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A Single-Pass Algorithm for Spectrum Estimation
With Fast Convergence

Han Xiao and Wei Biao Wu

Abstract—We propose a single-pass algorithm for estimating
spectral densities of stationary processes. Our algorithm is com-
putationally fast in the sense that, when a new observation arrives,
it can provide a real-time update within ���� computation. The
proposed algorithm is probabilistically fast in that, for stationary
processes whose auto-covariances decay geometrically, the esti-
mates from the algorithm converge at a rate which is optimal up to
a multiplicative logarithmic factor. We also establish asymptotic
normality for the recursive estimate. A simulation study is carried
out and it confirms the superiority over the classical batched mean
estimates.

Index Terms—Batched mean estimate, bias reduction, nonpara-
metric estimation, physical dependence measure, recursive algo-
rithm, spectral density, stochastic process.

I. INTRODUCTION

L ET be a stationary process with . Let
the mean and the covariance function

. If

(1)

then the spectral density

(2)
exists and is continuous, where is the imaginary unit.
Throughout the paper, we write for the rotation . The
spectral density function captures the frequency content of
the underlying process. In the study of stationary processes, a
fundamental problem is to estimate based on observations

. The problem of spectral density estimation
has a long history (see [1]–[10] and [11] among others) and
it appears in almost all scientific fields including astronomy,
geoscience, economics, physics, and engineering.

Thispaperconsidersnonparametricestimationofspectralden-
sity functions. Traditionally, one can use the lag window estimate

(3)
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where is the lag window satisfying , if
and , is the lag size and

for , are the estimated covariances, where
is the sample mean; or [12]’s overlapping batched mean (OBM)
estimate

(4)

where and ; or the smoothed periodogram
estimate

(5)

where is a kernel function and is the periodogram.
Statistical properties of the above and other nonparametric spec-
tral density estimates have been discussed in [7], [8], [11], and
[13], among others.

All of the above estimates are nonrecursive in the sense that
they cannot be updated within computation once a new
observation arrives. Specifically, if a new value comes at
time , then the estimates in (3)–(5) which are based on

, should be updated within at least computing
steps. Additionally, one has to store all the data
available up to time , thus having memory complexity.
The latter two shortcomings are highly undesirable in situations
in which one needs to process very long time series. In con-
temporary signal processing, with technological advances, extra
long time series which are machine collected are now commonly
seen and it then poses new challenges for spectrum estimation.

Of particular interest is the estimation of . Under suitable
conditions on (cf. [14], [15], and [16], among others), one
has

(6)

Here, denotes convergence in distribution and is called
the time-average variance constant (TAVC), long-run variance
or asymptotic variance parameter. Note that . Es-
timation of has been extensively studied. The method of
batched means has been discussed in [17]–[19] (see also ref-
erences therein). Based on the batched means
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for , the OBM estimate of is a ver-
sion of (4) with . If we use nonoverlapping batched means

for (assume for sim-
plicity ), then the estimate

(7)

is called nonoverlapping batched means (NBM) estimate. In
this paper, the term “BM estimate” refers to both OBM and
NBM estimates. Note that can be computed recursively via

. As in [20], if is fixed
and does not depend on , the OBM estimate (4) can be com-
puted recursively. The latter is no longer true if grows as
increases. Generally, consistency of requires and

. Reference [21] proposed a recursive algorithm for
computing via a modified OBM estimate.

The rest of this article is structured as follows. Section II in-
troduces a recursive (one-pass or single-pass) algorithm for es-
timating spectral density functions. Our algorithm provides real
time updates and is therefore useful for efficient and fast pro-
cessing for extra long time series. The computational advan-
tage becomes more attractive if one wants to compute values
of spectral densities at multiple frequencies. We also present an
improved, probabilistically faster estimate where we can have
a better control on the bias and hence we get faster conver-
gence with smaller mean squares error (MSE). Both estimates
are given for two cases depending on whether the mean is
known or not. In Section III, we investigate asymptotic statis-
tical properties of our algorithms, present MSE bounds and cen-
tral limit theorems and discuss the choice of batch sizes. We
present in Section IV a simulation study and compare the perfor-
mance of recursive and non-recursive estimates. The technical
lemmas and proofs are gathered in Section V.

We now introduce some notation. For , we say a (com-
plex) random variable if .
Write . For two nonnegative sequences and

, write (resp. ) if there exists a
constant such that (resp.

) and
if . For two real numbers and , define

and . We use for a
constant and use to emphasize that the constant depends on

. The values of and may vary from place to place.

II. RECURSIVE SPECTRAL DENSITY ESTIMATION

That (4) is nonrecursive is due to the fact that the block size
and the summands have the same size . Assuming

at the outset that , Section II-A introduces a modified
NBM estimate with varying block sizes and a corresponding al-
gorithm, for which the important goal of algorithmic recursive-
ness can be achieved. The algorithm is improved in Section II-B
where an estimate with bias correction is given, while the re-
cursive property is retained. Section II-C deals with the case in
which the mean is unknown and one only needs to slightly
modify the recursive algorithm in Sections II-A and II-B.

A. Estimates With Varying Block Sizes

We first assume that is known and (say). Let
be a sequence of strictly increasing positive integers such that: )

; ii) the differences is nondecreasing in
; and iii) as . For , let

and . As an example, if , then
and , where
is the integer part of . For , let be such that

. In some occasions, we omit the subscript
from when there is no confusion. Let

.
Given , define

(8)

where the block sums

(9)

We propose to estimate the spectral density by
. In the sequel, since will be treated as fixed, we

shall also omit and write (resp. , etc.) as
(resp. , etc).

In the expression of , if , then still
belongs to the block and . If

, then belongs to the next block and
we start a new . To summarize, we propose
the following single-pass algorithm:

Algorithm 1 At step , we store the vector . At
step , we update it as follows:

(i) if , let ,
and ;

(ii) if , let ,
and ;

and we give the output as .
The block sizes in (8) are changing. The memory complexity

of Algorithm 1 is and the computational complexity scales
linearly in .

B. Estimates With Bias Reduction

Our quadratic sum can be expressed as

(10)

where

In view of (2), the bias corresponding to the term is

(11)

The bias can be large if is small. Therefore, in order to
reduce the bias, we modify by only including those for
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which is large. Specifically, we pick a sequence of in-
creasing thresholds and for each

, we include only if . This leads
to the new estimate , where is given by

(12)

and

(13)

Algorithm 1 can be modified and one can compute recur-
sively.

Algorithm 2 At step , we store . At step
, we update it as follows:

(i) if , let
— if , let

,
and ;

— if , let ,
and ;

(ii) if , let , ,
and ;

and we give the output as .
By deleting in with small , we can have an estimate

which converges more quickly in probability; see Theorem 2.
On the other hand, however, our estimate may take
negative values. To implement Algorithm 2, we need to choose
the block sequence and the threshold sequence . The-
orem 2 also provides a guideline on how to choose them.

C. Estimates With Unknown Means

In practice, is often unknown. So and need to be
centered. It is natural to estimate by the sample mean

. Let

(14)

where, similarly as (8) and (9)

We propose to estimate by . Let
and , simple algebra shows that

the difference

(15)

where

and

We use the following algorithm to compute recursively.
Algorithm 3 At step , we store

At step , we update it as follows:
(i) let ;

(ii) if , let ,
, , ,

and
;

(iii) if , let , ,
, ,

and ;
and as the output, we compute ,
where

A similar bias-corrected version of the estimate can be
constructed in a straightforward way:

(16)

where

Let

where and , then

(17)

It is clear that can be computed recursively as well. The
algorithm, which is a combination of Algorithms 2 and 3, can
be easily worked out and the details are omitted here.

III. ASYMPTOTIC THEORY

Asymptotic properties of the BM estimates of the long-run
variance have been extensively studied. [22] and
[23] obtained strong consistency. [24] and [25] derived MSE
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bounds which are used to choose batch sizes. Their results de-
pend on restrictive moment conditions and strong mixing con-
ditions which are not easily verifiable. [21] studied the long-run
variance estimation problem for recursive OBM estimates.

We shall establish an asymptotic theory of our recursive spec-
tral density estimates by implementing the dependence measure
in [15]. Assume that is a stationary causal process of the
form

(18)

where , are iid random variables and is a measurable
function for which is a properly defined random variable.
Following [26] and [27], we interpret (18) as an input/output
physical system with being the input,
being the filter and being the output. We shall also write

. The class of process that (18) represents is huge
and it includes linear processes, Volterra processes and many
other time series models; see [28] and [29]. Applying the idea
of coupling, [15] introduced the physical dependence measure.
Let be an iid copy of , ,

, and .
For , define the physical dependence measure

(19)

which quantifies the dependence of on by mea-
suring the distance between and its coupled (at the po-
sition ) version . The physical dependence measure is
directly related to the underlying data-generating mechanism.
Our main results are based on . Define

(20)

where .
In the sequel, we let and write (resp. )

for (resp. ) if there is no confusion caused.

A. Mean-Squared Error Bounds

With the physical dependence measure, we have the fol-
lowing convergence rates of the variances of the estimates

and . Define if and
if otherwise.

Theorem 1: Assume , , and
. Assume the sequence satisfies that

and .
(i) Let , then

(ii) Let . If
, then

Theorem 2 concerns convergence rates of the MSE for some
particular choices of and . We need either of the fol-
lowing assumptions on the auto-covariances .

A1

(21)

A2

(22)

Theorem 2: Let conditions of Theorem 1 be satisfied.
(i) Assume (21) with , then

if
if

Hence, if for some and ,
then , where

which reaches the smallest order of
magnitude if . In particular, if and

, then .
(ii) Assume (21) with . Let and

with some , and , then
and

if
if
if

In particular, if , then the MSE
reaches the smallest order.

(iii) Assume (22). Let and ,
where , and , then

and

if
if
if

If , then the MSE
.

(iv) Assume (22). Let and
, . Then

and

if
if
if

If , then
.

When (21) holds with , the MSE of the lag window es-
timate has the optimal order with an appropri-
ately chosen kernel [30, see for example Section 9.3]. Since the
BM estimate corresponds roughly to the lag window estimate
with Bartlett kernel, it cannot utilize the extra smoothness of the
spectral density and the optimal order remains even
when or (22) holds. Our bias-reduced estimates actually
correspond to the lag window which is flat with value 1 around
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Fig. 1. Lag windows for the usual BM estimate and the one with bias reduction.

0 and then decreases linearly to 0 (see Fig. 1). Therefore, they
can exploit the quick decay of the autocovariances and achieve
the optimal convergence rate as the lag window estimates (see
part (ii) of Theorem 2). We shall remark that the bias reduction
works not only for the recursive estimates, but also for the usual
non-recursive BM estimates.

Theorem 2 suggests how to choose the block sequence
and the threshold sequence . If (22) holds, we have a very
good control on the bias term; see (11). Thus, the bias-correction
is necessary. We can either choose for very close
to one and for some large enough to get
an order of for the MSE , or choose

and for some
large enough so that the convergence rate of is

, which is nearly optimal. If (21) holds with ,
we can choose and with

and to get the order . However,
if we only have (21) with , the bias correction does
no good and we are in case (i) of Theorem 2.

We now compare Theorem 2 with existing results on BM
estimates of the TAVC . [31] considered the
special AR(1) process , where and

are iid standard normal random variables and showed that
the MSE of the NBM estimates of the TAVC is asymptotically

. [25] showed that under
some summability condition of the -mixing coefficients and
the moment condition , the optimal error bound
of the MSE is if the batch size is of order .
In comparison, our dependence measures and moment condi-
tions are mild and natural. [21] obtained the same bound for re-
cursive OBM estimates under our Assumption 1 with .
By Theorem 2, we can obtain the same bound by choosing

when Assumption 1 holds with , whereas if
Assumption 2 holds, we can get much better error bounds. The
error bound in case (iii) is almost optimal, since in
the case where ’s are independent and identically distributed
(i.i.d.), the order is .

Remark 1: We provide sufficient conditions for Assumptions
1 and 2. Since projection operators

(23)

generate martingale differences and ,

Hence, if for some and ,
then Assumption 1 holds; if for some
and ; then Assumption 2 holds. The latter property is
called the geometric-moment contraction and it holds for a wide
class of nonlinear time series; see [32].

B. Central Limit Theorems

To construct confidence intervals for values of spectral
density functions, one needs to have a central limit theorem
(CLT) instead of MSE bounds. CLTs for quadratic forms have a
long history. See [33], [34] and [35] and references therein for
the case where ’s are iid. For stationary processes in which
dependence is an intrinsic nature, the central limit problem
becomes very challenging. [8], [36] and [37] assumed strong
mixing conditions. [38] made a recent breakthrough and they
obtained a CLT for the lag window spectral density estimate.
Here, with the physical dependence measure, we shall present
a CLT for our recursive estimates.

Theorem 3: Let conditions of Theorem 1 be satisfied. Recall
that if and if otherwise.

(i) Let . Then

(24)

(ii) Let . Then

(25)

To construct confidence intervals for spectral densities, we
shall replace and by and in (24) and (25),
respectively. For the choices of and in Theorem 2 (ii),
(iii) and (iv), since the squared bias is of smaller order than the
variance, we can do the replacement without changing the lim-
iting distribution. It is a similar situation for Theorem 2 (i) when

and . However, when , if we choose
the optimal , a direct calculation shows that the lim-
iting distribution has a nonzero mean if we do the replacement.
To summarize, we have

Corollary 4: Assume the same conditions as Theorem 1.
Then

(i) Assume (21) with , choose for
some and . Then if ,
we still have (24) if is replaced by . If , we
have

where .
(ii) Assume (21) with , choose and

with some , and .
Then (25) remains true if we replace by .

(iii) Assume (22), choose and ,
where , and is such that

. Then (25) still holds true if we replace by
.

(iv) Assume (22), choose and
, where and

. Then (25) is still true if we re-
place by .
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C. Centered Estimates

By (15), same results for the centered estimate can be
obtained from the corresponding ones for , if we have a good
control on and ; and indeed it is true [see (47)].
The situation for is similar in view of (17). Corollary 5
summarizes the results for those centered estimates.

Corollary 5: Assume and let conditions of The-
orem 1 be satisfied. Then Theorems 1 and 3 and Corollary 4
still hold for the centered estimates and . Furthermore,
the following results in Theorem 2 remain true.

(i) Assume (21) with . Let for some
and . Then

.
(ii) Assume (21) with . Let and

with some , and .
Then .

(iii) Assume (22). Let and ,
where , and . Then

.
(iv) Assume (22). Let and

, where and .
Then .

IV. SIMULATION RESULTS

This section presents a simulation study and compares
the MSE of our recursive BM estimates with other popular
estimates:

(a) Recursive NBM estimate (8) with ;
(b) Recursive NBM estimate (12) with

and ;
(c) Recursive OBM estimate in [21] with ;
(d) Nonrecursive NBM estimate, c.f [25] with batch size

;
(e) Lag window estimate with truncation kernel

We abbreviate them by RNB1, RNB2, ROB, NB, and LW, re-
spectively. The LW estimate in (e) is the analog of the one in
(b) in the context of lag window estimates. To compare the LW
estimate with (b), we choose , where is the
solution of the equation . We consider linear and bilinear
processes whose spectral densities have closed forms.

Example 1 (Linear Process): Consider the
process

where are iid with mean 0 and variance and
are real parameters. Assume all roots of

the equation lie inside the unit circle.

Recall . The spectral density function is

TABLE I
MSE OF ESTIMATES OF TAVC FOR THE AR(1) MODEL

TABLE II
MSE FOR ESTIMATES OF TAVC FOR THE BILINEAR MODEL

Example 2 (Bilinear Model): Let be iid . Consider
the recursion

(26)

where and are real parameters. If , then
(26) has a stationary solution [29, Theorem 4.5] and

. Simple calculation shows that

By Remark 1, (22) is satisfied. The spectral density is

We consider the estimation of TAVC on two models:
(i) AR(1) model ; (ii) bilinear model

. In both models we let
be iid . For each estimate and each sample size (see
the top row of Table I, where 5e5 means ), we repeat
the simulation 1000 times and record the average of the 1000
squared distances from the true TAVC. The results (multiplied
by ) are summarized in Tables I and II. The MSE of
RNB1 is always roughly the same as NB. The biased corrected
version RNB2 does worse at the beginning, but performs better
when the sample size gets larger. The MSE of RNB2 decreases
faster than the other three estimates RNB1, ROB and NB as
the sample size increases, which confirms the fast convergence
asserted in Theorem 2 (iii). Furthermore, the RNB2 is closer to
LW than RNB1, ROB and NB when the series is long enough.
Elementary calculations show that, by [38, Theorem 2], the
variance of the LW estimate is ,
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Fig. 2. Times needed for RNB1 and NB estimates. The straight line is for the
recursive estimate. The computation is done on Intel Core Duo T2300 processor
with 2G memory and Ubuntu 9.10 operating system.

TABLE III
MSE FOR SPECTRAL DENSITY ESTIMATES FOR THE AR(1) MODEL

while by Theorem 1 our RNB2 estimate has a bigger variance
.

Now we compare the time used for computing different TAVC
estimates. We run the AR(1) model with known for
steps, updating RNB1 and NB at each step. Fig. 2 plots the time

TABLE IV
MSE FOR SPECTRAL DENSITY ESTIMATES FOR THE BILINEAR MODEL

used against the number of steps. We see that, as expected, the
time needed for our recursive estimate increases linearly, while
the usual batched means algorithm is much slower.

We also compare the spectral density estimates at other fre-
quencies for the previous two models. Since the MSE for the
centered estimates are very similar, we only consider the models
with known . We report the average MSE (of 1000
repetitions) in Tables III and IV and observe similar behavior of
these estimates at all seven frequencies equally spaced on .

Finally, we demonstrate the effect of bias reduction on (i)
AR(1) model ; and (ii) bilinear model

. Again we let be iid in both
models. For RNB2, we now use and so that
the condition of Theorem 2 (iii) is satisfied.
We obtain estimates for 24 frequencies equally spaced on the
interval . For each method, we repeat ten times and record
the average. Fig. 3 suggests that RNB2 has the smallest bias,
confirming the effect of bias reduction. From the second row of
Fig. 3, we see the bias of RNB2 and LW are similar and they are
smaller than the other ones.

V. PROOFS

We first provide a complete proof for the special case
or . The argument for general is similar; and in

Section V-D, we shall point out the necessary changes.
As in [38], we shall apply -dependence and martingale ap-

proximations. For , we can approximate functionals of



XIAO AND WU: A SINGLE-PASS ALGORITHM FOR SPECTRUM ESTIMATION WITH FAST CONVERGENCE 4727

Fig. 3. Comparison of the centered spectral density estimates. The first (resp.
second) column displays results for AR(1) model (resp. bilinear model). The
first row gives the estimates and true spectral densities (all multiplied by ��).
The second row shows the distances from the true density.

the process by the corresponding functionals of the -de-
pendence process

(27)

where is the -field generated by
. For example, the functional

(28)

can be approximated by

Lemmas 6 and 7 provide error bounds of the -dependence
approximation. Lemma 8 gives a martingale approximation for

. Lemma 6 is essentially Lemma 1 in [38]. Lemmas 7 and 8
can be proved by using the method in the latter paper. For the
sake of completeness, we present detailed proofs here.

As in the construction of in the definition of the physical
dependence measure , we let be a coupled version
of by replacing in by . If , then

. Keep in mind that and represent
different random variables. Similarly we define .

Lemma 6: Assume for some and .
Let and . Let

. Then

where

Remark 2: The lemma is still valid if we replace by 0 and
the bound becomes .

Lemma 7: Assume , for some and
. Then

(29)
where is the integer for which ,

Proof: Let , ,
then and . Let

. Similarly as , we define
and as the coupled version of and respectively. By
Minkowski’s inequality

(30)

By [38, (3.3)],
. By Burkhölder’s inequality, c.f [11, Lemma

1], . Thus
.

Here we let if . By Remark 2,
. Therefore
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It follows that

By Lemma 6, . Therefore

Putting these pieces together and noting that ,
we have

Using a similar argument, the same upper bound can be derived
for and hence the proof is complete.

Remark 3: By the dominated convergence theorem, the con-
dition implies . This fact is
useful in the proof of Theorem 3.

Lemma 8: Assume , and .
Recall the projection operator defined in (23). Let

(31)

and . Then

Proof: Observe that . We have

(32)

By Minkowski’s inequality

(33)

where

We break the sum in into two parts as ,
where

Note that are martingale differ-
ences. By (32), . Therefore

(34)

By (32), . Since is -depen-
dent, similarly as (34), we have

(35)

By (34) and (35), .
For the term , write , where

and .
Observe that is a martingale difference se-
quence with respect to the filtration .
Similarly as (34) and (35), we have

. Hence by (33), Lemma 8 follows.

A. MSE

Proof of Theorem 1: (i) We first calculate the order of the
variance of . Note that is a quadratic form of martingale
differences and

(36)
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Since is -dependent, if or
and if . Hence

(37)

Let . Similarly as (A.1) in [11],
. Now combine the results in Lemmas 7 and

8, observe that , we have for each fixed , when
is large enough

(38)

Note that , where is the TAVC of the sequence
and that as . Since and have

the same order and as , (i) follows by di-
viding both sides of (38) by , then taking the limit with
respect to and then with respect to .

(ii) The convergence rate of the variance of can be proved
by the same argument as part (i). Details are omitted.

Proof of Theorem 2: (i) Let . Again we write
for . By (21), we know and hence

if
if .

When , and . So the
other two assertions of (i) follows from Theorem 1.

(ii) Let , then and .

When and with some , we
have and therefore

if
if
if

(39)

(iii) Note that (22) also implies and hence

When and , we have ,
which by Theorem 1 (ii) implies
Since

(40)

if
if
if

(iv) For and with
, we have . So the condition of Theorem

1 (ii) is still satisfied. The bias can be calculated similarly as part
(ii), with the only difference being that now . Hence,
the conclusions in (iii) follow.

Remark 4: In general, the bounds on the bias terms in The-
orem 2 cannot be improved. For example, consider an AR(1)
process with and , where . Elementary
calculations show that

So the bounds in part (iii) cannot be improved, see (40). Similar
claims can be made for other cases of Theorem 2.

B. Central Limit Theorems

Proof of Theorem 3: As mentioned in the proof of Theorem
1, . Hence, by (28), it suffices to prove
that . We shall apply the argument in [38].
By Lemma 7, Remark 3 and Lemma 8 (recall that and
depend implicitly on ),

Recall that as , where is the
TAVC of the sequence . Therefore it remains to show that,
for every ,

(41)

Since , the
problem is reduced to

(42)
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Note that and are independent. By Burkhölder’s in-
equality

(43)

Hence, by the martingale central limit theorem c.f [40], it suf-
fices to verify

(44)

For any , since

we have by (43). Note that
, (44) is therefore reduced to

(45)

Let for any real number . Since

(46)

it suffices to show converges to zero
in probability. We calculate its norm,

It is clear that . Using a similar argument as (36), we
have . It follows that

and the proof is complete.
(ii) The CLT for can be proved similarly.

C. Centered Estimates

Proof of Corollary 5: We only give a proof for the estimate
, since the one for is similar. Write ,

where if . By Lemma 6

and . It follows that

(47)

Since , and have smaller orders
than . Therefore, Corollary 5 follows.

D. Proofs for Other Frequency

The basic idea is to replace every by in the proofs
for . Specifically, Lemma 7 still holds with

Lemma 8 holds with , where
. Observe that is an -dependent

and stationary martingale difference sequence and
. A careful check of the proof of Theorem 1 with

implies that it holds for general by noting that:
(i) for any , where is the spectral

density of the sequence .
(ii) For , , where de-

notes the complex conjugate. Thus we need to calculate
instead of . Let ,

similarly as (36) and (37), we have

(48)

Observe that and

. Since , we
have . So Theorem 1 (i) holds for any
by the same argument as . Theorem 1 (ii) can be shown
similarly. Theorem 2 follows from Theorem 1.

Remark 5: Observe that the bounds in Lemmas 7 and 8 are
uniform over . By (48)),

. Then, by elementary manipulations and Lemmas 7 and
8, we have the uniform upper bound

. Since all the orders of the squared bias in Theorem 2 are
uniform over , all the upper bounds of the MSE in that
theorem are also uniform.

Now we consider the central limit theorem for . The
proof for works in general with the following modifica-
tions.

(i) Equation (41) becomes
(ii) Let (46) becomes

(49)

Since , (49) is obvious when
. When , (49) follows by noting that

.
Finally, since (47) holds uniformly for , the results

for centered estimates of also hold for .
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