
STAT665: ADVANCED TIME SERIES ANALYSIS 16:960:665:01

FALL 2021, TUESDAY/THURSDAY 5:00–6:20PM

Course Information

• Instructor: Han Xiao
• Office: Hill Center 451
• Office Hours: Thursday 1:30-2:30 on Zoom
https://rutgers.zoom.us/j/98845998357?pwd=dzdNYWlqMmVqd2laVXh5UkJMUWhpQT09

• Email: hxiao‘‘atsign’’stat.rutgers.edu (I only check this email account regu-
larly!)
• Texts.

– Time Series: Theory and Methods, by Peter J. Brockwell and Richard A. Davis.
Springer, 1991, 2ed. (TSTM)

– Asymptotic Theory of Weakly Dependent Random Processes, by Emmanuel Rio. Springer,
2017.

• Course work: (almost) weekly homework.

Outline

1. Foundations. (4 weeks)
– Stochastic processes, stationarity, autocovariance fuctions.
– Spectral representation, spectral decomposition.
– Linear prediction.

2. ARMA Models. (4 weeks)
– ARMA processes, linear prediction, estimation.
– Asymptotic theory for the MLE.

3. Ergodic theorem and CLT for stationary processes. (4 weeks)
– Strict stationarity, measure preserving transformation, ergodic theorem.
– CLT for strictly stationary processes, mixing conditions, dependence measures.

4. Analysis of complex time series data. (2 weeks)
– VAR models.
– Dynamic factor models.
– Matrix and tensor-valued time series.

Last updated on May 30, 2022.
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1. Reading Assignments

Week 01. Chapter 1, 2 of TSTM.

Week 02. Section 3.1∼3.4 of TSTM, please DO read Section 3.3 by yourself, since I did not cover
enough details in the lecture.

Week 03. Section 3.4, 4.1, 4.2, 4.3 of TSTM. Please also read Section 2.1 and 2.2 of this document.

Week 04. Section 4.3, 4.4 of TSTM.

Week 05. Section 5.1∼5.5, 5.7, 5.8 of TSTM.

Week 06. Section 5.7, 5.8, 8.1, 8.2, 8.10 of TSTM.

Week 07. Section 8.1, 8.2, 8.6∼8.11 of TSTM.

Week 08. Section 8.8, 10.1, 10.8 of TSTM.

Week 09. Section 10.8 of TSTM.

Week 10. Section 6.3, 10.8 of TSTM.

Week 11. Section 24 and 36 of Probability and Measure by Patrick Billingsley.

Week 12. Various places of Rio (2017), Wu (2005).

Week 13. Lam et al. (2011), Chen et al. (2021).

References

Chen, R., Yang, D., and Zhang, C.-H. (2021). Factor models for high-dimensional tensor time
series. Journal of the American Statistical Association, pages 1–23.

Lam, C., Yao, Q., and Bathia, N. (2011). Estimation of latent factors for high-dimensional time
series. Biometrika, 98(4):901–918.

Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proceedings of the
National Academy of Sciences, 102(40):14150–14154.
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2. Some Additional Notes

2.1. On the proof of the Herglotz Theorem (Theorem 4.3.1). The proof relies on the Helly’s
Theorem, and here are the precise statements. For the proofs, see Section 25 of Patrick Billingsley’s
Probability and Measure.

First recall the concept of tightness. A sequence of distribution functions {Fn} on R is said to be
tight if for any ε > 0, there exist x and y such that supn Fn(x) ≤ ε and supn[1−Fn(y)] ≤ ε. Tightness
for a sequence of random variables {Xn}, denoted by the commonly seen notation Xn = Op(1), is
defined through the corresponding distribution functions.

Theorem 1 (Helly’s Theorem).
A. For every sequence {Fn} of distribution functions there exists a subsequence {Fnk

} and a noneg-
ative, nondecreasing, right-continuous function F such that limk Fnk

(x) = F (x) at all continuity
points x of F .
B. Tightness is a necessary and sufficient condition that for every subsequence {Fnk

} there exists
a further subsequence {Fnk(j)

} and a distribution function F such that Fnk(j)
converges to F in

distribution as j →∞.

Note that A does not guarantee that F is a distribution function, while B does.
The proof of Theorem 4.3.1 seems an immediate application of the Helly’s Theorem, but there is

actually some subtlety, which we will clarify in this remark. First of all, let us emphasize that the
spectral distribution is only supported on the interval (−π, π]. While there can be a point mass at
π, the openness of the left end precludes such a possibility at −π.

We start with an example. Consider the autocovariance function γ(h) = (−1)h of the stochastic
processXt = Xeiπt, whereX has mean zero and variance 1. The fN and FN constructed in the proof
are plotted below for N = 5, and 25. You can imagine that the limit of FN is a distribution function
F̃ with two jumps at ±π, of the same size 1

2 . (What’s the problem? The spectral distribution does
not allow a point mass at= −π!)
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Now let’s return to the proof of Theorem 4.3.1, i.e. the following arguments will cover not only
the preceding example, but all non-negative definite functions γ(·). Let F̃ be the limit of the

subsequence {FNk
}, and keep in mind that F̃ may have two point masses of the same size at ±π.

Any continuous function g(·) on the interval [−π, π] such that g(π) = g(−π) can be extended as a
periodic function on R. Since g(·) as a periodic function on R is bounded and continuous, it holds
that

lim
Nk

∫
g dFNk

=

∫
g dF̃ .

Obviously the integral on the left hand side equals to
∫ π
−π g(x)fNk

(x) dx =
∫

(−π,π] g dFNk
. Since F̃

is supported on [−π, π], the integral on the right hand side equals to∫
[−π,π]

g dF̃ = g(−π) ∗ F̃ ({−π}) + g(π) ∗ F̃ ({π}) +

∫
(−π,π)

g dF̃ . (1)

Now define a new distribution function F , supported on (−π, π], by F (x) = F̃ (x) − F̃ (−π) for

−π < x < π, and F (π) = F̃ (π). Intuitively speaking, F is obtained from F̃ by moving its point
mass on −π to π. Therefore,∫

(−π,π]
g dF = g(π) ∗

[
F̃ ({π}) + F̃ ({−π})

]
+

∫
(−π,π)

g dF̃ . (2)

Since g(π) = g(−π), the integrals in (1) and (2) are equal, and consequently

lim
Nk

∫ π

−π
g(x)fNk

(x) dx =

∫
(−π,π]

g dF.

2.2. On the uniqueness of the spectral distribution. To show that the spectral distribution is
uniquely determined by the autocovariance function γ(·), the arguments at the bottom of Page 119
involves an application of Theorem 2.11.1, in order to show that∫

(−π,π]
φ(ν) dF (ν) =

∫
(−π,π]

φ(ν) dG(ν) if φ is continuous with φ(−π) = φ(π). (3)

Showing that (3) implies F and G are the same is a good exercise for measure theory. Please try it if
you have not done anything similar before (Hint: approximate an indicator function by continuous
functions, and then apply the dominated convergence theorem). In this remark we provide more
details on how Theorem 2.11.1 leads to (3).

Adopt the notations of Section 2.11 of the Fourier approximations. Recall that φ(·) is a contin-
uous function on [−π, π] such that φ(π) = φ(−π). If γ(h) =

∫
(−π,π] e

ihν dF (ν) =
∫

(−π,π] e
ihν dG(ν)

for all h ∈ Z, then for any j ∈ Z∫
(−π,π]

Snφ(ν) dF (ν) =

∫
(−π,π]

Snφ(ν) dG(ν) =
∑
|j|≤n

〈f, ej〉γ(j).

Let Cnφ := n−1(S0φ+ S1φ+ · · ·+ Sn−1φ), it follows that∫
(−π,π]

Cnφ(ν) dF (ν) =

∫
(−π,π]

Cnφ(ν) dG(ν).

By Theorem 2.11.1, Cnφ → φ uniformly on [−π, π]. So there exists a constant K > 0 such that
|Cnφ(ν)| < K for all n ≥ 1 and ν ∈ [−π, π]. By the dominated convergence theorem,∫

(−π,π]
φ(ν) dF (ν) = lim

n

∫
(−π,π]

Cnφ(ν) dF (ν) = lim
n

∫
(−π,π]

Cnφ(ν) dG(ν) =

∫
(−π,π]

φ(ν) dG(ν).

4



2.3. Statement and Proof of Kolmogorov’s Formula. First of all, it is equivalent and more
convenient to view a spectral distribution as a distribution over the unit circle T on the complex
plane, indexed by eiλ, with λ ∈ (−π, π], so a density f(λ) over (π, π] is also equivalently written
as f(eiλ). Denote U the open disc with radius 1 on the complex plane. Suppose F is a spectral
distribution, and {Xt, t ∈ Z} is a stationary process which has F as its spectral distribution. Define
Mt = sp{Xk, k ≤ t}, and

σ2 = ‖Xt+1 − PMtXt+1‖2.

Theorem 2 (Kolmogorov’s Formula). Let F be a spectral distribution, and f be its derivative (which
is defined almost everywhere). Then σ2 > 0 if and only if

∫ π
−π log f(λ) dλ > −∞. Furthermore, the

following identity always holds (even when σ2 = 0).

σ2 = 2π exp

{
1

2π

∫ π

−π
log f(λ) dλ

}
.

The proof uses the theory of Hp spaces, and involves the concepts of Poisson integral, radial
limit, outer function, inner function, Blaschke product etc, all of which can be found in Walter
Rudin’s Real and Complex Analysis (McGraw-Hill, 3ed, 1986). All the theorems cited in the proof
refer to the same book.

Proof. Suppose {Xt, t ∈ Z} is a stationary process which has F as its spectral distribution. If
σ2 > 0, let

Xt =
∞∑
j=0

ψjZt−j + Vt =: Ut + Vt

be the Wold Decomposition of {Xt}, where {Zt} ∼WN(0, σ2). The function ψ(z) :=
∑∞

j=0 ψjz
j ∈

H2 (Theorem 17.12). Let ψ∗ be the radial limit of ψ(z), then log |ψ∗| ∈ L1(T) (Theorem 17.17).
Define the outer function

Qψ(z) = exp

[
1

2π

∫ π

−π

eiλ + z

eiλ − z
log |ψ∗(eiλ)| dλ

]
.

It holds that Qψ ∈ H2 (Theorem 17.16), and |Q∗ψ(eiλ)| = |ψ∗(eiλ)| a.e. on T. According to
Theorem 17.17, there is an inner function Mψ such that ψ = MψQψ. We shall prove that Mf is a
constant inner function, which implies that Mf = 1, and

1

2π

∫ π

−π
log |ψ∗(eiλ)| dλ = 0. (4)

Let’s do proof by contradiction. If Mf is not a constant, then by Theorem 17.17,

1

2π

∫ π

−π
log |ψ∗(eiλ)| dλ > 0.

Let Qψ(z) =
∑∞

n=0 anz
n be the power series representation of Qψ on U, then a0 = Qψ(0) > 1. Note

that Qψ ∈ H2 implies that
∑∞

n=0 |an|2 <∞. Consider the process

Yt =
∞∑
j=0

ajZt−j + Vt. (5)

By construction {Yt} and {Xt} have the same spectral distribution, since |Q∗ψ(eiλ)| = |ψ∗(eiλ)| a.e.

However, the representation (5) (this is actually a Wold Decomposition, but we don’t need this
fact) implies that

a2
0σ

2 ≤ ‖Yt+1 − Psp{Yk, k≤t}Yt+1‖ = ‖Xt+1 − PMtXt+1‖2 = σ2,
5



which is impossible!
It follows from (4) that

σ2 = 2π exp

{
1

2π

∫ π

−π
log

[
|ψ∗(eiλ)|2 · σ

2

2π

]
dλ

}
.

From here, the proof proceeds as (i) prove that FU and FV are singular with each other relative
to F (see Doob (1953) or Kolmogorov’s seminal paper Stationary Sequences in Hilbert Space), and
(ii) since the spectral density density of FU is positive a.e., it follows that FV must be singular to
the Lebesgue measure. Therefore, F = FU +FV is precisely the Lebesgue decomposition of F , and
hence f = ψ∗ a.e. and the proof of the “⇒” direction is complete.

Now we prove the other direction. Let dF = f + dν be the Lebesgue decomposition of F . If
log f ∈ L1(T), define the function

Qf (z) = exp

[
1

2π

∫ π

−π

eiλ + z

eiλ − z
log
√
f(eiλ) dλ

]
.

By Theorem 17.16, Qf ∈ H2 and Q∗f (eiλ) =
√
f(eiλ) a.e. Let Qf =

∑∞
n=0 bnz

n be the power series

representation of Qf over U, it holds that b0 = Qf (0) > 0. Suppose {Gt, t ∈ Z} ∼WN(0, 2π), and
{Ht, t ∈ Z} has ν as its spectral distribution, and {Gt, t ∈ Z} and {Ht, t ∈ Z} are uncorrelated
with each other. Define

Wt =
∞∑
j=0

bjGt−j +Ht.

It is straightforward to verify that {Wt, t ∈ Z} has the same spectral distribution as {Xt}. But

‖Wt+1 − Psp{Wk, k≤t}Wt+1‖2 ≥ 2πb20 > 0,

which implies σ2 > 0, and the proof is complete. �

2.4. Martingale central limit theorems. I am copying some martingale central limit theorems
from Hall and Heyde’s classic Martingale Limit Theory and Its Application. Although the versions
presented here are simplified (see the book for the more general results), they are already very
powerful.

Theorem 3 (Theorem 3.2.). Let {kn} be a non-decreasing sequence of positive integers which tends
to infinity. Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero mean, square-integrable martingale array
with differences Xni, and let η2 > 0 be a positive constant. Suppose that

max
1≤i≤kn

|Xni|
p→ 0, (6)

kn∑
i=1

X2
ni

p→ η2, (7)

E( max
1≤i≤kn

X2
ni) is bounded in n, (8)

Fn,i ⊂ Fn+1,i for 1 ≤ i ≤ kn, n ≥ 1. (9)

Then Sn :=
∑kn

i=1Xni converges in distribution to N(0, η2).

Theorem 4 (Corollary 3.1.). If (6) and (8) are replaced by the conditional Lindeberg condition:

for all ε > 0,

kn∑
i=1

E
[
X2
niI(|Xni| > ε)|Fn,i−1

] p→ 0,
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and if (7) is replaced by an analogous condition on the conditional variance:

V 2
n :=

kn∑
i=1

E(X2
ni|Fn,i−1)

p→ η2,

and if (9) holds, then Sn converges in distribution to N(0, η2).

Theorem 5 (Theorem 5.2.). Let {Xn, n ∈ Z} be a strictly stationary and ergodic sequence of real
random variables. Let

Sn =
n∑
i=1

(Xi − EXi), and F0 = σ{Xk, k ≤ 0}.

If
∞∑
k=1

Cov[E(Xn|F0), Xk] converges for every n ≥ 0,

and

lim
n→∞

sup
K≥1

∣∣∣∣∣
∞∑
k=K

Cov[E(Xn|F0), Xk]

∣∣∣∣∣ = 0,

then n−1Var(Sn) converges to σ2 with 0 ≤ σ2 < ∞, and n−1/2Sn converges in distribution to
N(0, σ2).

2.5. A few lemmas for the proof of Theorem 10.8.1. Throughout this subsection, assume
{Xt} is a strictly stationary mean zero process with absolutely summable autocovariances γ(n), so
that its spectral density f(λ) = (2π)−1

∑
n∈Z γ(n)e−inλ is a continuous function. Define the event

A as the set on which

X̄n =
1

n
(X1 + · · ·+Xn)→ 0, and γ̃(k) =

1

n

n∑
t=k+1

XtXt−k → γ(k), ∀ k ≥ 0.

Note that if {Xt} is a causal and invertible ARMA(p, q) process φ0(B)Xt = θ0(B)Zt with {Zt} ∼
IID(0, σ2), then P [A] = 1.

For any vector ϕ = (ϕ0, ϕ1, . . . , ϕm)′ ∈ Rm+1, define ϕ(z) = ϕ0 + ϕ1z + · · ·+ ϕmz
m. Note that

ϕ(z) differs from φ(z) and θ(z) in that it can have a constant term different from 1.

Lemma 6. On the event A, it holds that

(i) For any ϕ = (ϕ0, ϕ1, . . . , ϕm)′,

1

n

∑
j

In(ωj)|ϕ(e−iωj )|2 →
∫ π

−π
f(λ)|ϕ(e−iλ)|2 dλ.

(ii) For any sequence {βn} ∈ Cp,q such that βn → β ∈ Cp,q,

1

n

∑
j

In(ωj)

g(ωj ;βn)
→
∫ π

−π

f(λ)

g(λ;β)
dλ.

(iii) For any sequence {βn} ∈ Cp,q such that βn → β ∈ ∂Cp,q,

lim inf
n→∞

1

n

∑
j

In(ωj)

g(ωj ;βn)
≥
∫ π

−π

f(λ)

g(λ;β)
dλ.
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Proof of (iii). First of all, the discussion is always on the event A. According to Corollary 4.4.2,
for a fixed δ > 0, there exists a ϕ such that

|θ(e−iλ)|2 + δ ≤ |ϕ(e−iλ)|−2 ≤ |θ(e−iλ)|2 + 2δ.

Let (φnϕ)(e−iλ)|2 =
∑m

k=−m bn,ke
−ikλ and (φϕ)(e−iλ)|2 =

∑m
k=−(m) bke

−ikλ. Note that bn,k → bk
for each |k| ≤ m (as φn → φ). Since

1

n

∑
j

[
In(ωj)|(φnϕ)(e−iωj )|2

]
=

m∑
k=−(m)

bn,kγ̃(k) + 2
m∑
k=1

bn,kγ̃(n− k),

it holds that (on the event A)

1

n

∑
j

[
In(ωj)|(φnϕ)(e−iωj )|2

]
→

m∑
k=−(m)

bkγ(k) =

∫ π

−π
f(λ)|(φϕ)(e−iλ)|2 dλ.

Therefore,

lim inf
n→∞

1

n

∑
j

In(ωj)

g(ωj ;βn)
≥ lim inf

n→∞

1

n

∑
j

[
In(ωj)|(φnϕ)(e−iωj )|2

]
=

∫ π

−π
f(λ)|(φϕ)(e−iλ)|2 dλ

≥
∫ π

−π
f(λ)

|φ(e−iλ)|2

|θ(e−iλ)|2 + 2δ
dλ,

where the first inequality is due to θn → θ and hence |θn(e−iλ)|2 ≤ |ϕ(e−iλ)|−2 for all λ when n is
large enough. Letting δ ↓ 0 and applying the MCT leads to the conclusion of (iii). �

For any rational function h(z) = h1(z)/h2(z) such that h1(z)h2(z) 6= 0 on |z| ≤ 1, let Gn(h) be
the n× n autocovariance matrix corresponding to the spectral density (2π)−1|h(e−iλ)|2. Following
this definition, the matrix Gn(β) with β ∈ Cp,q can also be expressed as Gn(β) = Gn(θ/φ).

Lemma 7. On the event A, it holds that

(i) For any ϕ(z) := ϕ0 + ϕ1z + · · ·+ ϕmz
m with real coefficients,

1

n
X ′nGn(ϕ)Xn →

∫ π

−π
f(λ)|ϕ(e−iλ)|2 dλ.

(ii) For any sequence {βn} ∈ Cp,q such that βn → β ∈ Cp,q,
1

n
X ′nG

−1
n (βn)Xn →

∫ π

−π

f(λ)

g(λ;β)
dλ.

(iii) For any sequence {βn} ∈ Cp,q such that βn → β ∈ ∂Cp,q,

lim inf
n→∞

1

n
X ′nG

−1
n (βn)Xn ≥

∫ π

−π

f(λ)

g(λ;β)
dλ.

Proof of (iii), sketch. Similar to the proof of Lemma 6 (iii), for each δ > 0, find the ϕ such that

|θ(e−iλ)|2 + δ ≤ |ϕ(e−iλ)|−2 ≤ |θ(e−iλ)|2 + 2δ.

Note that ϕ(z) 6= 0 on |z| ≤ 1. Let αn(z) := ϕ−1
0 (φnϕ)(z) =

∑m
k=0 an,kz

k and α(z) := ϕ−1
0 (φϕ)(z) =∑m

k=0 anz
k. Note that an,0 = a0 = 1. Recall that Gn(1/αn) is the n × n autoconvariance matrix

corresponding to the spectral density (2π)−1|αn(e−iλ)|−2. Since θn → θ, when n is large enough,
|θn(e−iλ)|2 ≤ |ϕ(e−iλ)|−2 for all λ, which implies that

X ′nG
−1
n (βn)Xn ≥ ϕ2

0 ·X ′nG−1
n (1/αn)Xn.
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Let {Ynt} be the autoregressive process αn(B)Ynt = Wt, where {Wt} ∼ WN(0, 1). Now perform
the Gram-Schmidt procedure:

Wn1 = δn11Yn1

Wn2 = δn21Yn1 + δn22Yn2

. . .

Wnm = δnm1Yn1 + · · ·+ δnmmYnm

Wn,m+1 = αn(B)Yn,m+1

. . .

Wnn = αn(B)Ynn,

(10)

such that {Wn1, . . . ,Wnn} are uncorrelated with variance 1. Denote the matrix on the RHS of (10)
by Tn, and note that G−1

n (1/αn) = T ′nTn. Note that T ′nTn is the same as the matrix G(αn) except
for the upper-left and bottom-right m×m blocks. It follows that

X ′nG
−1
n (1/αn)Xn/n−X ′nG(αn)Xn/n

=
1

n

∑
1≤j,k≤m

XjXk

{
(T ′nTn)[j, k]−G(αn)[j, k]

}
+

1

n

∑
0≤j,k≤m−1

Xn−jXn−k
{

(T ′nTn)[n− j, n− k]−G(αn)[n− j, n− k]
}
,

which converges to zero on the event A. Here we also use the fact that supn max0≤k≤m |ank| <∞
and (HW Problem)

sup
n

max
1≤k≤j≤m

|δnjk| <∞.

Let |αn(e−iλ)|2 =
∑m

k=−m bn,ke
−ikλ and |α(e−iλ)|2 =

∑m
k=−(m) bke

−ikλ. Note that bn,k → bk for

each |k| ≤ m. Similar to (i), it holds that (when n is large enough)

X ′nG(αn)Xn/n =

∫ π

−π

1

2π
|αn(e−iλ)|2

∑
|k|<n

γ̃(k)e−ikλ dλ =
m∑

k=−m
bn,kγ̃(k),

which on event A converges to

m∑
k=−m

bkγ(k) =

∫ π

−π
f(λ)|α(eiλ)|−2 dλ.

To summarize, we have shown that on event A,

lim inf
n→∞

X ′nG
−1(βn)Xn/n ≥ lim

n→∞
ϕ2

0 ·X ′nG−1
n (1/αn)Xn/n = ϕ2

0

∫ π

−π
f(λ)|α(eiλ)|2 dλ

=

∫ π

−π
f(λ)|(ϕφ)(eiλ)|2 dλ ≥

∫ π

−π
f(λ)

|φ(e−iλ)|2

|θ(eiλ)|2 + 2δ
dλ.

The proof is completed by letting δ ↓ 0 and applying the MCT. �
9



2.6. On the Proof of Theorem 10.8.2. The relationship between ∂σ̄2(β0)/∂β and ∂σ̄2(β̄n)/∂β
should be written as

∂σ̄2(β0)

∂β
=
∂σ̄2(β̄n)

∂β
−



∂σ̄2
(
β
(1)
n

)
∂β1∂β1

∂σ̄2
(
β
(1)
n

)
∂β1∂β2

· · ·
∂σ̄2

(
β
(1)
n

)
∂β1∂βp+q

∂σ̄2
(
β
(2)
n

)
∂β2∂β1

∂σ̄2
(
β
(2)
n

)
∂β2∂β2

· · ·
∂σ̄2

(
β
(2)
n

)
∂β2∂βp+q

...
...

. . .
...

∂σ̄2
(
β
(p+q)
n

)
∂βp+q∂β1

∂σ̄2
(
β
(p+q)
n

)
∂βp+q∂β2

· · ·
∂σ̄2

(
β
(p+q)
n

)
∂βp+q∂βp+q


(β̄n − β0),

where each β
(k)
n lies on the segment connecting β0 and β̄n, 1 ≤ k ≤ p+ q. The formula for σ̃2(β)

is similar.
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