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Supplementary Material

The supplementary file is organized as follows. We first collect in Section some
moment inequalities concerning the sums and quadratic forms of stationary processes,
which might be useful for other studies. We then give the complements of Section 4.1
in Section and the complements of Section 4.2 in Section including the proofs
of intermediate lemmas, as well as other theorems and corollaries from Section 2.1 and
Section 2.2 respectively. In Section we prove a normal comparison principle that is
used in the proof of Theorem 1. We provide a sufficient condition for the summability

of joint cumulants in Section [S5} Some auxiliary results are collected in Section [SG}

For the readiability and completeness of this document, the statements of Theo-
rem 14 is repeated here. All the section, theorem, lemma and equation numbers refer to
the main article. The sections, theorems, propositions, lemmas and equations introduced

in this document are numbered with a “S”-prefix.

We list some notations here. The operator E is defined as EgX := X —EX for any
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random variable X. For a vector € = (z1,...,24)" € R% let |z| be the Euclidean norm,
|€|oo := maxi<;<q ||, and |x|e := mini<;<q|z;|. For a square matrix A, p(A) denotes
the operator norm defined by p(A) := maxz—; |[Az|. Let us make some convention
on the constants. We use C, ¢ and C for constants. The notation C, is reserved for
the constant appearing in Burkholder’s inequality, see . The values of C' may vary
from place to place, while the value of ¢ is fixed within the statement and the proof of
a theorem (or lemma). A constant with a symbolic subscript is used to emphasize the

dependence of the value on the subscript.

S1 Some Useful Inequalities

We collect in Proposition [S.1] some useful facts about physical dependence measures and
martingale and m-dependence approximations. We expect that it will be useful in other
asymptotic problems that involve sample covariances. Hence for convenience of other

researchers, we provide explicit upper bounds.

We first introduce a moment inequality (S.1) which follows from the Burkholder
inequality (see [Burkholder| [1988). Let (D;) be a martingale difference sequence and for

every i, D; € LP, p > 1, then
IDy+ Dy -+ Dl <8 (D1l + Dl + -+ IDall ), (S:1)
where p’ = min{p, 2}, and the constant
C,=@p—-1tifl<p<2and = /p—1ifp>2. (S.2)

We note that when p > 2, the constant C, in (S.1) equaled to p—1 in Burkholder| (1988)),
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and it was improved to v/p — 1 by [Rio| (2009).

Proposition S.1. 1. Assume EX; =0 and p > 1. Recall that p’ = min(p, 2).

||P0Xi||p <0p(i) and ||PoXill, < 0p(i) (S.3)
DT HXOHp < Cplpp (8-4)
n n 1/p’
ZciX < CpA,0,, where A, = <Z |ci|pl) (S.5)
i=1 » i=
[v6] < Ca(k), where (p(k Z(S (7 + k) (S.6)

n

> (XixXi — )

i=1

< 2C,26pOpV/n,  when p >4 (S.7)
p/2

Z Ci,j (XZXJ - A/ifj) S 4Cp/gcp6127Bn\/ﬁ, when P 2 4 (88)

Q=1
J p/2

2 _
where B;, = max{maxj<;<p ZJ L€y MaAXI<jn Doy €

2. Form >0, define X; = Hi—mX;. Forp>1, let Sp(~) be the physical dependence

measures for the sequence (X;). Then

Oy (i) < (i) (S.9)
[ Xo — XOHP < Cp¥y(m + 1) (S.10)
D (X - Xi)| <CpALO,(m+1) (S.11)
i=1 »
Z (XzekXi — vk — Xin Xi + %) <A4Cy(n — )l/p KopQap(m + 1).
i=k+1

p

(S.12)

Proof of Proposition[S.1l The inequalities (S.3]) and (S.9) are obtained by the first prin-
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ciple. Since X; =Y., PIX;  and X; = ._, P/ X;, we have

JEL JEZ
vk = Z E [(P7X0) (P77 Xp)]| < 62(5)02(j + k) < Ck,
j=—k

which proves (S.6]). For , it can be similarly proved as Proposition 1 of |[Liu and
Wy (2010), and was given by Lemma 1 of the same paper. is a special
case of . Define Y; = X, 1 X;, then (Y;) is also a stationary process of the form
(9). By Holder’s inequality, [|Y; — Qo(Y;)|lp/2 < 26p[0,(i) + 0,(i — k)]. Applying
to (Y;), we obtain . To see , we first write X, — X = Z;’il P_; Xy, Since
[P—j Xomll, < 6p(m+j), and (P—;X;,);>1 is a martingale difference sequence, by ,
we have

1Xo — XollZ < €2 S IP_ Xl < C > [8p(m+ 5)IF = CE [, (m + )7

j=1 j=1
The above argument also leads to (S.4). Using a similar argument as in the proof of

Theorem 2 of [Wu| (2009), we can show (S.12)). Details are omitted. O

S2 Complements of Section 4.1

We prove the five intermediate steps in Section[S2.1S2.5 and Theorem 2 in Section[S2.6]

S2.1 Step 1: m-dependence approximation

Proof of Lemma 8. Recall that m,, = |n”| with n < 8 < 1. We claim

HRn,k - Rn,k

‘W < 6C,50,0,(my — k +1) - /. (S.13)
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It follows that for any A > 0

P( max

1<k<sy,

(log s,)P
nk nk‘ >)‘\/n/10g5n) /4)\p/2 Z”Rnk} nk:||p/2
< C’p)\’p/an(log Sn)p/4nfaﬂp/2 < Cp);p/2nnfaﬂp/2(10g n)p/4.
Therefore, if ap/2 > n, then there exists a 8 such that n < 8 < 1 and n — afp/2 < 0,

and hence the preceding probability goes to zero as n — oco. The proof of Lemma 8 is

complete.

We now prove claim (S.13). For each 1 < k < s,,, we have

n n
||Rn,k: - Rn,k||p/2 S Z (Xi—k - Xi—k)Xi + Z (Hi—mnXi—k)(Xi - Xz)
i=k+1 p/2 i=k+1 p/2
Z Eo [(Xi—k — Him, Xi)(Xi — Xi)}
i=k+1

p/2

Observe that (Xipi—k—in—k)lgign is a backward martingale difference sequence with

respect to Fi_j—; if j > my, so by the inequality (S.1)),

<Z ZXszjzk

p/2 j=m+1 ||i=k+1

n

Z (Xick — Xick)Xi

i=k+1

p/2

< Z \/ﬁcp/2||Xj+k7D0Xj||P/2

j=m+1

< Cp20,0,(my + 1) - /.

Similarly we have || 320, o (Hiom, Xiok)(Xi — Xi)|lpj2 < V/1Cpy2©,0,(my, +1). Simi-
larly as 1D we get ||)~(¢_k —Hicm, Xikllp < Op(mp, —k+1). Let Y, ; = (Xi—g —

Hi o, Xi_1)(Xi — X;). Then

Yni = Qo(Yni)l, /0 < 2[0p(8)Op(mn — k +1) + 6, (i = k)Op(my + 1)] -
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Therefore, by (S.5)), it follows that

n

Z Eo [(Xi—k = Hiem, Xici)(Xi — Xl):|
i=kt1

<4C20,0,(my —k+1) - /n,
p/2
and the proof of (S.13)) is complete. O

S2.2 Step 2: Throw out small blocks

In this section, as well as many other places in this article, we often need to split an
integer interval [s,t] = {s,s+ 1,...,t} C N into consecutive blocks By, ..., B, with the
size m. Since s —t + 1 may not be a multiple of m, we make the convention that unless
the size of the last block is specified clearly, it has the size m < |B,| < 2m, and all the

other ones have the same size m.

Proof of Lemma 9. It suffices to show that for any A > 0,

Sn W,
n
li P >N =
nl—fgokzzl ;V’” ="\ logs, 0

Observe that Vj j,1 < j < wy, are independent. By (S.7), ||[Vi;| < 2|K;|'/?k404. By

Corollary 1.6 of [Nagaev| (1979), for any M > 1, there exists a constant Cp; > 1 such

that

W
n
P Vil > A
32:21 kol = log s,,

Wn, 4 5 262 wj
<3P (IViyl > Cof a/nlogs,) +< eR30T T,
7j=1

K| /2
Oy A2/ log s, (S.14)

< ZP <|Vk7j| > C&l/\\/n/logn) + Cum (nB*A’ logn)CM/2

j=1

Wn,

<> P (|Vk7j| > C]T;\/n/logn) +n M,
j=1

S6
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where we resolve the constant A into the constant C; in the last inequality. It remains

to show that

) Sn W, n
nILHSOZZP (IVk,j| = ¢10¢n) = 0, where ¢, = , | ogn’ (5.15)

k=1 j=1

holds for any ¢ > 0, where ¢; is the smallest integer such that 89 < min{(p —4)/p, (p—
2 —2n)/(p — 2)}. This choice of ¢; will be explained later. We adopt the technique of

successive m-dependence approximations from |Liu and Wu| (2010) to prove (S.15)).
For ¢ > 1, set my, 4 = |n”"|. Define Xig=Micmn , Xis Yhyg = E(X0,gXk,q), and

Vijg = E (Xi—k,qXig = Vo)
1€K;,i>k

In particular, my, 1 is same as m,, defined in Step 2, and Vj ;1 = Vi ;. Without loss of
generality assume s, < [n"]. Let go be such that 3%+ < < 8%. We first consider the
difference between V;, ;  and V, j 441 for 1 < ¢ < qo. Split the block K into consecutive

small blocks By, ..., By, , with size 2m,, 4. Define

0 1
Vk(,j),q,t = Z (Xi—k,qXiq — Vhq) and Vk(,j),q,t = Z (Ximk,q+1Xig+1 = Vh,g+1)-
1EB: 1€B:
(5.16)

Observe that Vk((})q ¢, and v are independent if |t; — t3| > 1. Similar as 1) for

k.j.q,t2

any M > 1, there exists a constant Cp; > 1 such that, for sufficiently large n,

Wn,q

Z (Vk(yoj),q,t - Vk(,lj),q,t)

t=1

Wn,q
(0) ¢h)
< Z P (‘Vk,y}qi Vi
t=1

P (|Vk,j,q - Vk,j’q+1| > 5¢n> =P

> 5%]
(S.17)

> Cyfdn) + 7.

Similarly as (S.13[), we have HVk(_Oj)qt - Vk(lj)q tH p < Cp|Bt|1/2m;3+1. It follows that
s dat], ;

o 1 M n”mﬁ/;l m, ?13-/12
P(|[Vijg = Vijgril 2 0¢n) < Cpun™n™ 7 | n= % + o
gg e v M q(n/ log n)?/*
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<Cyom (nn+1—7—M + nnnl—p/élm%{;l—l—aﬁp/?) )

Under the condition (16), there exists a 0 < 5 < 1, such that

YN P (Viga— Vgl = 06n)

k=1 j=1

<Cpum (n"JrlfvfM JrnnJrlfp/4+5q(])/4717045,;/2)) _o.

Recall that ¢; is the smallest integer such that 5% < min{(p—4)/p,(p—2—2n)/(p—
2)}. We now consider the difference between V, ; , and Vi j4+1 for g9 < ¢ < ¢i1. The
problem is more complicated than the preceding case 1 < g < qq, since now it is possible

that m,, 4 < k for some 1 < k < s,. We consider three cases.

Case 1: k > 2my, 4. Partition the block K; into consecutive smaller blocks By, ..., By,
with same size m,, 4. Define Vk(’oj),q,t and Vk(71j)7q7t as in 1) Observe that the sequence

(V(O) (1) is a martingale difference sequence with respective to the fil-

kg.at — k,j,q,t>t is odd

tration (& := (e : | < max{B})); is oaq> and so is the sequence and filtration labelled
by even t. Set & = (¢ : I <min{B;1}) and {1 = (g : | < min{B1} — m,,4). For each
1 <t < wyq, define
Vt(l) [(Vk(,lj,q, ) € 2} = Z Koy —k, g1 X in— kg1 Vis —in g+l
i1,i2€8;
for I = 0,1. By Lemma 1 of [Haeusler| (1984)), for any M > 1, there exists a constant

Cyr > 1 such that

w

n,q
P (|Vijg = Vajgsil 2 06n) < ) P (\v(‘” v

k.j,q.t 7J,q,t =
—+§:2{P

1=0,1

n -M
)

} |

H~

(S.18)
+ P

=1
1 -1

W Cun W Cur

Z Vi =z (logn)? Z Vi (logn)?

t is odd

t is even
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By (S.6), Y ez [kq+> < ©3, and hence by lD ||Vt(l)||p/2 < Opm;{s. Observe that

Vt(lo) and Vt(lo) are independent if |t; — t2| > 1, so similarly as 1) we have

_1 -2
M) > Cyn M UNS Cyn
Z Vi ~ (logn)? + Z [ £ = (logn)? ]

t is odd t is odd

<n ™™ 4 Cpap - wng -0 TP 2 (logn)?P - mﬁ{;l.

The same inequality holds for the sum over even ¢. For the first term in (S.18)), we claim

that

(0) 1) /2 ,,—a
HVkajﬂLt - Vk,j,q,th <G mn{q M q41 (5.19)

which together with the preceding two inequalities implies that
P ([Vijig = Va1l = 66n) < Cparwn,q - n"?(logn)*/? (m’%{qz Mgk + mp/4) .

It follows that under condition (16), there exists a 0 < 5 < 1 such that

> D PV — Vigaril = 56n)

k=2my, q j=1

< I+ 4 O p P 2 (log )P/ [nﬁ"(p/2—l—aﬁp) n nﬂq(p/zl—l)} = o(1).
(S.20)

Case 2: k < myq41/2. Partition the block K; into consecutive smaller blocks

By, ..., By, , with size 3m, 4. Define Vk(’oj)’q’t and Vk(’lj)’q’t as in 1) Similarly as | ,

we have

HV(O) _

Lo 1/2 . —a
kgt~ Vegat|| o S Cprmylg -m

p/2 " n,q n,q+1°

Similar as (S.17)), for any M > 1, there exist a constant C'py > 1 such that

P ([Vijig — Visigr1] = 06n) < (]v“’) )

k.j,q.t k.j.q.t
t=1

> C]T/[lgbn) +n M

<n M4 Cp,M - Wnq - n*p/4(10g n)p/4 . mﬁ{;l 'm;fﬁ’i/?
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It follows that that under condition (16), there exists a 0 < 8 < 1 such that

Mn,q+1/2 w,

D Y P (Vi — Vagaril = 60n)
k=1 j=1 (S.21)

7\ P/4—aBp/2
<=M O - nt P A (logn)P/A (nﬁ ) =o0

Case 8: my g1+1/2 < k < 2my, 4. We use the same argument as in Case 2. But this

time we claim that

k.j.q.t k.j,q.t

HV(O) v

’p/Q =G {miﬁ My oy mngGp(k) | (S.22)

where (, (k) is defined in 1) Since Yo, [G(R)P/2 < D0, Cp(k)]p/2 = O(m~P/2),
under the condition (12), there exist constants Cp s > 1 and 0 < 8 < 1 such that for

M large enough
2mn q—1  w,
S Y P (Vi — Vigaril 2 060) < Cpaar - n' =7/ (log n)?/ imt/f=oPr/2
k>mg, q41/23=1
2mp,q—1

M Gy logmp g2 Y (G

q
k>mp,q11/2

< TN Gy g P 3 (1),

(S.23)

’
—x

1/2
< Cpminlyg My g 415

p/2

Alternatively, if we use the bound from (/S.12

0 1
’Vk(yj),q,t - Vk(,j)yqyt

b

it is still true that under condition (12), there exist constants Cp pr > 1 and 0 < § < 1

such that for M large enough

2mp ¢—1  w,

S S P (Vi — Vigstl = 660)
k> g /2751 (S.24)

<M 4 Gy P log )t 27102 < (1),

Combine ([S.20)), (S.21)), (S-23) and (S.24)), we have shown that

Sn Wn

Bim 3OS P (Vo — Viggnl| > 66,) = 0. (5.25)
k=1j=1
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for 1 < g < q1. Therefore, to prove (S.15)), it suffices to show

Tim 3OS P (Vi | 2 0,) =0 (5.26)
k=1 j=1
By considering two cases (i) 2myq < k < s, and (ii) 1 < k < 2m, 4 under the

condition % < min{(p — 4)/p, (p — 2 — 21)/(p — 2)}, and using similar arguments as

those in proving (S.25)), we can obtain (S.26)). The proof of Lemma 9 is complete.

We now turn to the proof of the two claims (S.19)) and (S.22f). For (S.22]), we have

(0) (1)
Hvk,j,q,t - Vk,j,q,th/2 = Z(Xifk,q - Xi*k,qul)Xi,qH
1€EBy p/2

1D Bo [Xikg1(Xig — Xigr1)]
i€B: p/2

D Eo [(Ximkg = Xiokigt1)(Xig — Xigr1)]
i€By p/2

=1+ I+ III.

Similarly as in the proof of (S.13)), we have
I <Cp0p0,(mpgr1+1)\/3mpg and I <4C,/20,0,(Mmpgi1 + 1) - \/3Mp .

For the second term II, write

Mn,q+1 Mn,q

Eo [Xi—kqr1(Xig — Xigr)l = > > EBol(Pik-n, Xik)(Pi, Xi)] .

I1=0 la=my qr1+1

For a pair (I1,l2) such that i — k — I # i — lo, by the inequality (S.1)), we have

< Cpyap(11)0,(12) - /31 q.

p/2

Z (Pit—ty Ximk) (Pic1, X4)

1E€EBy
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For the pairs (I1,12) such that ¢ — k — I; =i — I3, by the triangle inequality

Mn,q+1

SN Bol(PiokaiXit) (Picp—1Xi)]

i€By  1=0

p/2
My, g+1

<My g - 2 Z 5p ()8, (k +1) < 6my oCp(k).
=0

Putting these pieces together, the proof of (S.22) is complete. The key observation in
proving (S.19) is that since k > 2m,, 4, X;_k, and X, , are independent, hence the
product X;_j ¢X; q has finite p-th moment. The rest of the proof is similar to that of

(S.22). Details are omitted. O

Remark S.1. Condition (12) is only used to deal with Case 3, while (16) suffices for
the rest of the proof. In fact, for linear processes, one can show that the term m,, 4(,(k)
in can be removed, so we have under condition (16) and do not need
(S.24). So (16) suffices for Theorem 1. Furthermore, for nonlinear processes with d, (k) =

O [k_(l/%‘l)] , the term m,, 4(,(k) can also be removed from 1) Details are omitted.

S2.3 Step 3: Truncate sums over large blocks

Proof of Lemma 10. We need to show for any A > 0

Sn Wn B n
: s _
lim_ ;P ;(U;w Uk )| > X s, | =

Using (S.7), elementary calculation gives

E|Uk,j |p/2 < (2Cp/2“p@p)p/2|Hj |p/4(log Sn)g(p_4)/2
Vv/n/logs,)P/2=2 — np—4)/4 :

|05 = Tl < ( (S.27)
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Similarly as (S.14)), for any M > 1, there exists a constant Cp; > 1 such that

Wnp

_ n o _ n
P U )| > <Y P (|Un; —Upsil > Cit A
;(de U/w) > A logs, | = ]z:; (| k.j k,J| = YMm log Sn>

<Cp Z;‘:l |Hj W‘*(log n)Sp/2 ) Cn /2
+

Oyt \2np/4
W, B . n Y
<;P<|Uk,j—Uk’j|>CM logsn)+n .
Therefore, it suffices to show that for any ¢ > 0,
Spn  Wp B n
li P(|Uk;— Ukl >0,/ =0
nLH;oZZ <| o bl 2 10gn>
k=1j=1
Since we can use the same arguments as those for (S.15)), Lemma 10 follows. O

S2.4 Step 4: Compare covariance structures

Lemma 11 is obtained by a simple application of the Bernstein’s in equality, so we omit

the proof. The following lemma is an intermediate step for proving Lemma 12.

Lemma S.2. Assume X; € £L*, EXy = 0, and ©4 < co. Assume l,, — 00, k, — 00,

M < |kn/3] and h > 0. Define Sy 1 = Eill(Xi,kXi — k). Then

IE (St Sk, i) [ln — on] < O3 (16A4(mn 1)+ 604\/1n [l + AV (17 + 1)) .

Proof. Let X; = "Hﬁ_mnXi, then X; and X’i,kn are independent, because m,, < |k,/3].

Define Sn);c = Zéll X, xX;. By 1 , we have for any k > 0,

| Snte = S/ Vi

< 4I€4A4(mn + 1).
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)

|E(Snks Snston-+h) — E(Sn ke Snientn)|

|Snk/\/EH < 2k404 for any k£ > 0, and it follows that

< ||Sn,kn — Sn,an |1Sn, k., . ||Sn,kn+h — Sn,kn+hH (S.28)
< 161, k204A4 (172, + 1).
For any k > 3, define M,, j, = 2?:1 D;, where
Jt+mn 5 o Thn )
= Z X, wPX; :ij+q_mﬂxj+q.
i=j q=0
Observe that P/ X j+q and X j+q¢—k are independent, we have
. ln J+rn
1, = M i]| = Z Z XidP Xi= D XiwP' X
i=1 j=i—m, j=1 i=j
Jt+mn Jt+mn
< Z > X PIX| + Z > XiwPIX;
j=1—rhn, i=1 j=lpn—mp+1i=l,+1
. 1/2
<2 ) K30,())? < 269021, (S.29)
=1

According to the proof of Theorem 2 of (Wu| (2009), when k > 3, ||M,/v/n|* =

S tez 7f: where 5 = EXo Xy By (5.6) and (S9), |9x| < ¢x: and hence

M p/vrl* <3G =D (52<j>52<j’>262<j+k>52<j/+k>>

keZ 4,5'=0 kEZ
< Z 82(7)02(j) 2 < ©2W2. (S.30)
3,3'=0

by () wnd §3)

we have

< 2k404 for any k > 0. Combining 1) and 1D

IE(Sn k., Snntn) — E(My o, My o 41)| < (26404 + O2W2)\/1,, - 262001/, (S.31)

Observe that when k,, > 3y, Xq—k, X¢'—k,—n and P°X,P°X,, are independent for
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0 <gq,q < my,. Therefore,
E(Mp o, My 4n) = B | Y Xgok, Xgr—h, -nPOXPOXy
4:9'=0
=l > Fo-nE [(PPX,)(P'Xy)]
q,9'=0
=10 Y Arin P E[(P Xy k) (P Xy)]
kEZ q'EZ
=In Z%Jrh Z E [(Pq/Xk)(Pq/Xo)}
keZ =
=10 > AkrnTre
kEZ
By (S.10), |v& — F&| < 2k2%2(m + 1). Since |vyi| < (, and |§x| < (x, we have
o= D Wkern | = | D (W Vern — TuTirn)
kez kez
< drpWs(m+1) Y G < 4k Wa(m + 1)03. (S.33)
keZ
Combining (S.28)), (S.31]) and (S.33)), the lemma follows by noting that ko, k4 are domi-
nated by ©4; and O3(-), ¥o(-) and Uy(-) are all dominated by O4(-). O

We now give the proof of Lemma 12.

Proof of Lemma 12. For 1 < j < w,, by (S.27), we have

\E(Uk Uk +n.5) = B(Uk Uk +n.5)| < 10k5 = Ukl 0kn i | + 11Uk 51111 Uk — Ukl

1/2 (2CP/2’€P6p)p/4|Hj P/8(log s,,)3(P=4)/4
n—4)/8

S 4&4@4|Hj|

< C’p\Hj|n_(1_7)(p‘4)/8(log n)3P=9/4,

S15
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Let Sy, = ZieHj (Xi—kX; — V), by l) and , we have

IE(Sk,jSk+h,5) — E(Uk,jUs+nj) < 1Sk — Uk il Sktnj

+ [|Uk, i 1| Sk+n.j — Urtn gl

< 241,03 H;|Y?04(my, — k + 1)|H,|? < C|H;ln=F.

Since ©4(m) = O(m™), elementary calculation shows that Ay(m) = O(n_o‘z/(l"")‘))7

which together with Lemma implies that if k& > ¢,,,

[E(Uk Ui )/ 1H3| = o] < ©F (1644(60/3 + 1) + 60/t [l + 4% (1/3 + 1))

<C (S;a%/um) + n—(l—owz) _

Choose ¢ such that 0 < ¢ < min{(1 —n)(p —4)/8, afB, a®t/(1 + a), (1 — )v/2, v — B}

Then

| Cov(Rn ks R ktn)/n — o] < Cp (n_(l_")(p_4)/8(1og n)(”_4)/4 +no8

2W, My 00

4ot/ (k) n—(l—ow) + <Cpsyt

n

and the lemma follows. O

S2.5 Step 5: Moderate deviations.

Proof of Lemma 13. Note that for &,y € R?, |z + yle < |z|e + |y|. Let Z ~ N(0,14)

and 0, = (logs,)~!. Since |Uy, ;| < 2y/n/(logs,)3, by Fact 2.2 of [Einmahl and Mason

({1997),

P(|Rn/Vnle > 2,) < P(‘23L/2Z|. > 2y = 0n) + P(|Rn/Vn — Evlz/zz‘ > 0n)

< P(\E;/ZZL > zp —0,) + Cpq exp {—C_l(logsn)Z} )

p,d

S16
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By Lemma the smallest eigenvalue of ¥ is bounded from below by some ¢4 > 0

uniformly on 1 < k1 < ky < -+ < kg. By Lemma 12 we have p(Ei/Q — 21/2) <

-1/2

¢, p(E, —X) < Cpas;t, where the first inequality is taken from Problem 7.2.17 of

Horn and Johnson| (1990). It follows that

P(SY2Z|s > 20 — 60,) < P(ISYV2Z|s > 2, — 20,) + P H (2}/2 . 21/2) Z‘ > 9n]

< P(|2Y22Z| > 2z, — 20,) 4+ Cp.q exp {—C;;sﬁ} :

By Lemma, we have
P(SY2Z|y > 2, — 20,) < [1 +C,.q(log sn)—lﬂ P(SY2Z|, > z,).

Putting these pieces together and observing that V and £!/2Z have the same distribu-

tion, we have
—1/2 1 2
P(|R./vVnle > zn) < |1+ Cp.a(log sy) ] P(|V]e> zn) + Cpa exp{ C, 4(log sy,) } )

which together with a similar lower bound completes the proof of Lemma 13. O

S2.6 Proof of Theorem 2

Proof of Theorem 2. We start with an m-dependence approximation that is similar to
the proof of Theorem 1. Set m,, = [n”| for some 0 < 3 < 1. Define X, = Him, X,
Y = IE(XOXk), and ]:an = Z?ZM(X,-,,CXZ- — ). Similarly as the proof of Lemma 9,

we have under the condition (14),

max |Ry, — Rnk\ =op (x/n/logn> .

1<k<n

For R, 1, we consider two cases according to whether £ > 3m,, or not.
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Case 1: k > 3m,,. We first split the interval [k 4+ 1,n] into the following big blocks

of size (k —my,)
Hij=k+j—1k—my)+1,k+jk—my,)] forl<j<w,-—1
Hy, = [k+ (wp = 1)(k —my) + 1,0},

where wy, is the smallest integer such that k + wy(k — m,,) > n. For each block H;, we

further split it into small blocks of size 2m,,
Kiji=k+G—-1)k—-—my)+(0—1)2m,+1,k+(j—1)(k—my,) +2lm,] forl<Il<uwv;

Kjo, =[k+ (vj = 1)(k=my) + (1 = 1)2mp, + 1L,E+ (j — 1)(k — my) + |Hy]

where v; is the smallest integer such that 2m,v; > |H;|. Now define Uy ;; = ZzeK . Xi 1 X;

and

]‘:L’Z:,lg = Z Z Uk,j and ]‘:L’Z:i = Z Z Uk,j. (8.34)

j=u (mod 3) 1 odd j=u (mod 3) 1 even
for u = 0,1,2. Observe that each R} (u = 0,1,2; o = 1,2) is a sum of independent

galt?

random variables. By (S.7), ||Us.;,

. By Corollary 1.7 of Nagaev,

(1979) where we take y; = y/n in their result, we have for any A > 0

> Ay/nlogn)

(C nl- 8. nﬁp/4 pvlogn/(p+4)
)

P (IRn,k\ > 6Am) < 22: Z p (‘éZZZ

u=00=1,2

(S.35)

< Z Z ZP(|Uk”| >)\\/nlogn) +12
u=00=1,2 j,
2)2
(p_|_4)2.ep/2.,@21.

+ 12exp {— @Z . logn} =:Ip + I, + I, 1,

where the range of j,1 in the sum )77, is as in 1) Clearly, Z;;mn I, 1, = o(1).
Similarly as the proof of Lemma 11, we can show that Zk 3m, In.k = 0(1). Therefore,

if € = ¢,/6, then Y375 I, = O(n™').
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Case 2: 1 < k < 3m,,. This case is easier. By splitting the interval [k + 1,n] into

blocks with size 4m,, and using a similar argument as (S.35)), we have

3my, —

1
nhﬂngo ]; P (|Rnk| > cp\/nlogn) =0.

The proof is complete. 0

S3 Complements of Section 4.2

We prove the two intermediate steps in Section and Section Theorem 6 in

Section and Corollary 5 and 7 in Section

S3.1 Step 2: Throw out small blocks.

To prove Lemma 15, we present an upper bound of Cov(R,, k, Ry ;) in Lemma We

formulate the result in a more general way for later uses.

Let Ay be the collection of all double arrays A = (a;;); ;>1 such that

|A]|loo := max supz lasj], supz lai;| p < o0.
i>1 4 §>1 4
Jj=1 =1
Recall the definition of A, in Section For A, B € Ay, define AB = (Y7 | airby;).
It is easily seen that AB € Ay and ||[AB|looc < ||Allcol|Blloo- Furthermore, this fact
implies the following proposition, which will be useful in computing sums of products

of cumulants. For d > 0, let Ay be the collection of all d-dimensional array A =

A(iy,i2,...,1q) such that

Allso := ST A, .
Al max, Suzp1 |A(i, 42, ... ,iq)| p <00

S19
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Proposition S.3. Fork>0,1>0andd > 1, if A € Ayyrq and B € Ajyq, define an

array C by

C(ila"'7i/€7ik¢+la---7ik:+l): E A(ilw"7ik7j17"'7jd)B(j1a"'7jd7ik?+1a"'7ik+l)
Jiseenja>1

then C € Ag41, and ||Clloo < || Alloo|| Bl oo-

For a k-dimensional random vector (Y1, ..., Y%) such that |Y;||x < oo for 1 < <k,
denote by Cum(Y7,...,Y)) its k-th order joint cumulant. For the stationary process

{X;}icz, we write
’Y(kl» k27 ceey kd) = Cum(XOa Xkleka s 7Xkd)~

Lemma S.4. Assume X; € L%, EX; =0, O3 < 0o and D ky ko kaez 1 V(R1s k2, k3)| < oo,
For k,h > 1, 1, > t, > 0 and s, € Z, set Uy, = S (Xi 1 X; — ) and Vi, =

Z;ir?;l(Xjthj —;), then we have

[E(UkVh)| < t,2(k, h)

where [E(k, h)k.p>1] is a symmetric double array of non-negative numbers such that E €

As, and

IZlloe <205+ D |y(ki, ko, ks)l.
k1,k2,k3€Z

Remark S.2. In Lemma [S.4] as well as in the proofs of Lemma 15 and Lemma 16,
we need the summability of joint cumulants. For this reason, we provide a sufficient

condition in Theorem

In the proof of Lemma 15, we need the concept of indecomposable partitions. Con-

sider the table

520
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1,1) ... (1)

(I,1) ... (I,Jp)

Denote the j-th row of the table by ¥;. A partition v = {11, ...,1,} of the table is said
to be indecomposable if there are no sets v;,, ..., v;, (k < q) and rows 9;,,...,9;, (I <1I)

such that v;, U--- Uy, =95 U--- Uy,

Proof of Lemma 15. Write

Sn Sn Sn

ZEO(Ri,k —2Z]EO[ nk nk_Rnk}‘FZEO nk_Rnk)
k=1

k=1

=21, + 11,
Using Lemma 16, we know II,,/(n\/s,) = op(1). We can express I, as

1
In = Z ZIn,ab = 4n,00 + In,Ol + In,lO + In,11~ (836)
a=0 b=0

where for a,b = 0,1 (assume without loss of generality that w, is even),

wp /2 Wn /2

nab—ZEO ZUk2j aZVkZJb

Consider the first term in ([S.36]), write

Sn Wy, /2

E(I200) = > E > Eo(Uk2;Vi2;) - Bo(Un2;Vi2j)
k,h=1 j=1

Sn

+ > Y E(Uk2i,Un25 ) E(Vi2j, Vi 2zs)
h=1 512

+ Z > E(Uk 25, Va2 E (Vi Un 250)
k,h=1 j1#j2

= An + By + Ch.

S21
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By Lemma [S.4] it holds that

Sn wn/2

Bl < 3 Y WKl [Em)]

k,h=1j1,52=0
S

. 2
< wply - (wpmy, + 21) [En(k‘, h)} = o(nzsn),
kh=1

3

where =, (k, h) is the Z(k, h) (defined in LemmaE for the sequence (X;). Similarly,

Sn  Wn/2

Gl < X 1Kl Kol [Eath )]

k,h=1j1,j2=1

< (wpmp +1,)? SZW [én(k, h)}2 = o(n?s,).
k,h=1

To deal with A,,, we express it in terms of cumulants

Sn wn/Q
A, = Z Z[Cum(Uk,zj,Vk,zj,Uh,zj,Vh,zj)
kh=1 j=1
+E(Uk,2;Un 25 )E(Vi,2; Vi 25)
FE(Uk,25Vh,25 ) E(Vi,25Un,25)]

= D,+E,+F,.

Apparently |E,| = o(n?s,) and |F,| = o(n%s,). Using the multilinearity of cumulants,

we have

Cum(Uk,25, Vi,25, Un 25, Vi,25)
= Y Com(Xy,  Xiy, Xy e X5y, Xiyn Xy, X n X,)
i1,i2€Haj j1,j2€K2j

for 1 < k,h < s,. By Theorem II.2 of Rosenblatt| (1985)), we know

Cum (Xil—kXiljle—ka17Xi2—hXi2} Go— hXJ2> Z H Cum i, 1€ I/q) (837)

v g=1

where the sum is over all indecomposable partitions v = {v1,...,14} of the table
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ih—k 11
=k 5
io—h g
J2—h jo

By Theorem m the condition Y -, k%ds(k) < co implies that all the joint cumulants

up to order eight are absolutely summable. Therefore, using Proposition we know

> 1Cum(Uy 25, Vir2js Un,jy Vazg)l = O(|Kajlsh),

k,h=1
and it follows that |Dy,| = O ((wpmy 4 1n)s%) = o(n’sy). We have shown that E(I7 ) =
o(n?s,), which, in conjunction with similar results for the other three terms in (S.36]),

implies that E(I2) = o(n?s,) and hence I,,/(n\/s,) = op(1). The proof is now complete.

O

It remains to prove Lemma [S.4]

Proof of Lemma[S- Write

ln tn
E(UkVi) =Y > E(Xi s Xs = ) (XeptsjnXs, 5 — )]
i=1 j=1
ln tn
=3 Wk jtsn—i—hj+ s, — i)
i=1 j=1

T Vitsn—itk—hVjtsn—i T Vitsn—itkVitsn—i—hl-

For the sum of the second term, we have

l" tn tn_l
> N Vit —ith—nVidsu—i| =| O Vasntdrk—nVsn+a)(tn — d)
i=1 j=1 d=1
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0

+tp E Vsp+dtk—hVs,+d
d=ty—lI,
tn—ln—1

+ Z (Ysn+dtk—hYsn+d)(In + d)
d=1-1,

Stn Z |’78n+d+k7h75n+d|
deZ

<tn > Cark—na-

dez
Similarly, for the sum of the last term

ln tn

SN Vitsn—itkViksn—ion| <tn ¥ Carrrnla.

i=1 j=1 dez
0o 2 . o)
Observe that > ,~ >~ 7 Carr—nCa < (ZdeZ (:d) < ©3 and similarly Y 77 > dez CdrknCa <

©3. For the sum of the first term, it holds that

ln  tn

SN Akt s =i byt se =) St > y(—k,d— h,d)].

i=1 j=1 dez

Utilizing the summability of cumulants, the proof is complete. O

S3.2 Step 3: Central limit theorem concerning R, ;’s.

Proof of Lemma 16. Let Y, (k,h) := E(Uy1Up1) and v,(k,h) = T,(k,h)/l,. By

Lemmawe know |vy, (k, k)| < Z,,(k, h). Write

Sn Wn,

Sn Wp J—1
ZEOREL,I@ = Z Z (UZ; = Tulk, k) + QZ (Uk,j Z Uk,l)
k=1 j=1 =1

b=1 | j=1
Wn Sn Wn, Sn j—1

:Z Z(U]?] = To(k,k)) +QZ (ZUk,jZUk,z> :
i=1 Lk=1 j=1 \k=1 1=1

Using similar a argument as the one for dealing with the term A,, in Lemma 15, we know

W,
j=1

2

Sn

> (U2 = Tulk, k)

k=1

= o(nQSn),
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and it follows that

Therefore, it suffices to consider

W, Sn j—1 W,
> (Z Ukj Y Uk,l> =Y Dy
j=1 \k=1 =1 j=1

Let G, ; = (Dna,...,Dp ;). Observe that (D, ;) is a martingale difference sequence

with respect to (G, ;). We shall apply the martingale central limit theorem. Write

E (Di,j|gn,j*1) - EDi,j

Sn j—1 j—1
Z Yo (k, h) (Z Uk, ZUh,l —(j- 1)Tn(k7h)>
=1 1=1

ko h=1
Sn J—1
= ) Tu(k,h) (Z U iUy — (G — 1)Tn(l<:,h)>
k,h=1 =1
Sn J—1 -1 j—1 -1
+ Z Y, (k,h) (Z Uk, Z Up,q + Z Un, Z Uk7q>
k,h=1 =1 q=1 =1 q=1
= In_’j + I.[nyj

For the first term, by Lemma, we have

2 2
Wy Wy —1 Sn
oLl =D (wa—3) Y Tulk,h) [Us;Uny — Taulk,h)]
j=1 j=1 k,h=1

2
> (wn —j)? [Z T (k, ) |(Uk,;Un,; — Tnlk, h))ll]
j=1 k,h

<wlh | D [on(k, k)| - 403 | = o(n’sD).
k.h
Using Lemma[S.4] and Proposition we obtain

2 2
Wy, wp—1

Jj—1 j—1
ZHnJ = Z (wn, _j)zrn(kﬂ h) (Uk,jZUh,l +Uh,jZUk,l>
j=1 [ I=1 =1

Jj=1

525
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wp—1
=2 Z G-1) > Yo (k1 ha) (2, ho)
1<ki,h1,k2,h2<sn
X [T (K1, ko) TRy, ho) + Yo (ka, h2)Tn(hlvk2)]}
<4n? Z [V (k1, 1 )vp (hi, ho)Un (ho, ko )un (K2, k1)| = O(n's,) = o(n's?).

1<ki,h1,k2,h2<s,
Therefore, we have

1 Wn, Wn

P
e ZIE( 2 1Gnj-1) ZIED 20
j=1
Using Lemma [S.4] and Lemma [S-2] we know
! iEDZ =L (w, — D)2 Z onle, ) = =302
n2s,, 4 ™I op2g, N " " e 2 i
j=1 k,h=1 keZ

and it follows that

1
D2 [|Gn 1) & 520,3. (S.38)

kEZ

To verify the Lindeberg condition, we compute

Sn

EDn,j = E E (UkhJUkszkstk4y])
ki1,k2,k3,ka=1

j—1 j—1 j—1 j—1
) (£00) () (£
=1 =1 =1 =1

Sn

<Y EWUk iUk, jUks U )| - 2C5( — 11268
k1,k2,k3,ka=1

We express E(U, 1Uky,1Uks,1Uk, 1) in terms of cumulants

E(Uky 1Uky,1Uky 1Uky 1)
= Cum(Uk, 1, Uky 15 Uk 1, Ury 1) + E(Ug, 1Uky 1) E(Uky 1Ugy 1)
E(Uky,1Usky1)E(Uky 1Uky 1) + E(Ugy ,1Uky 1) E(Uky1Ugg 1)

= A, +B,+E,+F,
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From Lemma [S-4] it is easily seen that
Sn

SSBI<2 Y Eahnk)-

ki1,k2,k3,ka=1 k1,k2,k3,ka=1

n(k3a k4> = O(lisi)’

[1]:

and similarly Y3" o [En| = O(sh) and Y20, o [Ful = O(I%s7). By mul-

tilinearity of cumulants,

In
An = Z Cum(Xil—leila iz—kin27Xi3—k3Xi37Xi4—k4Xi4)'

91,%2,13,54=1

Each cumulant in the preceding equation is to be further simplified similarly as (S.37]).
Using summability of joint cumulants up to order eight and Proposition [S.3] we have

> A =0s)) = olish).
k1,k2,ks,ka=1
Using orders for |A,|, [Byl, |E,| and |F,|, we obtain »>7™", ED;, ; = o(n*s2). Then, by

(S.38]), we can apply Corollary 3.1. of Hall and Heyde| (1980) to obtain

N+/S
n keZ

1 :ij :>N<O,;Zcri>,
i=

and the lemma follows.

S3.3 Proof of Theorem 6

Proof of Theorem 6. We shall only prove (22), since (21) can be obtained by very similar

arguments. Write 5 = Eoyx + 7x — (7 — E9%), and hence

Sn " ) Sn R Sn o Sn k . Sn k ) kZ 5

> (=) =2 uEo + > _(Bodn)> —2) —wEo — 2 > et > 2
k=1 k=1 k=1 k=1 k=1

k=1
=2, + 1, + I, + IV, + V,.
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Using the conditions ©4 < oo and s, = o(y/n), it is easily seen that /nlV,, — 0 and
\/nV,, — 0. Furthermore

2\%%0 and /nEIl, <fz

Define Y; = >, v Xi—j. For the term I,,, write

nIn:zn:EO(XiYi) Xn: < Z Ve Xi- k>+27k (Z i~k Xi — %))

i=1 k=s,+1

S
~k
VAl L < 2V Y S
k=1

= A, +B,+FE,

Clearly || E,|l/vn < Ypmy [|203VE//n — 0. Define Wy = X; 307 e Xiok,
then
64(4) - ©4 EZO:%H |k if 0<i<s,

©404(1) Sope 41 [kl +Oa Yy 1y [Wkl0ai — k) i i > s,

1P Waill <

It follows that

o0

1Bu/vAl <202 37 bl =0,

k=s,+1

Set Z; = XY, then (Z;) is a stationary process of the form (9). Furthermore

IPOZ;|| < i ®4Z|7k‘ +@4Z|7k\54 i—k

Since Y oo, [|PYZ;|| < oo, utilizing Theorem 1 in Hannan| (1973) we have A, /\/n =

N(0, | Dol|?), and then (22) follows. O

S3.4 Proof of Corollary 5 and 7

Proof of Corollary 5 and 7. By (S.5), we know ||nX,||4+ < v/3n0,, and it follows that

Z (Xik — Xo)(Xi — Xp) — i X, 1 X;|| €963

i=k+1 i=k+1

528
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Theorem 4 holds for %, because

ZE’ A — BA)? — (T — B4)?| < Z 9% + Y — 2Bkl - |95 — Yl

V5n 4
n 407 907\ 903
< Sz .
_w/sn;(\/ﬁ+n> n -0

In Theorem 6, (22) holds with 4, replaced by ¥ because

\/g

Sn Sn

Vi RN =R < v Ak + Tl 1A — Al
k=1 =1

and (21) can be proved similarly. Now we turn to the sample autocorrelations. Write

SO {lk — (1 kfn)ral? — /o — (1= k/n)ri?)
k=1

_ i 2(Eo9%) [k (70 — %0)] i %3(70;2’70)2.

240 Y36

k=1

Since

zn:]E\ (Eo¥e)dk(v0 — Y0)| < i%?»@ S /n (I% + 20565 \f) 20503 \f - (\/jw)

k=1
and similarly > ;» | E H,%(’yo — ’}0)2| = o(y/sn/n), (19) follows by applying the Slutsky
theorem. To show the limit theorems in Corollary 7 note that using the Cramer-Wold

device, we have

converges to a bivariate normal distribution. Then Corollary 7 follows by applying the

delta method. O
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S4 A Normal Comparison Principle

In this section we shall control tail probabilities of Gaussian vectors by using their covari-
ance matrices. Denote by ¢q((ri;);1,...,2q) the density of a d-dimensional multivari-
ate normal random vector X = (X7,... ,Xd)—r with mean zero and covariance matrix
(rij), where we always assume r;; = 1 for 1 < ¢ < d and (r;;) is nonsingular. For
1 <h<1<d, weuse pa((rij); Xn = xp, X; = 2;) to denote the marginal density of the

sub-vector (Xj, X;)". Let

(e ] o0
Qd((rij);zl,...,zd):/ / wa ((rij),;x1,...,xq) dog--- doy.
zZ1 zZd

The partial derivative with respect to rp; is obtained similarly as equation (3.6) of|Berman
(1964) by using equation (3) of [Plackett| (1954

0Qq ((Tij)§ 21, - -7Zd)
8rhl

o0
= H/ 0 ((Pig); 15+ Th1s 20y Thg 1, -5 B11, 20, T4, -, a) | [ Aok
kth,l 2 Kokl
(5.39)

where (Hk,#hyl f::) stands for [ --- [ f:}oﬂ SN f:L -+ [ If all the 2, have
the same value z, we use the simplified notation Qq ((r:;); 2) and 0Qq((r4); 2)/0rni. The
following simple facts about conditional distribution will be useful. For four different

indicies 1 < h,l,k,m < d, we have

Tkh + T
E(Xp| X=X, =2) = Hz (S.40)
1— 2 _ N2 .2 2
Var(Xg| X = X) = 2) = —— bt ~ Tk = Vit ST TERThL (S.41)

2
1 -7

ThkThm + T1kTim — ThIThkTIm — ThiThmTlk
COV(Xk, Xm|Xh = Xl = Z) =Tkm — 1 T2 . (842)
— "hi

S30
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Lemma S.5. Foreveryz >0,0<s<1,d>1ande > 0, there exists positive constants

Cyq and €4 such that for 0 < € < €q4

1. if |rij| <€ for all1 <i < j<d, then

Qa ((ri)): 2) < Caexp {— (j - cde> ZQ} (5.43)
Qa((rij);z,...,2) < Cq fale,1/z) exp { (;l - Cde) 22} (S.44)
Qa ((ri);82,2,...,2) < Cqexp {— (s“;_l - Cde> 22} (S.45)

where for(z,y) = 1o #'y?* D and for1(z,y) = 3125 «'y?*D7L for k> 1;

2. if for all 1 <i < j <d+1 such that (i,7) # (1,2), |ri;| <€, then

Qat1 ((r4;);2) < Caexp {— (M;DQM - C’de) z2} . (S.46)

Proof. The following facts about normal tail probabilities are well-known:

1 2 . P(Xl Z .T)
P(X;>a) < —e /2 f d 1 =1
(X1 >2x) < Vot orz>0 and - lim (1/z)(2m)~Y2exp {—22/2}
(S.47)

By (S.47)), the inequalities (S.43)) — (S.45) with e = 0 are true for the random vector with

iid standard normal entries. The idea is to compare the desired probability with the
corresponding one for such a vector. We first prove (S.43)) by induction. When d = 1,
the inequality is trivially true. When d = 2, by (S.39)), there exists a number {4 between

0 and 712 such that

|Q2((145); 2) — Q2(I2; 2)|

IA

(p((réj)v Z,Z)‘T’12|

2
Cexp{—

IN

— = V< Cexp{—(1-¢)2?},
) O -0-92)



INFERENCE FOR SERIAL COVARIANCES 532

which, together with Qo(Iz;2) < Cexp{—z2}, implies (S.43) for d = 2 with €3 = 1/2
and some Cp > 1. Now for d > 3, assume (S.43)) holds for all dimensions less than d.

There exists a matrix (r7;) = 0(ri;) + (1 — 6)I4 for some 0 < 6 < 1 such that

9Qa

or
g 9

Qa((rij)i2) — Qu(siz) = Y.

1<h,I<

(({rgj);za"'?z)rhb (848)

By (S.40), E(Xx|Xn = X; = 2) < 2¢2/(1 — €) for k # h,l. Therefore, by writ-
ing the density in (S.39) as the product of the density of (X, X;) and the condi-
tional density of X _j,;; given X; = X; = z, where X _y;, ;3 denotes the sub-vector

T.
(Xla . '7Xh717Xh+1a . '7Xl717Xl+17 v 7Xd) ; We have

9Qa

%((Téj); 25 2)| < @2((riy); X = Xi = 2)Qa—2((rijm); (1 = 3€)2),  (S.49)

where (r; i ) s the correlation matrix of the conditional distribution of X _gj, ;3 given
Xp and X;. By (S.41)) and (S.42), we know for k,m € [d] \ {h,{} and k # m,

e(l+¢€)

Var(Xp| X = X;=2) >1-3¢? =26 and  Cov(Xg, X Xp = X; = 2) < : :
— €

Therefore, all the off-diagonal entries of (v’ Jl u1) are less than 2e if we let € < 1/5. Applying

the induction hypothesis, if 2e < €4_o, then

Qdfz((rgj‘hl); (1-3€)z) < Cyq_nexp {— <d;2 - 20d26> (1- 36)222} ,

and equation (S.49) becomes

0Qu (s z z
%((Tij)v ety )
<CCy_sexp{—(1—€)z*} -exp {— (d;2 —(2Cq—2 +3(d - 2)) 5) 22} .

Therefore, (5.43) holds for €4 < min{1/5, e4—2/2} and some Cyq > 2Cq_3 + 3(d — 2) + 1.



INFERENCE FOR SERIAL COVARIANCES

Using very similar arguments, inequality can be proved by applying ;
and inequality can be obtained by employing both and . To prove
inequality 7 which is a refinement of , it suffices to observe that, by 7
and

Qa((rij);2) < QuIg;2) + D Ceexp{—(1—€)z*}Qu—a((rln); (1 — 3¢)z)

1<h,i<d
1 dz? 2 /
< Cd; exXp { —~ + Cye exp{—(1 —¢€)z"} Z Qa—2((r351n0); (1 — 3€)2);
1<h,I<d
and apply the induction argument. O

S33

Theorem 14. Let (X,,) be a stationary mean zero Gaussian process. Let ry, = Cov(Xo, Xy).

Assume g = 1, and lim,, oo 7, (logn) = 0. Let a, = (2logn)~/2, b, = (2logn)*/? —
(8logn)~1/2(loglogn + log4n), and 2, = a,z + b, for 2 € R. Define the event A4; =
{X; > z,}, and

Qua= Y,  P(Ai,N---NA4;,).
1<i1<...<ig<n

Then lim, o Qn.d = e~ /d! for all d > 1. Furthermore, the same result holds if we

define A; ={|X;| > 22, }.

Proof of Theorem 14. Note that 22 = 2logn — loglogn — log(4m) + 2z + o(1). If (X,,)

consists of iid random variables, by the equality in (S.47)),

n—oo n— oo
lim " 71 e —% = e
n—oo \ d (27r)d/22g *P 2 Tod

When the X,’s are dependent, the result is still trivially true when d = 1. Now we

lim Q4 = lim <Z>Qd(1dazn)

deal with the d > 2 case. Let 7, = sup;>; |7;|, then 71 < 1 by stationarity, and
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lim, o vn logn = 0. Consider an ordered subset
J=A{t,t+l,t+lh+lo...,t+h+--+14-1} C[n],

where Iy,...,l3_1 > 1. We define an equivalence relation ~ on J by saying k ~ j if
there exists ki1,...,k, € Jsuch that k =k < ks <--- <k, =7,and ky —kp—1 < L
for 2 < h < p. For any L > 2, denote by s(J, L) the number of [; which are less than or
equal to L. To similify the notation, we sometimes use s instead of s(J, L). J is divided
into d — s equivalence classes By, ..., B4—s. Suppose s > 1, assume w.l.o.g. that |[B;| > 2.
Pick ko, k1 € By, and k, € By, for 2 < p < d—s, and set K = {ko,ki,kz,...,ka—s}.
Define Q; = P(NgesAk) and Qk similarly, then Q; < Q. By of Lemma
there exists a number M > 1 depending on d and the sequence (vx), such that when

L>M,

Rk

IA

_ 2 _
Ca—s €xXp {_ <(1 71)2 rdzs - Cds’YL) 2721}

_ 2
C’d_sexp{— (d2 S (1 371) )ZEL}

Note that z2 = 2logn — loglogn + O(1). Pick L, = max{|n®*], M} for some a <

IN

2(1 —~3)/3d. For any 1 < a < d — 1, since there are at most L¢n?~¢ ordered subset

J C [n] such that s(J, L) = a, we know the sum of Q; over these J is dominated by

C’daexp{logn <(d_a)+ 2= D0 =P 2(1—%)2>}

3d 3
when n is large enough, which converges to zero. Therefore, it suffices to consider all the

ordered subsets J such that I; > L, forall 1 <j <d—1.

Let J = {t1,...,ta} C [n] be an ordered subset such that ¢; — t;—1 > L, for

2 <4 < d, and J(d,L,) be the collection of all such subsets. Let (r;;) be the d-
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dimensional covariance matrix of X ;. There exists a matrix Ry = 0(r4;); jes + (1 —0)I4

for some 0 < 6 < 1 such that

0
Qr—Qalla,zn) = Y an [R5 2T
T'hi
hi€Th<l

Let Ry, H = J\ {h,l}, be the correlation matrix of the conditional distribution of X g

given X, and X;. By (S.44) of Lemma for n large enough

2

0Qq

<
O ——[Ry; zn] Cexp{

— b Ques (Rie; (1= 371 )zn
1+%h} Qa—2 (Ri; ( YL, )%n)

2,2
< CCaq—afi—2(VL,,1/2n) exp {_H;lh}

d—2
X exp { <2 — 2Cd_2’yLn) (1- 3fyLn))2,sz}

< Cafiatrn 1 fon) exp {— (§ = 2Caa + 3= De, —r) 2}

d
< Cafa—2(vr,.,1/2n) exp {— <2 - Cqvr, — %l) Zi} .
It follows that

> Qs = Qalla; 20|

JeJ(d,Ly)

d
< Cafao(VL,,1/zm) Y > exp {— (2 - Cayr, — %—n) ZTQL} Ve, —t;

JET(d,Ln) 1<i<j<d

d
R ARTENED SEND DI B CEC IRy ) S
)

1<i<j<d JeJ(d,Ln

(5.50)

For each fixed pair 1 <i < j < d, the inner sum in (S.50) is bounded by

n—1 d
Cafao(vL, 1/z) Y, (n—1)""exp { <2 - Caye, — 71) ZZ} gl
I=L,+1
n—1
<Cqyfa-2(vL,,1/2,)(logn)¥?n=4 Z (n— D% Yexp {(Caqyr, +)2logn}y (S.51)
I=L,+1

<Cafa—2(Vneys 1/2n) Y ne | (log n)d/2 exp {2 (Cq+ 1) ¥ pa ) log n} ) (S.52)
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Since limy, o0 ynlogn = 0, it also holds that lim, o Y|pejlogn = 0. Note that

1/2 dj2—1 _

limn_,oo(logn)l/Q/zn = 272, it follows that lim, oo fa—2(Y|ne),1/2n)(logn)
2-4/2+1 " Therefore, the term in (S.52) converges to zero, and the proof of the first

statement is complete.

Finally, observe that in the preceding proof, the upper bounds on @; and |Q; —
Q(Ig; zn)| are expressed through the absolute values of the correlations, so we can ob-
tain the same bounds for probabilities of the form P(N1<;<4{(—1)/X;, > 2,}) for any

(f1,--., fa) € {0,1}4. The second statement follows from this observation. O

Remark S.3. This theorem provides another proof of Theorem 3.1 in [Berman| (1964]),
which gives the asymptotic distribution of the maximum term of a stationary Gaussian
process. They also showed that the theorem is true if the condition lim,, ., 7, logn = 0

is replaced by >°°7 72 < co. Under the later condition, if we replace Ve;—t; DY 1,1,

in (S.50), v; by |r¢] in (S.51)), then the term in (S.51)) converges to zero, and hence our

result remains true.

S5 Summability of Cumulants

For a k-dimensional random vector (Y7, ...,Y}) such that ||Y;||x < oo for 1 < i < k, the

k-th order joint cumulant is defined as

Cum(Yy,...,Yp) =Y (-1)P'(p—1)!

- EJ[Y:]. (S.53)

1 S

<

S36
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where the summation extends over all partitions {v1,...,1,} of the set {1,2,...,k} into

p non-empty blocks. For a stationary process (X;);cz, we abbreviate
’y(k‘l, kg, ceey kd) = CllIIl()(o,)(kl,)(kz7 . ,Xkd)7

Summability conditions of cumulants are often assumed in the spectral analysis of time

series, see for example Brillinger| (2001) and Rosenblatt| (1985). Recently, such condi-

tions were used by |Anderson and Zeitouni (2008) in studying the spectral properties of

banded sample covariance matrices. While such conditions are true for some Gaussian

processes, functions of Gaussian processes (Rosenblatt] [1985)), and linear processes with

iid innovations (Anderson| [1971)), they are not easy to verify in general. [Wu and Shao

(2004)) showed that the summability of joint cumulants of order d holds under the condi-

tion that d4(k) = O(p*) for some 0 < p < 1. We present in Theorema generalization
of their result. To simplify the proof, we introduce the composition of an integer. A
composition of a positive integer n is an ordered sequence of strictly positive integers
{v1,v2,...,v4} such that v1 + --- + v, = n. Two sequences that differ in the order of
their terms define different compositions. There are in total 2"~ ! different compositions
of the integer n. For example, we are giving in the following all of the eight compositions

of the integer 4.
{1,1,1,1} {1,1,2} {1,2,1} {1,3} {2,1,1} {2,2} {3,1} {4}.
Theorem S.6. Assume d > 2, X; € L4 and EX; = 0. If
ikdfladﬂ(k) < 00, (S.54)
k=0

then

> ki ka, . ka)| < oo (S.55)

ki,....kq€Z
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Proof of Theorem[S-6 By symmetry of the cumulant in its arguments and stationarity

of the process, it suffices to show

> Iy(k1, ks, ... ka)| < 0.
0<k;<k2<--<kqg

Set X (k,j) := H; X}, we claim
y(k1,k2y ... kq)
= Cum [Xo, X (k1,1), ..., X (v, -1,1), Xx,, = X (ku,, 1),
X(kvﬂrl’ km + 1)a s 7X(k3v2717 kUl + l)v)(ku2 - X(kvz7kv1 + 1)?

)

X(kpy+1,ko, +1), .., X(ka—1, ko, + 1), Xy — X (ka, ko, +1)]; (S.56)
where the sum is taken over all the 27~! increasing sequences {vg, vy, ... ,Uq, Ug+1} such
that vg = 0, vg41 = d and {v1,v2 — v1,...,9y — V4—1,d — v4} is a composition of

the integer d. We first consider the last summand which corresponds to the sequence

{UO = 0,’[}1 = d}a
Cum [Xo, X (k1,1),..., X (kg—1,1), Xi, — X (kq,1)]

Observe that Xy and (X(k1,1),...,X(k4—1,1)) are independent. By definition, only
partitions for which Xy and X}, — X (kg, 1) are in the same block contribute to the sum

in (S.53). Suppose {v1,...,1,} is a partition of the set {k1, ka,...,k4s—1}, since

PiXoP; Xk, [ X(k,1)

kevy

E [XO(X,W — X(ka, 1)) T X(k,l)” 20: E

kevy

j=—oc0

0
> bair(=3)0aga(ka — Kl

j=—00

IN
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it follows that
E | Xo(Xp, — X(ka, 1)) [ X, -] [E T Xk, 1)
kevq j=2 kEDj

< Z 5d+1 (j)6d+1 (kd + j)/{g:&
§j=0
and therefore

> |Cum [Xo, X (k1,1), ..., X (ka_1,1), Xp, — X (ka,1)]]
0<k1<k2<--<kq

<Cy Z Z5d+1(j)5d+1(kd +7)

0<ki <ka <o <kg j=0

= (k+d-1 ‘ )
<> (M50 )anaisati i) <o

=0 k=0

provided that Y ;2 k% 18441 (k) < cc.

The other terms in (S.56|) are easier to deal with. For example, for the term corre-

sponding to the sequence {vy = 0,v1 = 1,v9 = d}, we have

|Cum [Xo, Xkl — X(kl, ].), X(kz, kl + 1), e 7.X—(kdfl, kl =+ 1)7Xkd — X(]fd, kl =+ ].)H
< Cak3 1 Va1 (k1) Vas1(ka — k).
Since Y o ) k¥ 0441 (k) < oo implies > po o k42 W11 (k) < oo, it follows that
> |Cum [Xo, Xy, — X (k1,1), X (ko, k1 + 1), ...,

0<k1<k2<--<kq

X(kd_l,kl + ].),Xkd — X(kd,kl + ].)”

= (k+d—2
SCAERD L INIC) D (Sl L MRS
k=0 k=0

We have shown that every cumulant in (S.56)) is absolutely summable over 0 < k; <

-+ < kg, and it remains to show the claim (S.56)). We shall derive the case d = 3, (S.50)
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for other values of d are obtained using the same idea. By multilinearity of cumulants,

we have

v(ky, k2, ks) = Cum(Xo, Xi,, Xk, Xks)
= Cum [Xo, Xg, — X (k1,1), Xiy, Xis]
+ Cum [Xo, X (k1,1), X, — X (k2,1), Xi]
+ Cum [Xo, X (k1,1), X (k2, 1), Xi, — X (ks,1)]
+ Cum [Xo, X (k1,1), X (k2,1), X (k3,1)].

Since Xy and (X (k1,1), X (k2,1), X (ks, 1)) are independent, the last cumulant is 0. Ap-

ply the same trick for the first two cumulants, we have

Cum [Xo, X, — X (k1,1), Xy, X&)

= Cum [Xo, Xp, — X (k1, 1), Xp, — X (ka, ky + 1), X, ]

+ Cum [Xo, X, — X (k1,1), X (ko, k1 + 1), Xp, — X (ks, k1 +1)]

+ Cum [Xo, X, — X (k1,1), X (ko, k1 + 1), X (k3, k1 + 1)]

— Cum [Xo, Xp, — X(k1,1), Xuy — X (kay k1 +1), Xey — X (ks, ko +1)]

+ Cum [XOanl — X(k‘l, 1),X(k‘2, ki1 + 1),Xk3 - X(k‘3, k1 + 1)]

and
Cum [X07 X(kl, 1), Xk2 — X(kg, 1), ng]
= Cum [XQ,X(kl, 1),Xk2 — X(kg, 1), Xk3 - X(k‘37 k/’z + 1)} .
Then the proof is complete. O

Remark S.4. When d = 1, (S.54) reduces to the short-range dependence or short-

memory condition Oy = Y77 d2(k) < oo. If Oy = oo, then the process (X;) may be
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long-memory in that the covariances are not summable. When d > 2, we conjecture
that can be weakened to ©441 < oco. It holds for linear processes. Let X =
Yoo aick—i. Assume e € L9 and Y727 Jax| < oo, then dat1(k) = |akl||€ollat1. Let
Cumgy (o) be the (d+1)-th cumulant of €y. Set ky = 0, by multilinearity of cumulants,
we have
d
v(k1,..., ka) = Z Hati Cum(€_ty, €ky—tyy-- -5 Eby—ty)

to,t1,..,ta>0 \ j=0

o d

= Z H akj+t Cumd+1(€0).

t=0 j=0

Therefore, the condition ©441 < oo suffices for . For a class of functionals of
Gaussian processes, [Rosenblatt| (1985) showed that holds if "7 || < oo, which
in turn is implied by ©441 < oo under our setting. It is unclear whether in general the

weaker condition ©441 < co implies (S.55)).

S6 Auxiliary Results

In this section we collect several auxiliary results. Suppose that X is a d-dimensional
random vector, and X ~ N(0,%). If X = I, then by , it is easily seen that the
ratio of P (z,, — ¢n, < | X|e < 2p,) over P (| X|e > 2z, ) tends to zero provided that ¢, — 0,
zn — 00 and ¢z, — 0. It is a similar situation when ¥ is not an identity matrix, as

shown in Lemma [S.7} which will be used in the proof of Lemma 13.

Lemma S.7. Let X ~ N(0,%) be a d-dimensional normal random vector. Assume X is
nonsingular. Let A3 and \3 be the smallest and largest eigenvalue of ¥ respectively. Then

for0 < ¢ <6 <1/2 such that A := (2nA3)4=1/2)\2c25724-d§ exp{ (v6d 1 +Xo) /A3} < 1,
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then for any z € [1,6/¢],

Plz—c<|X[e<2)<(1-A)TAP(|X]e = 2). (5.57)

Proof of Lemma[S.7 Let Cyq = (6d)/2\;/Xo. Since A3 is the smallest eigenvalue of 3,
d 1)2
PUXI22-9 2 (ardes(m) e {- 2L
0

4d5?
2\—d/2
(27'(')\1) / eXp{—QA?)CQ}

Y

Since P(|| X oo > Cad/c) < d(2mA3) 12 exp{6d6?/(2)\2c?)}, we have
P(|| X|loo > Cad/c) < (2mAH)E=D2)\2252 P(| X ||o > 2 — c). (S.58)

For 0 < k < [1/6], define the orthotopes Ry, = [z+(k—1)¢, z+kc| x [z—c, C4d/c]4~L. For
two points @ = (x1,...,xq) € Ro, xx = (1 + ke, xa, ..., xq4) € Ry, we have m;E’lazk —
x"Y e < (2v/dCy+1)/0%, and hence P(X € Ry) > exp{—(V/dC;+1)/\3}P(X € Ry)

for any 1 < k < [1/§]. Since the same inequality holds for every coordinate, we have

P(z—c<|IX[e <2 | X < Cad/c) < dSexp{(VdCa +1)/35} P (| X|e = z —¢)
(S.59)
Combine ([S.58)) and (S.59), we know P(z —c < || X|le <2) < A-P(||X]le > 2z—c). So

(S.57)) follows. O

Lemma [S-7] requires the eigenvalues of ¥ to be bounded both from above and away
from zero. In our application, 3 is taken as the covariance matrix of (G, , Gg,, - - - , de)T,
where (Gy) is defined in (6). Furthermore, we need such bounds be uniform over all
choices of k1 < ky < --+ < kg. Let f(w) = (2m)71 >, oy 0n cos(hw) be the spectral

density of (G}). A sufficient condition would be that there exists 0 < m < M such that

m < f(w) <M, forw € |0,27], (5.60)
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because the eigenvalues of the autocovariance matrix are bounded from above and below
by the maximum and minimum values that f takes respectively. For the proof see
Section 5.2 of |Grenander and Szegd) (1958). Clearly the upper bound in is satisfied
in our situation, because ), ., |on| < co. However, the existence of lower bound in
(S-60) rules out some classical times series models. For example, if (G}) is the moving
average of the form Gy = (mx + 1Mx—1)/v/2, then f(w) = (1 + cos(w))/27, and f(7) = 0.
Nevertheless, although the minimum eigenvalue of the autocovariance matrix converges
to inf,co,2+ f(w) as the dimension of the matrix goes to infinity, there does exist a
positive lower bound for the smallest eigenvalues of all the principal sub-matrices with

a fixed dimension, as stated in Lemma [S.§|

Lemma S.8. If0 <), , 03 < o0, then for each d > 1, there exists a constant Cyq > 0

such that

k1<kig-~<kd Amin {COV [(le s Glgs - - o de)—r} } > Cy.

Proof of Lemma[S-8 We use induction. It is clear that we can choose (Cy) to be a non-
increasing sequence. Without loss of generality, let us assume k; = 1. The statement is
trivially true when d = 1. Suppose it is true for all dimensions up to d, we now consider
the dimension (d+1) case. There exist an integer Ny such that Y-,y op < 2C7/(d+1).
If all the differences k;11 — k; < Ny for 1 < i < d — 1, there are N(‘;_l possible choices
of k1 =1 < ky < -+ < kq. Since the process (Gy) is non-deterministic, for all these
choices, the corresponding covariance matrices are non-singular. Pick C/, > 0 to be the
smallest eigenvalue of all these matrices. If there is one difference k11 — ki > Ny, set

21 = COV[(Gki)lgigl] and 22 = COV[(Gki)l<i§d]7 then )\min(El) Z Cd and )\min(ZQ) 2

S43
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Cy. It follows that for any real numbers ¢y, cs, . .., cq such that Zgzl c?=1,
Z cic; Cov(Gy,,Gr;) = (c1,... ,Ci)TZJ(Cl7 )
1<i,j<d
H(Cigtyeorca) T2 (Citas- s ca)
+2 Z Cicjo—kjfki
i<l,j>1
1/2 1/2
2 Ca—2 Z 012%‘—’%‘ Z cfc?
i<l,j>l i<lj>l
1 (d+1 Re
+ 2 d
> -y (4 a) 2%
h=Ng4
Setting Cgy1 = min{Cy/2, C/}, the proof is complete. O
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