference sequence and for

every i, Di ∈ Lp, p > 1, then

‖D1 +D2 + · · ·+Dn‖p
′

p ≤ C
p′

p

(
‖D1‖p

′

p + ‖D2‖p
′

p + · · ·+ ‖Dn‖p
′

p

)
, (S.1)

where p′ = min{p, 2}, and the constant

Cp = (p− 1)−1 if 1 < p < 2 and =
√
p− 1 if p ≥ 2. (S.2)

We note that when p > 2, the constant Cp in (S.1) equaled to p−1 in Burkholder (1988),
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and it was improved to
√
p− 1 by Rio (2009).

Proposition S.1. 1. Assume EXi = 0 and p > 1. Recall that p′ = min(p, 2).

‖P0Xi‖p ≤ δp(i) and ‖P0Xi‖p ≤ δp(i) (S.3)

κp := ‖X0‖p ≤ CpΨp (S.4)∥∥∥∥∥
n∑
i=1

ciXi

∥∥∥∥∥
p

≤ CpAnΘp, where An =

(
n∑
i=1

|ci|p
′

)1/p′

(S.5)

|γk| ≤ ζ2(k), where ζp(k) :=
∞∑
j=0

δp(j)δp(j + k) (S.6)∥∥∥∥∥
n∑
i=1

(Xi−kXi − γk)

∥∥∥∥∥
p/2

≤ 2Cp/2κpΘp

√
n, when p ≥ 4 (S.7)

∥∥∥∥∥∥
n∑

i,j=1

ci,j(XiXj − γi−j)

∥∥∥∥∥∥
p/2

≤ 4Cp/2CpΘ2
pBn
√
n, when p ≥ 4 (S.8)

where B2
n = max{max1≤i≤n

∑n
j=1 c

2
i,j , max1≤j≤n

∑n
i=1 c

2
i,j}.

2. For m ≥ 0, define X̃i = Hi−mXi. For p > 1, let δ̃p(·) be the physical dependence

measures for the sequence (X̃i). Then

δ̃p(i) ≤ δp(i) (S.9)

‖X0 − X̃0‖p ≤ CpΨp(m+ 1) (S.10)∥∥∥∥∥
n∑
i=1

ci(Xi − X̃i)

∥∥∥∥∥
p

≤ CpAnΘp(m+ 1) (S.11)∥∥∥∥∥
n∑

i=k+1

(
Xi−kXi − γk − X̃i−kX̃i + γ̃k

)∥∥∥∥∥
p

≤ 4Cp(n− k)1/p′κ2p∆2p(m+ 1).

(S.12)

Proof of Proposition S.1. The inequalities (S.3) and (S.9) are obtained by the first prin-
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ciple. Since Xi−k =
∑
j∈Z PjXi−k and Xi =

∑
j∈Z PjXi, we have

|γk| =

∣∣∣∣∣∣
∞∑

j=−k

E
[
(P−jX0)(P−jXk)

]∣∣∣∣∣∣ ≤ δ2(j)δ2(j + k) ≤ ζk,

which proves (S.6). For (S.8), it can be similarly proved as Proposition 1 of Liu and

Wu (2010), and (S.11) was given by Lemma 1 of the same paper. (S.5) is a special

case of (S.11). Define Yi = Xi−kXi, then (Yi) is also a stationary process of the form

(9). By Hölder’s inequality, ‖Yi − Ω0(Yi)‖p/2 ≤ 2κp[δp(i) + δp(i − k)]. Applying (S.5)

to (Yi), we obtain (S.7). To see (S.10), we first write Xm − X̃m =
∑∞
j=1 P−jXm. Since

‖P−jXm‖p ≤ δp(m+ j), and (P−jXm)j≥1 is a martingale difference sequence, by (S.1),

we have

‖X0 − X̃0‖p
′

p ≤ Cp
′

p

∞∑
j=1

‖P−jXm‖p
′

p ≤ C
p′

p

∞∑
j=1

[δp(m+ j)]p
′

= Cp
′

p [Ψp(m+ 1)]p
′
.

The above argument also leads to (S.4). Using a similar argument as in the proof of

Theorem 2 of Wu (2009), we can show (S.12). Details are omitted.

S2 Complements of Section 4.1

We prove the five intermediate steps in Section S2.1∼S2.5, and Theorem 2 in Section S2.6.

S2.1 Step 1: m-dependence approximation

Proof of Lemma 8. Recall that mn = bnβc with η < β < 1. We claim

∥∥∥Rn,k − R̃n,k∥∥∥
p/2
≤ 6 Cp/2ΘpΘp(mn − k + 1) ·

√
n. (S.13)
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It follows that for any λ > 0

P

(
max

1≤k≤sn

∣∣∣Rn,k − R̃n,k∣∣∣ > λ
√
n/ log sn

)
≤ (log sn)p/4

np/4λp/2

sn∑
k=1

‖Rn,k − R̃n,k‖p/2p/2

≤ Cpλ−p/2sn(log sn)p/4n−αβp/2 ≤ Cpλ−p/2nη−αβp/2(log n)p/4.

Therefore, if αp/2 > η, then there exists a β such that η < β < 1 and η − αβp/2 < 0,

and hence the preceding probability goes to zero as n → ∞. The proof of Lemma 8 is

complete.

We now prove claim (S.13). For each 1 ≤ k ≤ sn, we have

‖Rn,k − R̃n,k‖p/2 ≤

∥∥∥∥∥
n∑

i=k+1

(Xi−k − X̃i−k)X̃i

∥∥∥∥∥
p/2

+

∥∥∥∥∥
n∑

i=k+1

(Hi−mnXi−k)(Xi − X̃i)

∥∥∥∥∥
p/2

+

∥∥∥∥∥
n∑

i=k+1

E0

[
(Xi−k −Hi−mnXi−k)(Xi − X̃i)

]∥∥∥∥∥
p/2

Observe that (X̃iPi−k−jXi−k)1≤i≤n is a backward martingale difference sequence with

respect to Fi−k−j if j > mn, so by the inequality (S.1),∥∥∥∥∥
n∑

i=k+1

(Xi−k − X̃i−k)X̃i

∥∥∥∥∥
p/2

≤
∞∑

j=m+1

∥∥∥∥∥
n∑

i=k+1

X̃iPi−k−jXi−k

∥∥∥∥∥
p/2

≤
∞∑

j=m+1

√
nCp/2‖X̃j+kP0Xj‖p/2

≤ Cp/2ΘpΘp(mn + 1) ·
√
n.

Similarly we have ‖
∑n
i=k+1(Hi−mnXi−k)(Xi − X̃i)‖p/2 ≤

√
nCp/2ΘpΘp(mn + 1). Simi-

larly as (S.11), we get ‖X̃i−k −Hi−mnXi−k‖p ≤ Θp(mn − k + 1). Let Yn,i := (Xi−k −

Hi−mnXi−k)(Xi − X̃i). Then

‖Yn,i − Ω0(Yn,i)‖p/2 ≤ 2 [δp(i)Θp(mn − k + 1) + δp(i− k)Θp(mn + 1)] .



INFERENCE FOR SERIAL COVARIANCES S6

Therefore, by (S.5), it follows that∥∥∥∥∥
n∑

i=k+1

E0

[
(Xi−k −Hi−mnXi−k)(Xi − X̃i)

]∥∥∥∥∥
p/2

≤ 4 Cp/2ΘpΘp(mn − k + 1) ·
√
n,

and the proof of (S.13) is complete.

S2.2 Step 2: Throw out small blocks

In this section, as well as many other places in this article, we often need to split an

integer interval [s, t] = {s, s+ 1, . . . , t} ⊂ N into consecutive blocks B1, . . . ,Bw with the

size m. Since s− t+ 1 may not be a multiple of m, we make the convention that unless

the size of the last block is specified clearly, it has the size m ≤ |Bw| < 2m, and all the

other ones have the same size m.

Proof of Lemma 9. It suffices to show that for any λ > 0,

lim
n→∞

sn∑
k=1

P

∣∣∣∣∣∣
wn∑
j=1

Vk,j

∣∣∣∣∣∣ ≥ λ
√

n

log sn

 = 0.

Observe that Vk,j , 1 ≤ j ≤ wn, are independent. By (S.7), ‖Vk,j‖ ≤ 2|Kj |1/2κ4Θ4. By

Corollary 1.6 of Nagaev (1979), for any M > 1, there exists a constant CM > 1 such

that

P

∣∣∣∣∣∣
wn∑
j=1

Vk,j

∣∣∣∣∣∣ ≥ λ
√

n

log sn


≤

wn∑
j=1

P
(
|Vk,j | ≥ C−1

M λ
√
n/log sn

)
+

(
4e2κ2

4Θ2
4

∑wn
j=1 |Kj |

C−1
M λ2n/ log sn

)CM/2

≤
wn∑
j=1

P
(
|Vk,j | ≥ C−1

M λ
√
n/log n

)
+ CM

(
nβ−γ log n

)CM/2
≤

wn∑
j=1

P
(
|Vk,j | ≥ C−1

M

√
n/log n

)
+ n−M .

(S.14)



INFERENCE FOR SERIAL COVARIANCES S7

where we resolve the constant λ into the constant CM in the last inequality. It remains

to show that

lim
n→∞

sn∑
k=1

wn∑
j=1

P (|Vk,j | ≥ q1δφn) = 0, where φn =

√
n

log n
, (S.15)

holds for any δ > 0, where q1 is the smallest integer such that βq1 < min{(p− 4)/p, (p−

2 − 2η)/(p − 2)}. This choice of q1 will be explained later. We adopt the technique of

successive m-dependence approximations from Liu and Wu (2010) to prove (S.15).

For q ≥ 1, set mn,q = bnβqc. Define Xi,q = Hi−mn,qXi, γk,q = E(X0,qXk,q), and

Vk,j,q =
∑

i∈Kj ,i>k

(Xi−k,qXi,q − γk,q).

In particular, mn,1 is same as mn defined in Step 2, and Vk,j,1 = Vk,j . Without loss of

generality assume sn ≤ bnηc. Let q0 be such that βq0+1 ≤ η < βq0 . We first consider the

difference between Vk,j,q and Vk,j,q+1 for 1 ≤ q < q0. Split the block Kj into consecutive

small blocks B1, . . . ,Bwn,q with size 2mn,q. Define

V
(0)
k,j,q,t =

∑
i∈Bt

(Xi−k,qXi,q − γk,q) and V
(1)
k,j,q,t =

∑
i∈Bt

(Xi−k,q+1Xi,q+1 − γk,q+1).

(S.16)

Observe that V
(0)
k,j,q,t1

and V
(0)
k,j,q,t2

are independent if |t1 − t2| > 1. Similar as (S.14), for

any M > 1, there exists a constant CM > 1 such that, for sufficiently large n,

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) = P

[∣∣∣∣∣
wn,q∑
t=1

(
V

(0)
k,j,q,t − V

(1)
k,j,q,t

)∣∣∣∣∣ ≥ δφn
]

≤
wn,q∑
t=1

P
(∣∣∣V (0)

k,j,q,t − V
(1)
k,j,q,t

∣∣∣ ≥ C−1
M φn

)
+ n−M .

(S.17)

Similarly as (S.13), we have
∥∥∥V (0)

k,j,q,t − V
(1)
k,j,q,t

∥∥∥
p/2
≤ Cp|Bt|1/2m−αn,q+1. It follows that

sn∑
k=1

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) ≤ Cp,Mnηn1−γ

(
n−M +

nγm
p/4
n,qm

−αp/2
n,q+1

mn,q(n/ log n)p/4

)
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≤ Cp,M
(
nη+1−γ−M + nηn1−p/4mp/4−1−αβp/2

n,q

)
.

Under the condition (16), there exists a 0 < β < 1, such that

sn∑
k=1

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn)

≤ Cp,M
(
nη+1−γ−M + nη+1−p/4+βq(p/4−1−αβp/2)

)
→ 0.

Recall that q1 is the smallest integer such that βq1 < min{(p−4)/p, (p−2−2η)/(p−

2)}. We now consider the difference between Vk,j,q and Vk,j,q+1 for q0 ≤ q < q1. The

problem is more complicated than the preceding case 1 ≤ q < q0, since now it is possible

that mn,q < k for some 1 ≤ k ≤ sn. We consider three cases.

Case 1: k ≥ 2mn,q. Partition the blockKj into consecutive smaller blocks B1, . . . ,Bwn,q

with same size mn,q. Define V
(0)
k,j,q,t and V

(1)
k,j,q,t as in (S.16). Observe that the sequence(

V
(0)
k,j,q,t − V

(1)
k,j,q,t

)
t is odd

is a martingale difference sequence with respective to the fil-

tration (ξt := 〈εl : l ≤ max {Bt}〉)t is odd, and so is the sequence and filtration labelled

by even t. Set ξ0 = 〈εl : l < min{B1}〉 and ξ−1 = 〈εl : l < min{B1} −mn,q〉. For each

1 ≤ t ≤ wn,q, define

V(l)
t = E

[(
V

(l)
k,j,q,t

)2

|ξt−2

]
=

∑
i1,i2∈Bt

Xi1−k,q+lXi2−k,q+lγi1−i2,q+l

for l = 0, 1. By Lemma 1 of Haeusler (1984), for any M > 1, there exists a constant

CM > 1 such that

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) ≤
wn,q∑
t=1

P

(∣∣∣V (0)
k,j,q,t − V

(1)
k,j,q,t

∣∣∣ ≥√ n

(log n)3

)
+ n−M

+
∑
l=0,1

2

{
P

[ ∑
t is odd

V(l)
t ≥

C−1
M n

(log n)2

]
+ P

[ ∑
t is even

V(l)
t ≥

C−1
M n

(log n)2

]}
.

(S.18)
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By (S.6),
∑
k∈Z |γk,q+l|2 ≤ Θ2

2, and hence by (S.8), ‖V(l)
t ‖p/2 ≤ Cpm

1/2
n,q . Observe that

V(0)
t1 and V(0)

t1 are independent if |t1 − t2| > 1, so similarly as (S.14), we have

P

[ ∑
t is odd

V(l)
t ≥

C−1
M n

(log n)2

]
≤ n−M +

∑
t is odd

P

[
V(l)
t ≥

C−2
M n

(log n)2

]

≤ n−M + Cp,M · wn,q · n−p/2(log n)p ·mp/4
n,q .

The same inequality holds for the sum over even t. For the first term in (S.18), we claim

that

∥∥∥V (0)
k,j,q,t − V

(1)
k,j,q,t

∥∥∥
p
≤ Cp ·m1/2

n,q ·m−αn,q+1, (S.19)

which together with the preceding two inequalities implies that

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) ≤ Cp,M wn,q · n−p/2(log n)3p/2
(
mp/2
n,q ·m

−αp
n,q+1 +mp/4

n,q

)
+ n−M .

It follows that under condition (16), there exists a 0 < β < 1 such that

sn∑
k=2mn,q

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn)

≤ n1+η−M + Cp,M · n1+η−p/2(log n)3p/2
[
nβ

q(p/2−1−αβp) + nβ
q(p/4−1)

]
= o(1).

(S.20)

Case 2: k ≤ mn,q+1/2. Partition the block Kj into consecutive smaller blocks

B1, . . . ,Bwn,q with size 3mn,q. Define V
(0)
k,j,q,t and V

(1)
k,j,q,t as in (S.16). Similarly as (S.13),

we have

∥∥∥V (0)
k,j,q,t − V

(1)
k,j,q,t

∥∥∥
p/2
≤ Cp ·m1/2

n,q ·m−αn,q+1.

Similar as (S.17), for any M > 1, there exist a constant CM > 1 such that

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) ≤
wn,q∑
t=1

P
(∣∣∣V (0)

k,j,q,t − V
(1)
k,j,q,t

∣∣∣ ≥ C−1
M φn

)
+ n−M

≤ n−M + Cp,M · wn,q · n−p/4(log n)p/4 ·mp/4
n,q ·m

−αβp/2
n,q+1 .
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It follows that that under condition (16), there exists a 0 < β < 1 such that

mn,q+1/2∑
k=1

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn)

≤ n1+η−M + Cp,M · n1−p/4(log n)p/4 ·
(
nβ

q
)p/4−αβp/2

= o(1).

(S.21)

Case 3: mn,q+1/2 < k < 2mn,q. We use the same argument as in Case 2. But this

time we claim that

∥∥∥V (0)
k,j,q,t − V

(1)
k,j,q,t

∥∥∥
p/2
≤ Cp

[
m1/2
n,q ·m−αn,q+1 +mn,qζp(k)

]
, (S.22)

where ζp(k) is defined in (S.6). Since
∑∞
k=m[ζp(k)]p/2 ≤ [

∑∞
k=m ζp(k)]

p/2
= O(m−αp/2),

under the condition (12), there exist constants Cp,M > 1 and 0 < β < 1 such that for

M large enough

2mn,q−1∑
k>mn,q+1/2

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) ≤ Cp,M · n1−p/4(log n)p/4mp/4−αβp/2
n,q

+ n1+η−M + Cp,M · n1−p/4(log n)p/4 ·mp/2−1
n,q

2mn,q−1∑
k>mn,q+1/2

[ζp(k)]p/2

≤ n1+η−M + Cp,M · n1−p/4(log n)p/4 ·mp/2−1−αβp/2
n,q = o(1).

(S.23)

Alternatively, if we use the bound from (S.12),
∥∥∥V (0)

k,j,q,t − V
(1)
k,j,q,t

∥∥∥
p/2
≤ Cpm1/2

n,q ·m−α
′

n,q+1,

it is still true that under condition (12), there exist constants Cp,M > 1 and 0 < β < 1

such that for M large enough

2mn,q−1∑
k>mn,q+1/2

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn)

≤ n1+η−M + Cp,M · n1−p/4(log n)p/4 ·mp/2−1−α′βp/2
n,q = o(1).

(S.24)

Combine (S.20), (S.21), (S.23) and (S.24), we have shown that

lim
n→∞

sn∑
k=1

wn∑
j=1

P (|Vk,j,q − Vk,j,q+1| ≥ δφn) = 0. (S.25)
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for 1 ≤ q < q1. Therefore, to prove (S.15), it suffices to show

lim
n→∞

sn∑
k=1

wn∑
j=1

P (|Vk,j,q1 | ≥ δφn) = 0 (S.26)

By considering two cases (i) 2mn,q1 ≤ k ≤ sn and (ii) 1 ≤ k < 2mn,q1 under the

condition βq1 < min{(p − 4)/p, (p − 2 − 2η)/(p − 2)}, and using similar arguments as

those in proving (S.25), we can obtain (S.26). The proof of Lemma 9 is complete.

We now turn to the proof of the two claims (S.19) and (S.22). For (S.22), we have

∥∥∥V (0)
k,j,q,t − V

(1)
k,j,q,t

∥∥∥
p/2
≤

∥∥∥∥∥∑
i∈Bt

(Xi−k,q −Xi−k,q+1)Xi,q+1

∥∥∥∥∥
p/2

+

∥∥∥∥∥∑
i∈Bt

E0 [Xi−k,q+1(Xi,q −Xi,q+1)]

∥∥∥∥∥
p/2

+

∥∥∥∥∥∑
i∈Bt

E0 [(Xi−k,q −Xi−k,q+1)(Xi,q −Xi,q+1)]

∥∥∥∥∥
p/2

=:I + II + III.

Similarly as in the proof of (S.13), we have

I ≤ Cp/2ΘpΘp(mn,q+1 + 1) ·
√

3mn,q and III ≤ 4 Cp/2ΘpΘp(mn,q+1 + 1) ·
√

3mn,q.

For the second term II, write

E0 [Xi−k,q+1(Xi,q −Xi,q+1)] =

mn,q+1∑
l1=0

mn,q∑
l2=mn,q+1+1

E0 [(Pi−k−l1Xi−k)(Pi−l2Xi)] .

For a pair (l1, l2) such that i− k − l1 6= i− l2, by the inequality (S.1), we have∥∥∥∥∥∑
i∈Bt

(Pi−k−l1Xi−k)(Pi−l2Xi)

∥∥∥∥∥
p/2

≤ Cp/2δp(l1)δp(l2) ·
√

3mn,q.
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For the pairs (l1, l2) such that i− k − l1 = i− l2, by the triangle inequality∥∥∥∥∥∑
i∈Bt

mn,q+1∑
l=0

E0 [(Pi−k−lXi−k)(Pi−k−lXi)]

∥∥∥∥∥
p/2

≤3mn,q · 2
mn,q+1∑
l=0

δp(l)δp(k + l) ≤ 6mn,qζp(k).

Putting these pieces together, the proof of (S.22) is complete. The key observation in

proving (S.19) is that since k ≥ 2mn,q, Xi−k,q and Xi,q are independent, hence the

product Xi−k,qXi,q has finite p-th moment. The rest of the proof is similar to that of

(S.22). Details are omitted.

Remark S.1. Condition (12) is only used to deal with Case 3, while (16) suffices for

the rest of the proof. In fact, for linear processes, one can show that the term mn,qζp(k)

in (S.22) can be removed, so we have (S.23) under condition (16) and do not need

(S.24). So (16) suffices for Theorem 1. Furthermore, for nonlinear processes with δp(k) =

O
[
k−(1/2+α)

]
, the term mn,qζp(k) can also be removed from (S.22). Details are omitted.

S2.3 Step 3: Truncate sums over large blocks

Proof of Lemma 10. We need to show for any λ > 0

lim
n→∞

sn∑
k=1

P

∣∣∣∣∣∣
wn∑
j=1

(Uk,j − Ūk,j)

∣∣∣∣∣∣ ≥ λ
√

n

log sn

 = 0.

Using (S.7), elementary calculation gives

∥∥Uk,j − Ūk,j∥∥2 ≤ E|Uk,j |p/2

(
√
n/ log sn)p/2−2

≤
(2Cp/2κpΘp)

p/2|Hj |p/4(log sn)3(p−4)/2

n(p−4)/4
. (S.27)
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Similarly as (S.14), for any M > 1, there exists a constant CM > 1 such that

P

∣∣∣∣∣∣
wn∑
j=1

(Uk,j − Ūk,j)

∣∣∣∣∣∣ ≥ λ
√

n

log sn

 ≤ wn∑
j=1

P

(
|Uk,j − Ūk,j | ≥ C−1

M λ

√
n

log sn

)

+

(
Cp
∑wn
j=1 |Hj |p/4(log n)3p/2

C−1
M λ2np/4

)CM/2

≤
wn∑
j=1

P

(
|Uk,j − Ūk,j | ≥ C−1

M

√
n

log sn

)
+ n−M .

Therefore, it suffices to show that for any δ > 0,

lim
n→∞

sn∑
k=1

wn∑
j=1

P

(
|Uk,j − Ūk,j | ≥ δ

√
n

log n

)
= 0.

Since we can use the same arguments as those for (S.15), Lemma 10 follows.

S2.4 Step 4: Compare covariance structures

Lemma 11 is obtained by a simple application of the Bernstein’s in equality, so we omit

the proof. The following lemma is an intermediate step for proving Lemma 12.

Lemma S.2. Assume Xi ∈ L4, EX0 = 0, and Θ4 < ∞. Assume ln → ∞, kn → ∞,

m̌n < bkn/3c and h ≥ 0. Define Sn,k =
∑ln
i=1(Xi−kXi − γk). Then

|E (Sn,knSn,kn+h) /ln − σh| ≤ Θ3
4

(
16∆4(m̌n + 1) + 6Θ4

√
m̌n/ln + 4Ψ4(m̌n + 1)

)
.

Proof. Let X̌i = Hii−m̌nXi, then X̌i and X̌i−kn are independent, because m̌n ≤ bkn/3c.

Define Šn,k =
∑ln
i=1 X̌i−kX̌i. By (S.12), we have for any k ≥ 0,

∥∥∥(Sn,k − Šn,k)/
√
ln

∥∥∥ ≤ 4κ4∆4(m̌n + 1).
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By (S.7),
∥∥Sn,k/√ln∥∥ ≤ 2κ4Θ4 for any k ≥ 0, and it follows that

∣∣E(Sn,kn , Sn,kn+h)− E(Šn,kn Šn,kn+h)
∣∣

≤
∥∥Sn,kn − Šn,kn∥∥ · ‖Sn,kn+h‖+

∥∥Šn,kn∥∥ · ∥∥Sn,kn+h − Šn,kn+h

∥∥
≤ 16lnκ

2
4Θ4∆4(m̌n + 1).

(S.28)

For any k > 3m̌n, define Mn,k =
∑ln
j=1Dj , where

Dj =

j+m̌n∑
i=j

X̌i−kPjX̌i =

m̌n∑
q=0

Xj+q−kPjXj+q.

Observe that PjX̌j+q and X̌j+q−k are independent, we have

∥∥Šn,k −Mn,k

∥∥ =

∥∥∥∥∥∥
ln∑
i=1

i∑
j=i−m̌n

X̌i−kPjX̌i −
ln∑
j=1

j+m̌n∑
i=j

X̌i−kPjX̌i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
0∑

j=1−m̌n

j+m̌n∑
i=1

X̌i−kPjX̌i

∥∥∥∥∥∥+

∥∥∥∥∥∥
ln∑

j=ln−m̌n+1

j+m̌n∑
i=ln+1

X̌i−kPjX̌i

∥∥∥∥∥∥
≤ 2

 m̌n∑
j=1

κ2
2Θ2(j)2

1/2

≤ 2κ2Θ2

√
m̌n (S.29)

According to the proof of Theorem 2 of Wu (2009), when k > 3m̌n ‖Mn,k/
√
n‖2 =∑

k∈Z γ̌
2
k, where γ̌k = EX̌0X̌k. By (S.6) and (S.9), |γ̌k| ≤ ζk; and hence

∥∥Mn,k/
√
n
∥∥2 ≤

∑
k∈Z

ζ2
k =

∞∑
j,j′=0

(
δ2(j)δ2(j′)

∑
k∈Z

δ2(j + k)δ2(j′ + k)

)

≤
∞∑

j,j′=0

δ2(j)δ2(j′)Ψ2
2 ≤ Θ2

2Ψ2
2. (S.30)

By (S.7) and (S.9),
∥∥Šn,k/√ln∥∥ ≤ 2κ4Θ4 for any k ≥ 0. Combining (S.29) and (S.30),

we have

∣∣E(Šn,kn Šn,kn+h)− E(Mn,knMn,kn+h)
∣∣ ≤ (2κ4Θ4 + Θ2Ψ2)

√
ln · 2κ2Θ2

√
m̌n. (S.31)

Observe that when kn > 3m̌n, Xq−knXq′−kn−h and P0XqP0Xq′ are independent for
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0 ≤ q, q′ ≤ m̌n. Therefore,

E(Mn,knMn,kn+h) = lnE

 m̌n∑
q,q′=0

Xq−knXq′−kn−hP0X̌qP0X̌q′


= ln

m̌n∑
q,q′=0

γ̌q−q′+hE
[
(P0X̌q)(P0X̌q′)

]
= ln

∑
k∈Z

γ̌k+h

∑
q′∈Z

E
[
(P0X̌q′+k)(P0X̌q′)

]
= ln

∑
k∈Z

γ̌k+h

∑
q′∈Z

E
[
(Pq

′
X̌k)(Pq

′
X̌0)

]
= ln

∑
k∈Z

γ̌k+hγ̌k.

By (S.10), |γk − γ̌k| ≤ 2κ2Ψ2(m+ 1). Since |γk| ≤ ζk and |γ̌k| ≤ ζk, we have∣∣∣∣∣σh −∑
k∈Z

γ̌k+hγ̌k

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Z

(γkγk+h − γ̌kγ̌k+h)

∣∣∣∣∣
≤ 4κ2Ψ2(m+ 1)

∑
k∈Z

ζk ≤ 4κ2Ψ2(m+ 1)Θ2
2. (S.33)

Combining (S.28), (S.31) and (S.33), the lemma follows by noting that κ2, κ4 are domi-

nated by Θ4; and Θ2(·), Ψ2(·) and Ψ4(·) are all dominated by Θ4(·).

We now give the proof of Lemma 12.

Proof of Lemma 12. For 1 ≤ j ≤ wn, by (S.27), we have

∣∣E(Ūk,jŪk+h,j)− E(Uk,jUk+h,j)
∣∣ ≤ ‖Ūk,j − Uk,j‖‖Ūk+h,j‖+ ‖Uk,j‖‖Ūk+h,j − Uk+h,j‖

≤ 4κ4Θ4|Hj |1/2
(2Cp/2κpΘp)

p/4|Hj |p/8(log sn)3(p−4)/4

n(p−4)/8

≤ Cp|Hj |n−(1−γ)(p−4)/8(log n)3(p−4)/4.
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Let Sk,j =
∑
i∈Hj (Xi−kXi − γk), by (S.7) and (S.13), we have

|E(Sk,jSk+h,j)− E(Uk,jUk+h,j)| ≤ ‖Sk,j − Uk,j‖‖Sk+h,j‖+ ‖Uk,j‖‖Sk+h,j − Uk+h,j‖

≤ 24κ4Θ2
4|Hj |1/2Θ4(mn − k + 1)|Hj |1/2 ≤ C|Hj |n−αβ .

Since Θ4(m) = O(m−α), elementary calculation shows that ∆4(m) = O(n−α
2/(1+α)),

which together with Lemma S.2 implies that if k > tn,

|E(Uk,jUk+h,j)/|Hj | − σh| ≤ Θ3
4

(
16∆4(tn/3 + 1) + 6Θ4

√
tn/ln + 4Ψ4(tn/3 + 1)

)
≤ C

(
s−α

2ι/(1+α)
n + n−(1−ι)γ/2

)
.

Choose ` such that 0 < ` < min{(1 − η)(p − 4)/8, αβ, α2ι/(1 + α), (1 − ι)γ/2, γ − β}.

Then

|Cov(Rn,k,Rn,k+h)/n− σh| ≤ Cp
(
n−(1−η)(p−4)/8(log n)(p−4)/4 + n−αβ

+ s−α
2ι/(1+α)

n + n−(1−ι)γ/2
)

+
2wnmnσ0

n
≤ Cp s−`n

and the lemma follows.

S2.5 Step 5: Moderate deviations.

Proof of Lemma 13. Note that for x,y ∈ Rd, |x + y|• ≤ |x|• + |y|. Let Z ∼ N (0, Id)

and θn = (log sn)−1. Since |Ūk,j | ≤ 2
√
n/(log sn)3, by Fact 2.2 of Einmahl and Mason

(1997),

P (|Rn/
√
n|• ≥ zn) ≤ P (|Σ1/2

n Z|• ≥ zn − θn) + P (|Rn/
√
n− Σ1/2

n Z| ≥ θn)

≤ P (|Σ1/2
n Z|• ≥ zn − θn) + Cp,d exp

{
−C−1

p,d(log sn)2
}
.
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By Lemma S.8, the smallest eigenvalue of Σ is bounded from below by some cd > 0

uniformly on 1 ≤ k1 < k2 < · · · < kd. By Lemma 12 we have ρ(Σ
1/2
n − Σ1/2) ≤

c
−1/2
d · ρ(Σn − Σ) ≤ Cp,d s

−`
n , where the first inequality is taken from Problem 7.2.17 of

Horn and Johnson (1990). It follows that

P (|Σ1/2
n Z|• ≥ zn − θn) ≤ P (|Σ1/2Z|• ≥ zn − 2θn) + P

[∣∣∣(Σ1/2
n − Σ1/2

)
Z
∣∣∣ ≥ θn]

≤ P (|Σ1/2Z|• ≥ zn − 2θn) + Cp,d exp
{
−C−1

p,ds
`
n

}
.

By Lemma S.7, we have

P (|Σ1/2Z|• ≥ zn − 2θn) ≤
[
1 + Cp,d(log sn)−1/2

]
P (|Σ1/2Z|• ≥ zn).

Putting these pieces together and observing that V and Σ1/2Z have the same distribu-

tion, we have

P (|Rn/
√
n|• ≥ zn) ≤

[
1 + Cp,d(log sn)−1/2

]
P (|V |• ≥ zn) + Cp,d exp

{
−C−1

p,d(log sn)2
}
,

which together with a similar lower bound completes the proof of Lemma 13.

S2.6 Proof of Theorem 2

Proof of Theorem 2. We start with an m-dependence approximation that is similar to

the proof of Theorem 1. Set mn = bnβc for some 0 < β < 1. Define X̃i = Hi−mnXi,

γ̃k = E(X̃0X̃k), and R̃n,k =
∑n
i=k+1(X̃i−kX̃i − γ̃k). Similarly as the proof of Lemma 9,

we have under the condition (14),

max
1≤k<n

|Rn,k − R̃n,k| = oP

(√
n/log n

)
.

For R̃n,k, we consider two cases according to whether k ≥ 3mn or not.
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Case 1: k ≥ 3mn. We first split the interval [k + 1, n] into the following big blocks

of size (k −mn)

Hj = [k + j − 1(k −mn) + 1, k + j(k −mn)] for 1 ≤ j ≤ wn − 1

Hwn = [k + (wn − 1)(k −mn) + 1, n],

where wn is the smallest integer such that k + wn(k −mn) ≥ n. For each block Hj , we

further split it into small blocks of size 2mn

Kj,l = [k + (j − 1)(k −mn) + (l − 1)2mn + 1, k + (j − 1)(k −mn) + 2lmn] for 1 ≤ l < vj

Kj,vj = [k + (vj − 1)(k −mn) + (l − 1)2mn + 1, k + (j − 1)(k −mn) + |Hj |]

where vj is the smallest integer such that 2mnvj ≥ |Hj |. Now define Uk,j,l =
∑
i∈Kj,l X̃i−kX̃i

and

R̃u,1n,k =
∑

j≡u (mod 3)

∑
l odd

Uk,j,l and R̃u,2n,k =
∑

j≡u (mod 3)

∑
l even

Uk,j,l (S.34)

for u = 0, 1, 2. Observe that each R̃u,on,k (u = 0, 1, 2; o = 1, 2) is a sum of independent

random variables. By (S.7), ‖Uk,j,l‖ ≤ 2κ4Θ4|Uk,j,l|1/2. By Corollary 1.7 of Nagaev

(1979) where we take yi =
√
n in their result, we have for any λ > 0

P
(
|R̃n,k| ≥ 6λ

√
n log n

)
≤

2∑
u=0

∑
o=1,2

P
(∣∣∣R̃u,on,k∣∣∣ ≥ λ√n log n

)

≤
2∑

u=0

∑
o=1,2

∗∑
j,l

P
(
|Uk,j,l| ≥ λ

√
n log n

)
+ 12

(
Cp n

1−β · nβp/4

np/4

)p√logn/(p+4)

+ 12 exp

{
− 2λ2

(p+ 4)2 · ep/2 · κ2
4 ·Θ2

4

· log n

}
=: In,k + IIn,k + IIIn,k,

(S.35)

where the range of j, l in the sum
∑∗
j,l is as in (S.34). Clearly,

∑n−1
k=3mn

IIn,k = o(1).

Similarly as the proof of Lemma 11, we can show that
∑n−1
k=3mn

In,k = o(1). Therefore,

if ε = cp/6, then
∑n−1
k=3mn

IIIn,k = O(n−1).
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Case 2: 1 ≤ k < 3mn. This case is easier. By splitting the interval [k + 1, n] into

blocks with size 4mn and using a similar argument as (S.35), we have

lim
n→∞

3mn−1∑
k=1

P
(
|R̃n,k| ≥ cp

√
n log n

)
= 0.

The proof is complete.

S3 Complements of Section 4.2

We prove the two intermediate steps in Section S3.1 and Section S3.2, Theorem 6 in

Section S3.3, and Corollary 5 and 7 in Section S3.4.

S3.1 Step 2: Throw out small blocks.

To prove Lemma 15, we present an upper bound of Cov(Rn,k, Rn,h) in Lemma S.4. We

formulate the result in a more general way for later uses.

Let A2 be the collection of all double arrays A = (aij)i,j≥1 such that

‖A‖∞ := max

sup
i≥1

∞∑
j=1

|aij |, sup
j≥1

∞∑
i=1

|aij |

 <∞.

Recall the definition of A2 in Section S3.1. For A,B ∈ A2, define AB = (
∑∞
k=1 aikbkj).

It is easily seen that AB ∈ A2 and ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. Furthermore, this fact

implies the following proposition, which will be useful in computing sums of products

of cumulants. For d ≥ 0, let Ad be the collection of all d-dimensional array A =

A(i1, i2, . . . , id) such that

‖A‖∞ := max
1≤j≤d

sup
ij≥1

∑
{ik: k 6=j}

|A(i1, i2, . . . , id)|

 <∞.
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Proposition S.3. For k ≥ 0, l ≥ 0 and d ≥ 1, if A ∈ Ak+d and B ∈ Al+d, define an

array C by

C(i1, . . . , ik, ik+1, . . . , ik+l) =
∑

j1,...,jd≥1

A(i1, . . . , ik, j1, . . . , jd)B(j1, . . . , jd, ik+1, . . . , ik+l)

then C ∈ Ak+l, and ‖C‖∞ ≤ ‖A‖∞‖B‖∞.

For a k-dimensional random vector (Y1, . . . , Yk) such that ‖Yi‖k <∞ for 1 ≤ i ≤ k,

denote by Cum(Y1, . . . , Yk) its k-th order joint cumulant. For the stationary process

{Xi}i∈Z, we write

γ(k1, k2, . . . , kd) := Cum(X0, Xk1 , Xk2 , . . . , Xkd).

Lemma S.4. Assume Xi ∈ L4, EXi = 0, Θ2 <∞ and
∑
k1,k2,k3∈Z |γ(k1, k2, k3)| <∞.

For k, h ≥ 1, ln ≥ tn > 0 and sn ∈ Z, set Uk =
∑ln
i=1(Xi−kXi − γk) and Vh =∑sn+tn

j=sn+1(Xj−hXj − γj), then we have

|E(UkVh)| ≤ tnΞ(k, h)

where [Ξ(k, h)k,h≥1] is a symmetric double array of non-negative numbers such that Ξ ∈

A2, and

‖Ξ‖∞ ≤ 2Θ4
2 +

∑
k1,k2,k3∈Z

|γ(k1, k2, k3)|.

Remark S.2. In Lemma S.4, as well as in the proofs of Lemma 15 and Lemma 16,

we need the summability of joint cumulants. For this reason, we provide a sufficient

condition in Theorem S.6.

In the proof of Lemma 15, we need the concept of indecomposable partitions. Con-

sider the table
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(1, 1) . . . (1, J1)

...
...

(I, 1) . . . (I, JI)

.

Denote the j-th row of the table by ϑj . A partition ν = {ν1, . . . , νq} of the table is said

to be indecomposable if there are no sets νi1 , . . . , νik (k < q) and rows ϑj1 , . . . , ϑjl (l < I)

such that νi1 ∪ · · · ∪ νik = ϑj1 ∪ · · · ∪ ϑjl .

Proof of Lemma 15. Write

sn∑
k=1

E0(R̃2
n,k −R2

n,k) = 2

sn∑
k=1

E0

[
Rn,k(R̃n,k −Rn,k)

]
+

sn∑
k=1

E0(R̃n,k −Rn,k)2

=: 2In + IIn.

Using Lemma 16, we know IIn/(n
√
sn) = oP (1). We can express In as

In =

1∑
a=0

1∑
b=0

In,ab = In,00 + In,01 + In,10 + In,11. (S.36)

where for a, b = 0, 1 (assume without loss of generality that wn is even),

In,ab =

sn∑
k=1

E0

wn/2∑
j=0

Uk,2j−a

wn/2∑
j=0

Vk,2j−b

 .

Consider the first term in (S.36), write

E(I2
n,00) =

sn∑
k,h=1

E

wn/2∑
j=1

E0(Uk,2jVk,2j) · E0(Uh,2jVh,2j)


+

sn∑
k,h=1

∑
j1 6=j2

E(Uk,2j1Uh,2j1)E(Vk,2j2Vh,2j2)

+

sn∑
k,h=1

∑
j1 6=j2

E(Uk,2j1Vh,2j1)E(Vk,2j2Uh,2j2)

:= An +Bn + Cn.
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By Lemma S.4, it holds that

|Bn| ≤
sn∑

k,h=1

wn/2∑
j1,j2=0

ln|K2j2 | ·
[
Ξ̃(k, h)

]2
≤ wnln · (wnmn + 2ln)

sn∑
k,h=1

[
Ξ̃n(k, h)

]2
= o(n2sn),

where Ξ̃n(k, h) is the Ξ(k, h) (defined in Lemma S.4) for the sequence (X̃i). Similarly,

|Cn| ≤
sn∑

k,h=1

wn/2∑
j1,j2=1

|K2j1 | · |K2j2 | ·
[
Ξ̃n(k, h)

]2
≤ (wnmn + ln)2

sn∑
k,h=1

[
Ξ̃n(k, h)

]2
= o(n2sn).

To deal with An, we express it in terms of cumulants

An =

sn∑
k,h=1

wn/2∑
j=1

[Cum(Uk,2j , Vk,2j , Uh,2j , Vh,2j)

+E(Uk,2jUh,2j)E(Vk,2jVh,2j)

+E(Uk,2jVh,2j)E(Vk,2jUh,2j)]

=: Dn + En + Fn.

Apparently |En| = o(n2sn) and |Fn| = o(n2sn). Using the multilinearity of cumulants,

we have

Cum(Uk,2j , Vk,2j , Uh,2j , Vh,2j)

=
∑

i1,i2∈H2j

∑
j1,j2∈K2j

Cum(X̃i1−kX̃i1 , X̃j1−kX̃j1 , X̃i2−hX̃i2 , X̃j2−hX̃j2)

for 1 ≤ k, h ≤ sn. By Theorem II.2 of Rosenblatt (1985), we know

Cum
(
X̃i1−kX̃i1 , X̃j1−kX̃j1 , X̃i2−hX̃i2 , X̃j2−hX̃j2

)
=
∑
ν

b∏
q=1

Cum(X̃i, i ∈ νq) (S.37)

where the sum is over all indecomposable partitions ν = {ν1, . . . , νq} of the table
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i1 − k i1

j1 − k j1

i2 − h i2

j2 − h j2

By Theorem S.6, the condition
∑∞
k=0 k

6δ8(k) < ∞ implies that all the joint cumulants

up to order eight are absolutely summable. Therefore, using Proposition S.3, we know

sn∑
k,h=1

|Cum(Uk,2j , Vk,2j , Uh,2j , Vh,2j)| = O(|K2j |s2
n),

and it follows that |Dn| = O
(
(wnmn + ln)s2

n

)
= o(n2sn). We have shown that E(I2

n,00) =

o(n2sn), which, in conjunction with similar results for the other three terms in (S.36),

implies that E(I2
n) = o(n2sn) and hence In/(n

√
sn) = oP (1). The proof is now complete.

It remains to prove Lemma S.4.

Proof of Lemma S.4. Write

E(UkVh) =

ln∑
i=1

tn∑
j=1

E[(Xi−kXi − γk)(Xsn+j−hXsn+j − γh)]

=

ln∑
i=1

tn∑
j=1

[γ(−k, j + sn − i− h, j + sn − i)

+ γj+sn−i+k−hγj+sn−i + γj+sn−i+kγj+sn−i−h].

For the sum of the second term, we have∣∣∣∣∣∣
ln∑
i=1

tn∑
j=1

γj+sn−i+k−hγj+sn−i

∣∣∣∣∣∣ =

∣∣∣∣ tn−1∑
d=1

(γsn+d+k−hγsn+d)(tn − d)
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+ tn

0∑
d=tn−ln

γsn+d+k−hγsn+d

+

tn−ln−1∑
d=1−ln

(γsn+d+k−hγsn+d)(ln + d)

∣∣∣∣
≤tn

∑
d∈Z
|γsn+d+k−hγsn+d|

≤tn
∑
d∈Z

ζd+k−hζd.

Similarly, for the sum of the last term∣∣∣∣∣∣
ln∑
i=1

tn∑
j=1

γj+sn−i+kγj+sn−i−h

∣∣∣∣∣∣ ≤tn
∑
d∈Z

ζd+k+hζd.

Observe that
∑∞
h=1

∑
d∈Z ζd+k−hζd ≤

(∑
d∈Z ζd

)2 ≤ Θ4
2 and similarly

∑∞
h=1

∑
d∈Z ζd+k+hζd ≤

Θ4
2. For the sum of the first term, it holds that∣∣∣∣∣∣

ln∑
i=1

tn∑
j=1

γ(−k, j + sn − i− h, j + sn − i)

∣∣∣∣∣∣ ≤ tn
∑
d∈Z
|γ(−k, d− h, d)|.

Utilizing the summability of cumulants, the proof is complete.

S3.2 Step 3: Central limit theorem concerning Rn,k’s.

Proof of Lemma 16. Let Υn(k, h) := E(Uk,1Uh,1) and υn(k, h) := Υn(k, h)/ln. By

Lemma S.4 we know |υn(k, h)| ≤ Ξ̃n(k, h). Write

sn∑
k=1

E0R2
n,k =

sn∑
k=1

 wn∑
j=1

(
U2
k,j −Υn(k, k)

)
+ 2

wn∑
j=1

(
Uk,j

j−1∑
l=1

Uk,l

)
=

wn∑
j=1

[
sn∑
k=1

(
U2
k,j −Υn(k, k)

)]
+ 2

wn∑
j=1

(
sn∑
k=1

Uk,j

j−1∑
l=1

Uk,l

)
.

Using similar a argument as the one for dealing with the term An in Lemma 15, we know

wn∑
j=1

∥∥∥∥∥
sn∑
k=1

(
U2
k,j −Υn(k, k)

)∥∥∥∥∥
2

= o(n2sn),
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and it follows that

1

n
√
sn

wn∑
j=1

[
sn∑
k=1

(
U2
k,j −Υn(k, k)

)]
= oP (1).

Therefore, it suffices to consider

wn∑
j=1

(
sn∑
k=1

Uk,j

j−1∑
l=1

Uk,l

)
=:

wn∑
j=1

Dn,j .

Let Gn,j = 〈Dn,1, . . . , Dn,j〉. Observe that (Dn,j) is a martingale difference sequence

with respect to (Gn,j). We shall apply the martingale central limit theorem. Write

E
(
D2
n,j |Gn,j−1

)
− ED2

n,j =

sn∑
k,h=1

Υn(k, h)

(
j−1∑
l=1

Uk,l

j−1∑
l=1

Uh,l − (j − 1)Υn(k, h)

)

=

sn∑
k,h=1

Υn(k, h)

(
j−1∑
l=1

Uk,lUh,l − (j − 1)Υn(k, h)

)

+

sn∑
k,h=1

Υn(k, h)

(
j−1∑
l=1

Uk,l

l−1∑
q=1

Uh,q +

j−1∑
l=1

Uh,l

l−1∑
q=1

Uk,q

)

=: In,j + IIn,j

For the first term, by Lemma S.4, we have∥∥∥∥∥∥
wn∑
j=1

In,j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
wn−1∑
j=1

(wn − j)
sn∑

k,h=1

Υn(k, h) [Uk,jUh,j −Υn(k, h)]

∥∥∥∥∥∥
2

=

wn−1∑
j=1

(wn − j)2

∑
k,h

|Υn(k, h)| ‖(Uk,jUh,j −Υn(k, h))‖

2

≤w3
nl

4
n

∑
k,h

|υn(k, h)| · 4Θ2
8

2

= o(n4s2
n).

Using Lemma S.4 and Proposition S.3, we obtain∥∥∥∥∥∥
wn∑
j=1

IIn,j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
wn−1∑
j=1

(wn − j)
∑
k,h

Υn(k, h)

(
Uk,j

j−1∑
l=1

Uh,l + Uh,j

j−1∑
l=1

Uk,l

)∥∥∥∥∥∥
2
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=2

wn−1∑
j=1

(wn − j)2(j − 1)

 ∑
1≤k1,h1,k2,h2≤sn

Υn(k1, h1)Υn(k2, h2)

× [Υn(k1, k2)Υn(h1, h2) + Υn(k1, h2)Υn(h1, k2)]

}

≤4n4
∑

1≤k1,h1,k2,h2≤sn

|υn(k1, h1)υn(h1, h2)υn(h2, k2)υn(k2, k1)| = O(n4sn) = o(n4s2
n).

Therefore, we have

1

n2sn

 wn∑
j=1

E
(
D2
n,j |Gn,j−1

)
−

wn∑
j=1

ED2
n,j

 p→ 0.

Using Lemma S.4 and Lemma S.2, we know

1

n2sn

wn∑
j=1

ED2
n,j =

1

2n2sn
wn(wn − 1)l2n

sn∑
k,h=1

[υn(k, h)]2 → 1

2

∑
k∈Z

σ2
k,

and it follows that

1

n2sn

wn∑
j=1

E
(
D2
n,j |Gn,j−1

) p→ 1

2

∑
k∈Z

σ2
k. (S.38)

To verify the Lindeberg condition, we compute

ED4
n,j =

sn∑
k1,k2,k3,k4=1

E (Uk1,jUk2,jUk3,jUk4,j)

× E

[(
j−1∑
l=1

Uk1,l

)(
j−1∑
l=1

Uk2,l

)(
j−1∑
l=1

Uk3,l

)(
j−1∑
l=1

Uk4,l

)]

≤
sn∑

k1,k2,k3,k4=1

|E(Uk1,jUk2,jUk3,jUk4,j)| · 2C4
4(j − 1)2l2nΘ8

8

We express E(Uk1,1Uk2,1Uk3,1Uk4,1) in terms of cumulants

E(Uk1,1Uk2,1Uk3,1Uk4,1)

= Cum(Uk1,1, Uk2,1, Uk3,1, Uk4,1) + E(Uk1,1Uk2,1)E(Uk3,1Uk4,1)

+ E(Uk1,1Uk3,1)E(Uk2,1Uk4,1) + E(Uk1,1Uk4,1)E(Uk2,1Uk3,1)

=: An +Bn + En + Fn
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From Lemma S.4, it is easily seen that

sn∑
k1,k2,k3,k4=1

|Bn| ≤ l2n
sn∑

k1,k2,k3,k4=1

Ξ̃n(k1, k2) · Ξ̃n(k3, k4) = O(l2ns
2
n),

and similarly
∑sn
k1,k2,k3,k4=1 |En| = O(l2ns

2
n) and

∑sn
k1,k2,k3,k4=1 |Fn| = O(l2ns

2
n). By mul-

tilinearity of cumulants,

An =

ln∑
i1,i2,i3,i4=1

Cum(X̃i1−k1X̃i1 , X̃i2−k2X̃i2 , X̃i3−k3X̃i3 , X̃i4−k4X̃i4).

Each cumulant in the preceding equation is to be further simplified similarly as (S.37).

Using summability of joint cumulants up to order eight and Proposition S.3, we have

sn∑
k1,k2,k3,k4=1

|An| = O(lns
3
n) = o(l2ns

2
n).

Using orders for |An|, |Bn|, |En| and |Fn|, we obtain
∑wn
j=1 ED4

n,j = o(n4s2
n). Then, by

(S.38), we can apply Corollary 3.1. of Hall and Heyde (1980) to obtain

1

n
√
sn

wn∑
j=1

Dn,j ⇒ N

(
0,

1

2

∑
k∈Z

σ2
k

)
,

and the lemma follows.

S3.3 Proof of Theorem 6

Proof of Theorem 6. We shall only prove (22), since (21) can be obtained by very similar

arguments. Write γ̂k = E0γ̂k + γk − (γk − Eγ̂k), and hence

sn∑
k=1

(γ̂2
k − γ2

k) = 2

sn∑
k=1

γkE0γ̂k +

sn∑
k=1

(E0γ̂k)2 − 2

sn∑
k=1

k

n
γkE0γ̂k − 2

sn∑
k=1

k

n
γ2
k +

sn∑
k=1

k2

n2
γ2
k

=: 2In + IIn + IIIn + IVn + Vn.
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Using the conditions Θ4 < ∞ and sn = o(
√
n), it is easily seen that

√
nIVn → 0 and

√
nVn → 0. Furthermore

√
n‖IIIn‖ ≤ 2

√
n

sn∑
k=1

k

n
|γk| ·

2Θ2
4√
n
→ 0 and

√
nEIIn ≤

√
n

sn∑
k=1

4Θ4
4

n
→ 0.

Define Yi =
∑∞
k=1 γkXi−k. For the term In, write

nIn =

n∑
i=1

E0(XiYi)−
n∑
i=1

E0

(
Xi

∞∑
k=sn+1

γkXi−k

)
+

sn∑
k=1

γk

(
k∑
i=1

(Xi−kXi − γk)

)

=: An +Bn + En

Clearly ‖En‖/
√
n ≤

∑sn
k=1 |γk|2Θ2

4

√
k/
√
n → 0. Define Wn,i = Xi

∑∞
k=sn+1 γkXi−k,

then

‖P0Wn,i‖ ≤


δ4(i) ·Θ4

∑∞
k=sn+1 |γk| if 0 ≤ i ≤ sn

Θ4δ4(i)
∑∞
k=sn+1 |γk|+ Θ4

∑i
k=sn+1 |γk|δ4(i− k) if i > sn.

It follows that

‖Bn/
√
n‖ ≤ 2Θ2

4

∞∑
k=sn+1

|γk| → 0.

Set Zi = XiYi, then (Zi) is a stationary process of the form (9). Furthermore

‖P0Zi‖ ≤ δ4(i) ·Θ4

∞∑
k=1

|γk|+ Θ4

i∑
k=1

|γk|δ4(i− k).

Since
∑∞
i=0 ‖P0Zi‖ < ∞, utilizing Theorem 1 in Hannan (1973) we have An/

√
n ⇒

N (0, ‖D0‖2), and then (22) follows.

S3.4 Proof of Corollary 5 and 7

Proof of Corollary 5 and 7. By (S.5), we know ‖nX̄n‖4 ≤
√

3nΘ4, and it follows that∥∥∥∥∥
n∑

i=k+1

(Xi−k − X̄n)(Xi − X̄n)−
n∑

i=k+1

Xi−kXi

∥∥∥∥∥ ≤ 9Θ2
4.
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Theorem 4 holds for γ̆k because

n
√
sn

sn∑
k=1

E
∣∣(γ̂k − Eγ̂k)2 − (γ̆k − Eγ̂k)2

∣∣ ≤ n
√
sn

sn∑
k=1

‖γ̂k + γ̆k − 2Eγ̂k‖ · ‖γ̂k − γ̆k‖

≤ n
√
sn

sn∑
k=1

(
4Θ2

4√
n

+
9Θ2

4

n

)
· 9Θ2

4

n
→ 0.

In Theorem 6, (22) holds with γ̂k replaced by γ̆k because

√
n

sn∑
k=1

E
∣∣γ̂2
k − γ̆2

k

∣∣ ≤ √n sn∑
k=1

‖γ̂k + γ̆k‖ · ‖γ̂k − γ̆k‖

≤
√
n

sn∑
k=1

(
2|γk|+

4Θ2
4√
n

+
9Θ2

4

n

)
9Θ2

4

n
→ 0,

and (21) can be proved similarly. Now we turn to the sample autocorrelations. Write

sn∑
k=1

{
[r̂k − (1− k/n)rk]2 − [γ̂k/γ0 − (1− k/n)rk]2

}
=

sn∑
k=1

2(E0γ̂k)[γ̂k(γ0 − γ̂0)]

γ2
0 γ̂0

+
γ̂2
k(γ0 − γ̂0)2

γ2
0 γ̂

2
0

.

Since

sn∑
k=1

E |(E0γ̂k)γ̂k(γ0 − γ̂0)| ≤
sn∑
k=1

2C3Θ2
6

1√
n
·
(
|γk|+ 2C3Θ2

6

1√
n

)
· 2C3Θ2

6

1√
n

= o

(√
sn
n

)

and similarly
∑sn
k=1 E

∣∣γ̂2
k(γ0 − γ̂0)2

∣∣ = o(
√
sn/n), (19) follows by applying the Slutsky

theorem. To show the limit theorems in Corollary 7 note that using the Cramer-Wold

device, we have [
√
n(γ̂2

0 − γ2
0),
√
n

(
sn∑
k=1

γ̂2
k −

sn∑
k=1

γ2
k

)]

converges to a bivariate normal distribution. Then Corollary 7 follows by applying the

delta method.
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S4 A Normal Comparison Principle

In this section we shall control tail probabilities of Gaussian vectors by using their covari-

ance matrices. Denote by ϕd((rij);x1, . . . , xd) the density of a d-dimensional multivari-

ate normal random vector X = (X1, . . . , Xd)
> with mean zero and covariance matrix

(rij), where we always assume rii = 1 for 1 ≤ i ≤ d and (rij) is nonsingular. For

1 ≤ h < l ≤ d, we use ϕ2((rij);Xh = xh, Xl = xl) to denote the marginal density of the

sub-vector (Xh, Xl)
>. Let

Qd ((rij); z1, . . . , zd) =

∫ ∞
z1

· · ·
∫ ∞
zd

ϕd ((rij), x1, . . . , xd) dxd · · · dx1.

The partial derivative with respect to rhl is obtained similarly as equation (3.6) of Berman

(1964) by using equation (3) of Plackett (1954)

∂Qd ((rij); z1, . . . , zd)

∂rhl

=

 ∏
k 6=h,l

∫ ∞
zk

ϕd ((rij);x1, . . . , xh−1, zh, xh+1, . . . , xl−1, zl, xl+1, . . . , xd)
∏
k 6=h,l

dxk.

(S.39)

where
(∏

k 6=h,l
∫∞
zk

)
stands for

∫∞
z1
· · ·
∫∞
zh−1

∫∞
zh+1
· · ·
∫∞
zl−1

∫∞
zl+1
· · ·
∫∞
zd

. If all the zk have

the same value z, we use the simplified notation Qd ((rij); z) and ∂Qd((rij); z)/∂rhl. The

following simple facts about conditional distribution will be useful. For four different

indicies 1 ≤ h, l, k,m ≤ d, we have

E(Xk|Xh = Xl = z) =
rkh + rkl
1 + rhl

z, (S.40)

Var(Xk|Xh = Xl = z) =
1− r2

hl − r2
kh − r2

kl + 2rhlrkhrkl
1− r2

hl

, (S.41)

Cov(Xk, Xm|Xh = Xl = z) = rkm −
rhkrhm + rlkrlm − rhlrhkrlm − rhlrhmrlk

1− r2
hl

. (S.42)



INFERENCE FOR SERIAL COVARIANCES S31

Lemma S.5. For every z > 0, 0 < s < 1, d ≥ 1 and ε > 0, there exists positive constants

Cd and εd such that for 0 < ε < εd

1. if |rij | < ε for all 1 ≤ i < j ≤ d, then

Qd ((rij); z) ≤ Cd exp

{
−
(
d

2
− Cdε

)
z2

}
(S.43)

Qd ((rij); z, . . . , z) ≤ Cd fd(ε, 1/z) exp

{
−
(
d

2
− Cdε

)
z2

}
(S.44)

Qd ((rij); sz, z, . . . , z) ≤ Cd exp

{
−
(
s2 + d− 1

2
− Cdε

)
z2

}
(S.45)

where f2k(x, y) =
∑k
l=0 x

ly2(k−l) and f2k−1(x, y) =
∑k−1
l=0 x

ly2(k−l)−1 for k ≥ 1;

2. if for all 1 ≤ i < j ≤ d+ 1 such that (i, j) 6= (1, 2), |rij | ≤ ε, then

Qd+1 ((rij); z) ≤ Cd exp

{
−
(

(1− |r12|)2 + d

2
− Cdε

)
z2

}
. (S.46)

Proof. The following facts about normal tail probabilities are well-known:

P (X1 ≥ x) ≤ 1√
2πx

e−x
2/2 for x > 0 and lim

x→∞

P (X1 ≥ x)

(1/x)(2π)−1/2 exp {−x2/2}
= 1,

(S.47)

By (S.47), the inequalities (S.43) – (S.45) with ε = 0 are true for the random vector with

iid standard normal entries. The idea is to compare the desired probability with the

corresponding one for such a vector. We first prove (S.43) by induction. When d = 1,

the inequality is trivially true. When d = 2, by (S.39), there exists a number r′12 between

0 and r12 such that

|Q2((rij); z)−Q2(I2; z)| ≤ ϕ((r′ij), z, z)|r12|

≤ C exp

{
− z2

1 + |r′12|

}
≤ C exp

{
−(1− ε)z2

}
,
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which, together with Q2(I2; z) ≤ C exp{−z2}, implies (S.43) for d = 2 with ε2 = 1/2

and some C2 > 1. Now for d ≥ 3, assume (S.43) holds for all dimensions less than d.

There exists a matrix (r′ij) = θ(rij) + (1− θ)Id for some 0 < θ < 1 such that

Qd ((rij); z)−Qd ((Id; z) =
∑

1≤h,l≤d

∂Qd
∂rhl

((r′ij); z, . . . , z)rhl. (S.48)

By (S.40), E(Xk|Xh = Xl = z) ≤ 2ε′z/(1 − ε′) for k 6= h, l. Therefore, by writ-

ing the density in (S.39) as the product of the density of (Xh, Xl) and the condi-

tional density of X−{h,l} given Xh = Xl = z, where X−{h,l} denotes the sub-vector

(X1, . . . , Xh−1, Xh+1, . . . , Xl−1, Xl+1, . . . , Xd)
>; we have

∣∣∣∣∂Qd∂rhl
((r′ij); z, . . . , z)

∣∣∣∣ ≤ ϕ2((r′ij);Xh = Xl = z)Qd−2((r′ij|hl); (1− 3ε)z), (S.49)

where (r′ij|hl) is the correlation matrix of the conditional distribution of X−{h,l} given

Xh and Xl. By (S.41) and (S.42), we know for k,m ∈ [d] \ {h, l} and k 6= m,

Var(Xk|Xh = Xl = z) ≥ 1− 3ε2 − 2ε3 and Cov(Xk, Xm|Xh = Xl = z) ≤ ε(1 + ε)

1− ε
.

Therefore, all the off-diagonal entries of (r′ij|hl) are less than 2ε if we let ε < 1/5. Applying

the induction hypothesis, if 2ε < εd−2, then

Qd−2((r′ij|hl); (1− 3ε)z) ≤ Cd−2 exp

{
−
(
d− 2

2
− 2Cd−2ε

)
(1− 3ε)2z2

}
,

and equation (S.49) becomes

∣∣∣∣∂Qd∂rhl
((r′ij); z, . . . , z)

∣∣∣∣
≤CCd−2 exp

{
−(1− ε)z2

}
· exp

{
−
(
d− 2

2
− (2Cd−2 + 3(d− 2)) ε

)
z2

}
.

Therefore, (S.43) holds for εd < min{1/5, εd−2/2} and some Cd > 2Cd−2 + 3(d− 2) + 1.
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Using very similar arguments, inequality (S.45) can be proved by applying (S.43);

and inequality (S.46) can be obtained by employing both (S.43) and (S.45). To prove

inequality (S.44), which is a refinement of (S.43), it suffices to observe that, by (S.47),

(S.48) and (S.49)

Qd ((rij); z) ≤ Qd(Id; z) +
∑

1≤h,l≤d

C ε exp{−(1− ε)z2}Qd−2((r′ij|hl); (1− 3ε)z)

≤ Cd
1

zd
exp

{
dz2

2

}
+ Cd ε exp{−(1− ε)z2}

∑
1≤h,l≤d

Qd−2((r′ij|hl); (1− 3ε)z);

and apply the induction argument.

Theorem 14. Let (Xn) be a stationary mean zero Gaussian process. Let rk = Cov(X0, Xk).

Assume r0 = 1, and limn→∞ rn(log n) = 0. Let an = (2 log n)−1/2, bn = (2 log n)1/2 −

(8 log n)−1/2(log log n + log 4π), and zn = anz + bn for z ∈ R. Define the event Ai =

{Xi ≥ zn}, and

Qn,d =
∑

1≤i1<...<id≤n

P (Ai1 ∩ · · · ∩Aid).

Then limn→∞Qn,d = e−dz/d ! for all d ≥ 1. Furthermore, the same result holds if we

define Ai={|Xi| ≥ z2n}.

Proof of Theorem 14. Note that z2
n = 2 log n − log log n − log(4π) + 2z + o(1). If (Xn)

consists of iid random variables, by the equality in (S.47),

lim
n→∞

Qn,d = lim
n→∞

(
n

d

)
Qd(Id, zn)

= lim
n→∞

(
n

d

)
1

(2π)d/2zdn
exp

{
−dz

2
n

2

}
=
e−dz

d!
.

When the Xn’s are dependent, the result is still trivially true when d = 1. Now we

deal with the d ≥ 2 case. Let γk = supj≥k |rj |, then γ1 < 1 by stationarity, and
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limn→∞ γn log n = 0. Consider an ordered subset

J = {t, t+ l1, t+ l1 + l2, . . . , t+ l1 + · · ·+ ld−1} ⊂ [n],

where l1, . . . , ld−1 ≥ 1. We define an equivalence relation ∼ on J by saying k ∼ j if

there exists k1, . . . , kp ∈ J such that k = k1 < k2 < · · · < kp = j, and kh − kh−1 ≤ L

for 2 ≤ h ≤ p. For any L ≥ 2, denote by s(J, L) the number of lj which are less than or

equal to L. To similify the notation, we sometimes use s instead of s(J, L). J is divided

into d−s equivalence classes B1, . . . ,Bd−s. Suppose s ≥ 1, assume w.l.o.g. that |B1| ≥ 2.

Pick k0, k1 ∈ B1, and kp ∈ Bp for 2 ≤ p ≤ d − s, and set K = {k0, k1, k2, . . . , kd−s}.

Define QJ = P (∩k∈JAk) and QK similarly, then QJ ≤ QK . By (S.46) of Lemma S.5,

there exists a number M > 1 depending on d and the sequence (γk), such that when

L > M ,

QK ≤ Cd−s exp

{
−
(

(1− γ1)2 + d− s
2

− Cd−sγL
)
z2
n

}
≤ Cd−s exp

{
−
(
d− s

2
+

(1− γ1)2

3

)
z2
n

}
.

Note that z2
n = 2 log n − log log n + O(1). Pick Ln = max{bnαc,M} for some α <

2(1 − γ2
1)/3d. For any 1 ≤ a ≤ d − 1, since there are at most Lann

d−a ordered subset

J ⊂ [n] such that s(J, Ln) = a, we know the sum of QJ over these J is dominated by

Cd−a exp

{
log n

(
(d− a) +

2(d− 1)(1− γ1)2

3d
− (d− a)− 2(1− γ1)2

3

)}

when n is large enough, which converges to zero. Therefore, it suffices to consider all the

ordered subsets J such that lj > Ln for all 1 ≤ j ≤ d− 1.

Let J = {t1, . . . , td} ⊂ [n] be an ordered subset such that ti − ti−1 > Ln for

2 ≤ i ≤ d, and J (d, Ln) be the collection of all such subsets. Let (rij) be the d-
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dimensional covariance matrix of XJ . There exists a matrix RJ = θ(rij)i,j∈J +(1−θ)Id

for some 0 < θ < 1 such that

QJ −Qd(Id, zn) =
∑

h,l∈J,h<l

∂Qd
∂rhl

[RJ ; zn]rhl.

Let RH , H = J \ {h, l}, be the correlation matrix of the conditional distribution of XH

given Xh and Xl. By (S.44) of Lemma S.5, for n large enough

∂Qd
∂rhl

[RJ ; zn] ≤ C exp

{
− z2

n

1 + γl−h

}
·Qd−2 (RK ; (1− 3γLn)zn)

≤ CCd−2fd−2(γLn , 1/zn) exp

{
− z2

n

1 + γl−h

}
× exp

{
−
(
d− 2

2
− 2Cd−2γLn

)
(1− 3γLn))2z2

n

}
≤ Cdfd−2(γLn , 1/zn) exp

{
−
(
d

2
− (2Cd−2 + 3(d− 2))γLn − γh−l

)
z2
n

}
≤ Cdfd−2(γLn , 1/zn) exp

{
−
(
d

2
− CdγLn − γh−l

)
z2
n

}
.

It follows that∑
J∈J (d,Ln)

|QJ −Qd(Id; zn)|

≤ Cdfd−2(γLn , 1/zn)
∑

J∈J (d,Ln)

∑
1≤i<j≤d

exp

{
−
(
d

2
− CdγLn − γtj−ti

)
z2
n

}
γtj−ti

= Cdfd−2(γLn , 1/zn)
∑

1≤i<j≤d

∑
J∈J (d,Ln)

exp

{
−
(
d

2
− CdγLn − γtj−ti

)
z2
n

}
γtj−ti .

(S.50)

For each fixed pair 1 ≤ i < j ≤ d, the inner sum in (S.50) is bounded by

Cdfd−2(γLn , 1/zn)

n−1∑
l=Ln+1

(n− l)d−1 exp

{
−
(
d

2
− CdγLn − γl

)
z2
n

}
γl

≤Cdfd−2(γLn , 1/zn)(log n)d/2n−d
n−1∑

l=Ln+1

(n− l)d−1 exp {(CdγLn + γl) 2 log n} γl (S.51)

≤Cdfd−2(γbnαc, 1/zn) γbnαc(log n)d/2 exp
{

2 (Cd + 1) γbnαc log n
}
. (S.52)
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Since limn→∞ γn log n = 0, it also holds that limn→∞ γbnαc log n = 0. Note that

limn→∞(log n)1/2/zn = 2−1/2, it follows that limn→∞ fd−2(γbnαc, 1/zn)(log n)d/2−1 =

2−d/2+1. Therefore, the term in (S.52) converges to zero, and the proof of the first

statement is complete.

Finally, observe that in the preceding proof, the upper bounds on QJ and |QJ −

Q(Id; zn)| are expressed through the absolute values of the correlations, so we can ob-

tain the same bounds for probabilities of the form P (∩1≤i≤d{(−1)fiXti ≥ zn}) for any

(f1, . . . , fd) ∈ {0, 1}d. The second statement follows from this observation.

Remark S.3. This theorem provides another proof of Theorem 3.1 in Berman (1964),

which gives the asymptotic distribution of the maximum term of a stationary Gaussian

process. They also showed that the theorem is true if the condition limn→∞ rn log n = 0

is replaced by
∑∞
n=1 r

2
n < ∞. Under the later condition, if we replace γtj−tj by |rtj−ti |

in (S.50), γl by |rl| in (S.51), then the term in (S.51) converges to zero, and hence our

result remains true.

S5 Summability of Cumulants

For a k-dimensional random vector (Y1, . . . , Yk) such that ‖Yi‖k <∞ for 1 ≤ i ≤ k, the

k-th order joint cumulant is defined as

Cum(Y1, . . . , Yk) =
∑

(−1)p−1(p− 1)!

p∏
j=1

E
∏
i∈νj

Yi

 , (S.53)
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where the summation extends over all partitions {ν1, . . . , νp} of the set {1, 2, . . . , k} into

p non-empty blocks. For a stationary process (Xi)i∈Z, we abbreviate

γ(k1, k2, . . . , kd) := Cum(X0, Xk1 , Xk2 , . . . , Xkd),

Summability conditions of cumulants are often assumed in the spectral analysis of time

series, see for example Brillinger (2001) and Rosenblatt (1985). Recently, such condi-

tions were used by Anderson and Zeitouni (2008) in studying the spectral properties of

banded sample covariance matrices. While such conditions are true for some Gaussian

processes, functions of Gaussian processes (Rosenblatt, 1985), and linear processes with

iid innovations (Anderson, 1971), they are not easy to verify in general. Wu and Shao

(2004) showed that the summability of joint cumulants of order d holds under the condi-

tion that δd(k) = O(ρk) for some 0 < ρ < 1. We present in Theorem S.6 a generalization

of their result. To simplify the proof, we introduce the composition of an integer. A

composition of a positive integer n is an ordered sequence of strictly positive integers

{υ1, υ2, . . . , υq} such that υ1 + · · · + υq = n. Two sequences that differ in the order of

their terms define different compositions. There are in total 2n−1 different compositions

of the integer n. For example, we are giving in the following all of the eight compositions

of the integer 4.

{1, 1, 1, 1} {1, 1, 2} {1, 2, 1} {1, 3} {2, 1, 1} {2, 2} {3, 1} {4}.

Theorem S.6. Assume d ≥ 2, Xi ∈ Ld+1 and EXi = 0. If

∞∑
k=0

kd−1δd+1(k) <∞, (S.54)

then ∑
k1,...,kd∈Z

|γ(k1, k2, . . . , kd)| <∞. (S.55)
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Proof of Theorem S.6. By symmetry of the cumulant in its arguments and stationarity

of the process, it suffices to show

∑
0≤k1≤k2≤···≤kd

|γ(k1, k2, . . . , kd)| <∞.

Set X(k, j) := HjXk, we claim

γ(k1, k2, . . . , kd)

=
∑

Cum
[
X0, X(k1, 1), . . . , X(kυ1−1, 1), Xkυ1

−X(kυ1 , 1),

X(kυ1+1, kυ1 + 1), . . . , X(kυ2−1, kυ1 + 1), Xkυ2
−X(kυ2 , kυ1 + 1),

· · · ,

X(kυq+1, kυq + 1), . . . , X(kd−1, kυq + 1), Xkd −X(kd, kυq + 1)
]

; (S.56)

where the sum is taken over all the 2d−1 increasing sequences {υ0, υ1, . . . , υq, υq+1} such

that υ0 = 0, υq+1 = d and {υ1, υ2 − υ1, . . . , υq − υq−1, d − υq} is a composition of

the integer d. We first consider the last summand which corresponds to the sequence

{υ0 = 0, υ1 = d},

Cum [X0, X(k1, 1), . . . , X(kd−1, 1), Xkd −X(kd, 1)]

Observe that X0 and (X(k1, 1), . . . , X(kd−1, 1)) are independent. By definition, only

partitions for which X0 and Xkd −X(kd, 1) are in the same block contribute to the sum

in (S.53). Suppose {ν1, . . . , νp} is a partition of the set {k1, k2, . . . , kd−1}, since∣∣∣∣∣E
[
X0(Xkd −X(kd, 1))

∏
k∈ν1

X(k, 1)

]∣∣∣∣∣ =

∣∣∣∣∣∣
0∑

j=−∞
E

[
PjX0PjXkd

∏
k∈ν1

X(k, 1)

]∣∣∣∣∣∣
≤

0∑
j=−∞

δd+1(−j)δd+1(kd − j)κ|ν1|d+1,
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it follows that ∣∣∣∣∣∣E
[
X0(Xkd −X(kd, 1))

∏
k∈ν1

X(k, 1)

]
·
p∏
j=2

E
∏
k∈νj

X(k, 1)

∣∣∣∣∣∣
≤
∞∑
j=0

δd+1(j)δd+1(kd + j)κd−1
d+1

and therefore

∑
0≤k1≤k2≤···≤kd

|Cum [X0, X(k1, 1), . . . , X(kd−1, 1), Xkd −X(kd, 1)]|

≤Cd
∑

0≤k1≤k2≤···≤kd

∞∑
j=0

δd+1(j)δd+1(kd + j)

≤Cd
∞∑
j=0

∞∑
k=0

(
k + d− 1

d− 1

)
δd+1(j)δd+1(k + j) <∞,

provided that
∑∞
k=0 k

d−1δd+1(k) <∞.

The other terms in (S.56) are easier to deal with. For example, for the term corre-

sponding to the sequence {υ0 = 0, υ1 = 1, υ2 = d}, we have

|Cum [X0, Xk1 −X(k1, 1), X(k2, k1 + 1), . . . , X(kd−1, k1 + 1), Xkd −X(kd, k1 + 1)]|

≤ Cdκd−1
d+1Ψd+1(k1)Ψd+1(kd − k1).

Since
∑∞
k=0 k

d−1δd+1(k) <∞ implies
∑∞
k=0 k

d−2Ψd+1(k) ≤ ∞, it follows that

∑
0≤k1≤k2≤···≤kd

|Cum [X0, Xk1 −X(k1, 1), X(k2, k1 + 1), . . . ,

X(kd−1, k1 + 1), Xkd −X(kd, k1 + 1)]|

≤Cdκd−1
d+1

∞∑
k=0

Ψd+1(k)

∞∑
k=0

(
k + d− 2

d− 2

)
Ψd+1(k) ≤ ∞.

We have shown that every cumulant in (S.56) is absolutely summable over 0 ≤ k1 ≤

· · · ≤ kd, and it remains to show the claim (S.56). We shall derive the case d = 3, (S.56)
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for other values of d are obtained using the same idea. By multilinearity of cumulants,

we have

γ(k1, k2, k3) = Cum(X0, Xk1 , Xk2 , Xk3)

= Cum [X0, Xk1 −X(k1, 1), Xk2 , Xk3 ]

+ Cum [X0, X(k1, 1), Xk2 −X(k2, 1), Xk3 ]

+ Cum [X0, X(k1, 1), X(k2, 1), Xk3 −X(k3, 1)]

+ Cum [X0, X(k1, 1), X(k2, 1), X(k3, 1)] .

Since X0 and (X(k1, 1), X(k2, 1), X(k3, 1)) are independent, the last cumulant is 0. Ap-

ply the same trick for the first two cumulants, we have

Cum [X0, Xk1 −X(k1, 1), Xk2 , Xk3 ]

= Cum [X0, Xk1 −X(k1, 1), Xk2 −X(k2, k1 + 1), Xk3 ]

+ Cum [X0, Xk1 −X(k1, 1), X(k2, k1 + 1), Xk3 −X(k3, k1 + 1)]

+ Cum [X0, Xk1 −X(k1, 1), X(k2, k1 + 1), X(k3, k1 + 1)]

= Cum [X0, Xk1 −X(k1, 1), Xk2 −X(k2, k1 + 1), Xk3 −X(k3, k2 + 1)]

+ Cum [X0, Xk1 −X(k1, 1), X(k2, k1 + 1), Xk3 −X(k3, k1 + 1)]

and

Cum [X0, X(k1, 1), Xk2 −X(k2, 1), Xk3 ]

= Cum [X0, X(k1, 1), Xk2 −X(k2, 1), Xk3 −X(k3, k2 + 1)] .

Then the proof is complete.

Remark S.4. When d = 1, (S.54) reduces to the short-range dependence or short-

memory condition Θ2 =
∑∞
k=0 δ2(k) < ∞. If Θ2 = ∞, then the process (Xi) may be
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long-memory in that the covariances are not summable. When d ≥ 2, we conjecture

that (S.54) can be weakened to Θd+1 < ∞. It holds for linear processes. Let Xk =∑∞
i=0 aiεk−i. Assume εk ∈ Ld+1 and

∑∞
k=0 |ak| < ∞, then δd+1(k) = |ak|‖ε0‖d+1. Let

Cumd+1(ε0) be the (d+1)-th cumulant of ε0. Set k0 = 0, by multilinearity of cumulants,

we have

γ(k1, . . . , kd) =
∑

t0,t1,...,td≥0

 d∏
j=0

atj

Cum(ε−t0 , εk1−t1 , . . . , εkd−td)

=

∞∑
t=0

d∏
j=0

akj+t Cumd+1(ε0).

Therefore, the condition Θd+1 < ∞ suffices for (S.55). For a class of functionals of

Gaussian processes, Rosenblatt (1985) showed that (S.55) holds if
∑∞
k=0 |γk| <∞, which

in turn is implied by Θd+1 < ∞ under our setting. It is unclear whether in general the

weaker condition Θd+1 <∞ implies (S.55).

S6 Auxiliary Results

In this section we collect several auxiliary results. Suppose that X is a d-dimensional

random vector, and X ∼ N (0,Σ). If Σ = Id, then by (S.47), it is easily seen that the

ratio of P (zn − cn ≤ |X|• ≤ zn) over P (|X|• ≥ zn) tends to zero provided that cn → 0,

zn → ∞ and cnzn → 0. It is a similar situation when Σ is not an identity matrix, as

shown in Lemma S.7, which will be used in the proof of Lemma 13.

Lemma S.7. Let X ∼ N (0,Σ) be a d-dimensional normal random vector. Assume Σ is

nonsingular. Let λ2
0 and λ2

1 be the smallest and largest eigenvalue of Σ respectively. Then

for 0 < c < δ < 1/2 such that A := (2πλ2
1)(d−1)/2λ2

0c
2δ−2+dδ exp{(

√
6dλ1+λ0)/λ3

0} < 1,
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then for any z ∈ [1, δ/c],

P (z − c ≤ ‖X‖• ≤ z) ≤ (1−A)−1AP (‖X‖• ≥ z) . (S.57)

Proof of Lemma S.7. Let Cd = (6d)1/2λ1/λ0. Since λ2
0 is the smallest eigenvalue of Σ,

P (‖X‖• ≥ z − c) ≥ (2π det(Σ))−d/2 exp

{
−d(z + 1)2

2λ2
0

}
≥ (2πλ2

1)−d/2 exp

{
− 4dδ2

2λ2
0c

2

}
.

Since P (‖X‖∞ ≥ Cdδ/c) ≤ d(2πλ2
1)−1/2 exp{6dδ2/(2λ2

0c
2)}, we have

P (‖X‖∞ ≥ Cdδ/c) ≤ (2πλ2
1)(d−1)/2λ2

0c
2δ−2 P (‖X‖• ≥ z − c). (S.58)

For 0 ≤ k ≤ b1/δc, define the orthotopes Rk = [z+(k−1)c, z+kc]×[z−c, Cdδ/c]d−1. For

two points x = (x1, . . . , xd) ∈ R0, xk = (x1 + kc, x2, . . . , xd) ∈ Rk, we have x>k Σ−1xk −

x>Σ−1x ≤ (2
√
dCd+1)/λ2

0, and hence P (X ∈ Rk) ≥ exp{−(
√
dCd+1)/λ2

0}P (X ∈ R0)

for any 1 ≤ k ≤ b1/δc. Since the same inequality holds for every coordinate, we have

P (z − c ≤ ‖X‖• ≤ z, ‖X‖∞ ≤ Cdδ/c) ≤ dδ exp{(
√
dCd + 1)/λ2

0}P (‖X‖• ≥ z − c)

(S.59)

Combine (S.58) and (S.59), we know P (z − c ≤ ‖X‖• ≤ z) ≤ A · P (‖X‖• ≥ z − c). So

(S.57) follows.

Lemma S.7 requires the eigenvalues of Σ to be bounded both from above and away

from zero. In our application, Σ is taken as the covariance matrix of (Gk1 , Gk2 , . . . , Gkd)>,

where (Gk) is defined in (6). Furthermore, we need such bounds be uniform over all

choices of k1 < k2 < · · · < kd. Let f(ω) = (2π)−1
∑
h∈Z σh cos(hω) be the spectral

density of (Gk). A sufficient condition would be that there exists 0 < m < M such that

m ≤ f(ω) ≤M, for ω ∈ [0, 2π], (S.60)
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because the eigenvalues of the autocovariance matrix are bounded from above and below

by the maximum and minimum values that f takes respectively. For the proof see

Section 5.2 of Grenander and Szegö (1958). Clearly the upper bound in (S.60) is satisfied

in our situation, because
∑
h∈Z |σh| < ∞. However, the existence of lower bound in

(S.60) rules out some classical times series models. For example, if (Gk) is the moving

average of the form Gk = (ηk + ηk−1)/
√

2, then f(ω) = (1 + cos(ω))/2π, and f(π) = 0.

Nevertheless, although the minimum eigenvalue of the autocovariance matrix converges

to infω∈[0,2π] f(ω) as the dimension of the matrix goes to infinity, there does exist a

positive lower bound for the smallest eigenvalues of all the principal sub-matrices with

a fixed dimension, as stated in Lemma S.8.

Lemma S.8. If 0 <
∑
h∈Z σ

2
h <∞, then for each d ≥ 1, there exists a constant Cd > 0

such that

inf
k1<k2<···<kd

λmin

{
Cov

[
(Gk1 , Gk2 , . . . , Gkd)>

]}
≥ Cd.

Proof of Lemma S.8. We use induction. It is clear that we can choose (Cd) to be a non-

increasing sequence. Without loss of generality, let us assume k1 = 1. The statement is

trivially true when d = 1. Suppose it is true for all dimensions up to d, we now consider

the dimension (d+1) case. There exist an integer Nd such that
∑
h=Nd

σ2
h < 2C2

d/(d+1).

If all the differences ki+1 − ki ≤ Nd for 1 ≤ i ≤ d − 1, there are Nd−1
d possible choices

of k1 = 1 < k2 < · · · < kd. Since the process (Gk) is non-deterministic, for all these

choices, the corresponding covariance matrices are non-singular. Pick C ′d > 0 to be the

smallest eigenvalue of all these matrices. If there is one difference kl+1 − kl > Nd, set

Σ1 = Cov[(Gki)1≤i≤l] and Σ2 = Cov[(Gki)l<i≤d], then λmin(Σ1) ≥ Cd and λmin(Σ2) ≥



INFERENCE FOR SERIAL COVARIANCES S44

Cd. It follows that for any real numbers c1, c2, . . . , cd such that
∑d
i=1 c

2
i = 1,

∑
1≤i,j≤d

cicj Cov(Gki , Gkj ) = (c1, . . . , ci)
>ΣJ(c1, . . . , ci)

+(ci+1, . . . , cd)
>ΣJ(ci+1, . . . , cd)

+2
∑

i≤l,j>l

cicjσkj−ki

≥ Cd − 2

 ∑
i≤l,j>l

σ2
kj−ki

1/2 ∑
i≤l,j>l

c2i c
2
j

1/2

≥ Cd −
1

2

(
d+ 1

2
·
∑
h=Nd

σ2
h

)1/2

≥ Cd
2
.

Setting Cd+1 = min{Cd/2, C ′d}, the proof is complete.

References

Anderson, G. W. and Zeitouni, O. (2008). A CLT for regularized sample covariance

matrices. Ann. Statist. 36, 2553–2576.

Anderson, T. W. (1971). The statistical analysis of time series. John Wiley & Sons Inc.,

New York.

Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences.

Ann. Math. Statist. 35, 502–516.

Brillinger, D. R. (2001). Time series: Data Analysis and Theory, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA.

Burkholder, D. L. (1988). Sharp inequalities for martingales and stochastic integrals.
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