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Abstract. Twenty years ago, an eminent group of economic forecasters and statisticians published

a seminal work of forecasting the U.S. unemployment rate, certainly one of the most important

economic measures of the U.S. economy. Montgomery, Zarnowitz, Tiao, and Tsay (MZTT, 1998)

reported that linear and nonlinear time series models are useful in predicting unemployment rates

relatively accurately, in both short term (1 month) and medium term (5 months) prediction. One

interesting and important finding was that the weekly unemployment claims was a statistically

significant input in forecasting the U.S. unemployment rate over the 1959 – 1993 time period. The

weekly unemployment claims time series is a component of the U.S. Leading Economic Indicators

(LEI). In this paper we replicated and extended the MZTT analysis for the 1959 to 2019 time

period. We report out-of-sample one-step to twelve-step ahead monthly prediction performance of

various models for the 1990-2019 period, using a no-change (random walk) model as a forecasting

benchmark. Results obtained from this study include: (1) weekly unemployment claims are indeed

a useful and statistically significant input in a transfer function model to forecast the unemployment

rate; (2) the leading economic indicators time series is a statistically significant input in a trans-

fer function model to forecast the unemployment rate; (3) a seasonal ARIMA (SARIMA) model

outperforms the no-change benchmark for all forecasting horizons; (4) the SARIMA and transfer

function models are statistically significantly better forecasting models than a null, or no-change,

forecast, particularly in the Global Financial Crisis (GFC), 2008 -2019 time period. Improved upon

MZTT, this paper provides a set of analysis that serves as an updated benchmark for comparison

of forecasting methods and approaches on unemployment prediction.
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1 Introduction

The unemployment rate is one of the most important measures of an economy and has been

extensively studied since early twentieth century. The unemployment rate has been linked to

traditional business cycles (Burns and Mitchell, 1946; Harberler, 1937; Keynes, 1936; Klein, 1950;

Matthews, 1959; Mitchell, 1913; Mitchell and Gay, 1927; Moore, 1961; Persons, 1931; Samuelson,

1948; Zarnowitz, 1992). It was generally agreed that during an expansion, employment, production,

prices, money, wages, interest rates, and profits are usually rising, while the reverse occurs during

a contraction.

The impact of business cycle on unemployment is widely recognized. Rapid increases in the

unemployment rate were often accompanied by recessions declared by the NBER business cycle

committee. Thus, the unemployment rate was often studied in terms of the (traditional) business

cycle. Economists have also studied Keynes’s general theory of the trade cycle and unemployment,

including Brunner and Meltzer (1993); Hahn and Solow (1995); Harberler (1937); Keynes (1936)

and Lucas (1983), mainly considering the trade cycle as being one of under-consumption. It is noted

that an important influence on employment can be a reduction in wages which is accompanied by

decreases in prices and incomes, which will diminish the need for cash. Two final distinctions

in the Keynesian trade cycle are theories of prolonged associated unemployment with voluntary

and involuntary unemployment, which decomposed unemployment into voluntary, or frictional,

unemployment, and involuntary unemployment, which is zero “when full employment” is reached;

and equilibrium can exist with unemployment only with rigid wages, in the downward direction.

The question of rigid wages was addressed in Hahn and Solow (1995).

Based on Solow Growth Model (e.g. Romer (2019)) and the rational expectations-based model

of Lucas (1983), unemployment rate (over frictional unemployment) is considered as a deadweight

loss to society, which monetary and fiscal policy seeks to eliminate. Kydland and Prescott (1982),

in discussion of Real Business Cycles, argues that stocks, driven by technology advances, caused

growth and e↵ectiveness of labor. Relying upon the real business cycle model, various economic

models for unemployments were developed, including E�ciency-wage model, the Shapiro-Stiglitz

Model, and the European unemployment model (e.g. Romer (2019)).

One of the most used hypotheses of unemployment over the past fifty years has been that the

percentage rate of change of money wages is inversely associated with the level and the percentage

rate of change in unemployment (the Phillips curve), which was empirically demonstrated in Phillips

(1958) and Lipsey (1965). The expectations-augmented Phillips curve of Friedman (1968) posited

that the inflation rate depends on expected inflation and the deviation of unemployment from its

natural rate. Ball et al. (1988) and Ball and Mazumder (2019) provided an empirical analysis of

the Phillips curve. The Phillips curve analysis of Friedman (1968) introduced the concept of the

natural rate of unemployment, defined as the rate of unemployment to which the economy would

converge in the long-run. An implication of the definition is that expansionary monetary policy

would produce higher inflation, but might not be able to lower unemployment (Estrella and Mishin,

1999; Taylor, 1999).

Okun (1962) reported a negative short-run correlation between unemployment and output for

the United States that has become a staple of macroeconomic textbooks. An et al. (2019) tested
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Okun’s Law for 70 countries using IMF data for the 1990 -2015 time period, and reported that a

linear combination of Okun-based unemployment forecasts and WEO unemployment forecasts can

deliver significant forecast accuracy gains for developing economies .

Economic theory indicates that an appropriate level of unemployment is the key of economic

development. A high unemployment rate leads to human su↵ering and many other negative societal

consequences, while an extreme low unemployment rate leads to an increase of labor cost and

subsequent inflation. One of the certain mission of government monetary policy is to control

unemployment rate at the ideal level while controlling inflation (reference). Hence it is vital to

be able to accurately forecast the unemployment rate in the near and long term future, based on

limited current information of the economy.

In this paper, we revisit the approaches used in the seminal paper of Montgomery, Zarnowitz,

Tsay, and Tiao (Montgomery et al., 1998), hereafter denoted as MZTT, on forecasting U.S. unem-

ployment rate. Based on monthly observations in the period of 1959 to 1993, they demonstrated

that time series models are useful in predicting 1-month to 5-month ahead unemployment rates and

they compared the out-sample prediction performance of a range of models. More than 20 years

have passed and it is useful and necessary to re-exam these models post publication, as well as to

investigate new phenomenon aroused since, including the financial crisis of 2018. We pay special

attention to the relationship of U.S unemplyment rate and the lagged U.S. weekly unemployment

claim, as well as the US Leading Economic Indicator (LEI) series constructed by The Conference

Board.

Because of its importance, there is an extensive literature on forecasting unemployment rate.

MZTT modelled the U.S. unemployment rate as a function of the weekly unemployment claims time

series, 1948–1993. MZTT reported that nonlinear models, such as Threshold AR models (Tong,

1990; Tong and Lim, 1980), reduced forecasting errors as much as 28%, being more e↵ective in

periods of economic contraction and rising unemployment. The majority of the reduced forecasting

error occurs in the first quarter following the forecasting origin while one-third of the forecasting

error occurs in the second quarter. The transfer function modeling using unemployment claims

in MZTT did not reduce the forecasting error. Thomakos and Guerard Jr (2004) re-examined

several sets of transfer function modeling sets, including the MZTT U.S. unemployment rate, weekly

unemployment claims, and LEI relationships during the 1952 – 1998 time period. Thomakos and

Guerard reported leading indicator and the initial unemployment claims provided RMSE reductions

of 7.6% and 8.6% respectively over the no-change model. The RMSE reduction reductions were

not statistically significant. The coe�cients of the TF and VAR models were generally statistically

significant and of the correct sign in the Thomakos and Guerard rolling regressions.

Guerard et al. (2020) and Vinod and Guerard (2020) studied the U.S. real GDP and unem-

ployment rate forecasting, and reported that an adaptive averaging autoregressive model and the

adaptive learning model produced forecasts has significantly smaller root mean square errors and

lower mean absolute errors than the no change model forecasts reported in Mincer and Zarnowitz

(1969) during the 1959 to 2018 time period. Guerard et al. (2020) used Kyriazi et al. (2019) adap-

tive learning model and AutoMetrics, the automatic time series modelling and forecasting system

of Hendry and Krolzig (2005), Castle et al. (2013), Hendry and Doornik (2014), Castle and Hendry
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(2019); Doornik and Hendry (2015) with its emphasis on structural breaks. Guerard et al. (2020)

reported that the transfer functions using LEI and weekly unemployment claims of approximately

25% relative to no-change model forecasts for the 1959-2018 time period. The RMSE and MAE

were statistically significant, although the transfer function model RMSE and MAE reductions

were slightly less than the adaptive learning model forecasts.

Vinod and Guerard (2020) applied the transfer function methodology and Granger-causality

test based on Chen and Lee (1990) to report the casual relationship in which LEI led the U.S.

employment rate for the 1959 – 2018 time period, but only concurrent statistical association during

the 1959–1993 time period. Several sets of regression and time series-based models have established

that transfer functions with LEI and weekly unemployment claims data were highly statistically sig-

nificant for modelling the MZTT unemployment rate data. The 1994 to 2018 time period was one of

economic growth, despite the Global Finance Crisis of 2008–2009. This result is important because

the authors did not find the MZTT result that economic contractions and rising unemployment

were primarily periods of RMSE reductions.

Following MZTT, in this paper, we employ the SARIMA and transfer function modeling us-

ing the leading economic indicators and one of its components, weekly unemployment claims, to

forecast the U.S. unemployment rate. We report that the SARIMA and the LEI-based transfer

function models significantly outperform the no-change (or simple random walk) models. The U.S.

unemployment rate was approaching a 60-year low during 2018. Moreover, the LEI was at an all-

time high. There have been statistically significant relationships among the unemployment rate,

weekly unemployment claims, and the LEI time series, reported in MZTT, Guerard et al. (2020),

and Vinod and Guerard (2020). These time series have been addressed before, but our results are

more statistically significant using more recently developed time series modelling techniques and

software. The MZTT results are validated, post-publication, and additional time series modeling

enhances the statistical significance of the seminal study results. Our results are very consistent

with the forecasting analysis of Guerard et al. (2020) and Vinod and Guerard (2020),

The paper is organized as follows. In Section 2 we provide the detailed of the data set used

in the analysis. Section 3 lists the models entertained. Several other models (including xxx) were

entertained but were found to be less desirable hence omitted here. In Section 4 we report the

detailed findings. Section 5 concludes.

2 Data Description

The composite indexes of leading (LEI), coincident, and lagging indicators produced by The Con-

ference Board are summary statistics for the U.S. economy. Wesley Clair Mitchell of Columbia Uni-

versity constructed the indicators in 1913 to serve as a barometer of economic activity. The leading

indicator series was developed to turn upward before aggregate economic activity increased, and

decrease before aggregate economic activity diminished. Historically, the cyclical turning points in

the leading index have occurred before those in aggregate economic activity, cyclical turning points

in the coincident index have occurred at about the same time as those in aggregate economic activ-

ity, and cyclical turning points in the lagging index generally have occurred after those in aggregate
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economic activity.

The Conference Board’s components of the composite leading index for the year 2002 reflected

the work and variables shown in Zarnowitz (1992) list, which continued work of the Mitchell (1913,

1951); Mitchell and Gay (1927), Burns and Mitchell (1946), and Moore (1961).1 Specifically, LEI is

an equally weighted index in which its components are standardized to produce constant variances.

The detailed information of its components and its construction can be found at The Conference

Board website.2

The monthly unemployment rate we study is from 1959/02 to 2019/12. For the transfer function

modeling, we use the LEI and the monthly initial claims for unemployment (ICSA) as predictors.

These three series are plotted in Figure 1.

3 Models and their estimated parameters

3.1 SARIMA Model

The first model we consider is th seasonal ARIMA model (Box et al., 2015). It does not involve any

exogenous variables. Various model selection procedures indicate that SARIMA(2, 1, 2)⇥ (1, 0, 1)12
is a reasonable model. The fitted model to the whole time series is given by

(1� 1.10B + 0.18B2)(1� 0.54B12)�xt = (1� 1.09B + 0.33B2)(1� 0.80B12)at,

where at are assumed to be independent and identically distributed (IID), following a normal

distribution, with estimated variance 0.026. The estimated coe�cients and their standard errors

are given in the table below.

Parameter �1 �2 ✓1 ✓2 �1 ⇥1

Estimate 1.10 -0.18 -1.09 0.33 0.54 -0.80

SE 0.27 0.26 0.26 0.21 0.07 0.05

All the coe�cients except for �2 and ✓2 are highly significant. If we remove one of the two lag-2

coe�cients �2 and ✓2, the other becomes highly significant, and the AIC gets bigger. Therefore,

we choose to use the current model. Diagnostics show that the model is adequate and the residuals

are white.
1Geo↵rey Moore passed in 2000. Pami Dua edited a collection of papers to honor Moore, entitled Business

Cycles and Economic Growth (Oxford University Press, New York). The reader is referred to papers in the volume

by Victor Zarnowitz, John Guerard, Lawrence Klein, and S. Ozmucur, and D. Ivanova and Kajal Lahiri. The

Conference Board index of leading indicators was composed of the following variables in 2001; Average weekly hours

(mfg.); Average weekly initial claims for unemployment insurance; Manufacturers’ new orders for consumer goods

and materials; Vendor performance; Manufacturers’ new orders of non-defense capital goods; Building permits of

new private housing units; Index of stock prices; Money supply; Interest rate spread; and the Index of consumer

expectations.
2The reader is referred to Zarnowitz (1992), an IJF Associate Editor for many years, for his seminal development of

underlying economic assumption and theory of the LEI and business cycles. The Zarnowitz et al. (2001a), Zarnowitz

et al. (2001b) and Zarnowitz (2004) publications drove development of the LEI at The Conference Board.
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Figure 1: Monthly unemployment rate (UNRATE), initial claims (ICSA) and LEI.
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3.2 TAR Model

The second model we employ is the thresholded autoregressive (TAR) model of Tsay (1989), fitted

to di↵erenced unemployment rate �xt. Again, after a careful analysis and model building excises,

we choose �xt�3 as the threshold variable, and use two regimes depending on whether �xt�3  c

or not. The estimated threshold value c is 0.1, indicating that the dynamic of the unempolyment

rate are di↵erent, depending whether the change of the rate three months ago is greater than 10%

or not. In each regime, an AR(6) model is fitted. The estimated model is given by

�xt =

8
>>><

>>>:

�0.07�xt�1 + 0.20�xt�2 + 0.12�xt�3

+0.20�xt�4 + 0.13�xt�5 + 0.04�xt�6 + a(1)t when �xt�3  0.1

0.17�xt�1 + 0.16�xt�2 + 0.19�xt�3

+0.05�xt�4 � 0.09�xt�5 + 0.04�xt�6 + a(2)t when �xt�3 > 0.1

where a(1)t and a(2)t are assumed to be IID Normal, with estimated variances 0.023 and 0.031,

respectively. During the entire sample period, the proportion of times the process is in Regime 1 is

about 0.78. The model is “self-excited” as it does not depend on exogenous variables, but changes

it dynamic based on its own past.

The estimated coe�cients and their standard errors are reported below.

Lag 1 2 3 4 5 6

�xt�3  0.1 -0.07 0.20 0.12 0.20 0.13 0.04

SE 0.04 0.04 0.05 0.04 0.04 0.04

�xt�3 > 0.1 0.17 0.16 0.19 0.05 -0.09 0.04

SE 0.07 0.08 0.06 0.08 0.08 0.07

Most coe�cient in the model are significant. We choose to use the past 6 months for the prediction

and keep the insignificant terms in the model for simplicity. Residual analysis of the model is

satisfactory. The total residual sum of squares is 19.50, comparing with 18.65 of the SARMA

model, though the TAR model uses more parameters.

3.3 Transfer Function Modeling

We also consider the transfer function models (Box et al., 2015) using the initial claims for unem-

ployment (ICSA/1000, denoted by ut) and the leading economic index (LEI/10, denoted by vt).

Two models are entertained, one with ICSA only and the other with both ICSA and LEI.

The selected transfer function model for �xt is a SARIMA(2, 0, 2)⇥ (1, 0, 1)12 with lags 1 to 6

of ICSA, which is estimated as

�xt = 2.02ut�1 + 0.12ut�2 � 1.48ut�3 � 0.44ut�4 + 0.48ut�5 � 0.70ut�6 + wt,

(1� 1.18B + 0.23B2)(1� 0.57B12)wt = (1� 1.36B + 0.50B2)(1� 0.80B12)at,

where at are assumed to be IID Normal, with estimated variance 0.021. Although this model

only slightly reduces the residual variance comparing to the SARIMA model in Section 3.1, at the
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expense of six more parameters, it outperforms SARIMA model in terms out-sample prediction,

to be reported later in Section 4. We summarize the estimated coe�cients together with their

standard errors in the following table.

Coe�cients of SARIMA �1 �2 ✓1 ✓2 �1 ⇥1

Estimate 1.18 -0.23 -1.36 0.50 0.57 -0.80

SE 0.13 0.13 0.12 0.11 0.08 0.05

Coe�cients of ut�k 2.02 0.12 -1.48 -0.44 0.48 -0.70

SE 0.30 0.47 0.44 0.44 0.44 0.29

Most coe�cients are significant at 5% level. Since the significance levels of the estimated coe�cients

change when di↵erent periods of data are used (for out-sample prediction excise), we keep all the

terms in the model.

The estimated transfer function model of a SARIMA(2, 0, 2)⇥ (1, 0, 1)12 with lags 1 to 6 of both

the ICSA and the LEI is

�xt = 1.67ut�1 + 0.23ut�2 � 1.64ut�3 � 0.19ut�4 + 0.32ut�5 � 0.29ut�6,

� 0.21vt�1 + 0.10vt�2 � 0.28vt�3 + 0.34vt�4 � 0.26vt�5 + 0.31vt�6 + wt,

(1� 1.03B + 0.11B2)(1� 0.56B12)wt = (1� 1.25B + 0.38B2)(1� 0.81B12)at,

with estimated residual variance to be 0.020. The estimated coe�cients and their standard errors

are reported below.

Coe�cients of SARIMA �1 �2 ✓1 ✓2 �1 ⇥1

Estimate 1.03 -0.11 -1.25 0.38 0.56 -0.81

SE 0.14 0.15 0.14 0.14 0.07 0.053

Coe�cients of ut�k 1.67 0.23 -1.64 -0.19 0.32 -0.29

SE 0.34 0.51 0.50 0.49 0.49 0.33

Coe�cients of vt�k -0.21 0.10 -0.28 0.34 -0.26 0.31

SE 0.17 0.30 0.30 0.29 0.29 0.17

Although most coe�cients of ut�k and vt�k are not significant, we still keep all the terms in the

model to explore their potential for the predictions. The reader may ask if simpler models are

preferred and why we report a transfer function model forecast using both ICSA and LEI variables.

We do so because both ICSA and LEI bivariate models o↵er forecasting improvement relative to

an ARIMA model of the unemployment rate, see Guerard et al. (2020).

4 Out-sample Rolling Forecast Performance

We compare the rolling forecast performances of the models considered in Section 2. The predictions

are made for the change of the unemployment rate, i.e. for the di↵erenced series �xt. A null

model which always predicts the unemployment rate change as 0 is also included as a benchmark.

Specifically, the following methods/models are compared.
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I. Null. Always predict �xt as 0.

II. SARIMA(2, 0, 2)⇥ (1, 0, 1)12 for �xt, as given in Section 3.1

III. TAR. The two regime TAR model in Section 3.2

IV. Transfer-1. SARIMA(2, 0, 2)⇥ (1, 0, 1)12 and 6 lagged ICSA, in Section 3.3.

V. Transfer-2. SARIMA(2, 0, 2)⇥ (1, 0, 1)12, 6 lagged ICSA and 6 lagged LEI, in Section 3.3.

VI. Average. The average of the predictions given by II–IV.

For models I and II, it is straightforward to predict with an arbitrary horizon. For the TAR model

in III, one-step to three step prediction can be done using the estimated model in the regime

that �xt+h�3 indicates, where h is the prediction horizon. For longer prediction horizon, we use

simulation procedure, based on the estimated innovation distribution. For the transfer function

models IV and V, using the model specified in Section 3.3 would require the knowledge of future

ICSA and LEI values, or require a separate accurate prediction method for ICSA and LEI. To

mitigate the di�culty, we make the following modifications. If 1  h  6, we fit a model with only

lag-h to lag-6 ICSA and LEI in the model, and use this model to make a h-step-ahead prediction. If

7  h  12, we fit a model with only the lag-h indicator in the model, and then make a h-step-ahead

forecast using this model.

The rolling forecast are performed from January 1990 to December 2019. Specifically, for every

month during the period, we use the available data before that month to estimate the models,

then perform 1-step ahead to 12-step ahead prediction, and compare with the observed values. We

report in Table 1 the mean squared forecast errors for every 5 years, as well as the mean squared

errors for the 30 years together. We also use a one-sided paired t test to compare the absolute

forecast errors generated by each pair of two models. In Table 2, a small p-value, denoted by ”1”

or ”2”, indicates that the method indexed by the row performs better than the one indexed by the

column based on the one-sided test at 10% or 5% level respectively. For example, in the first cell of

4-th row (Transfer-1), the three ”2” indicates that the Transfer-1 significantly outperforms the Null

model in terms of 1, 2 and 5 steps ahead predictions, at 5% level. The rest five ”-” suggests that the

Transfer-1 is not better than the Null model in performing forecasts of the corresponding horizons.

Note that Table 2 could have been reported as a “tournament” table giving the competition results

(win/loss/tie) of di↵erent models. However, to simplify the symbols, we choose to indicate only

when one model wins over the other, which contains the same information as the “tournament”

table. In the literature, the Diebold-Mariano test (Diebold and Mariano, 2002) has been commonly

used to compare the predictive accuracy. We choose to use the paired t-test here for the purpose

of making the one-sided comparison.

From Table 1, it is seen that among models/methods I–V, the ICSA transfer functions produce

the smallest forecasting errors, with forecasting MSE reductions of 24.6 percent comparing to the

no-change models, during the 1990–2019 time periods. The 1-step error reduction is consistent

with the Guerard et al. (2020) RMSE results. The 1-step RMSE error reductions of Transfer-1

are 2.4 and 6.7 percent, with the SARIMA and TAR models, respectively. We also compare the
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mean absolute prediction error (MAE), and report the results in Table 3, which is in the Appendix.

Similar conclusions can be drawn based on MAE.

We report in Table 2 that the weekly unemployment claims transfer functions (Transfer-1)

produces the smallest forecasting errors with the one-month to six-month forecasting horizons than

all other models, including the no-change models, consistent with the Guerard et al. (2020) results.

The SARIMA model reduces forecasting errors relative to the no-change models. We substantiate

the TAR model reductions reported in the seminal MZTT study, although the TAR model does

not dominate the transfer function models on forecasting e↵ectiveness.

We also observe that the method VI (by taking average of the predictions given by II–V) leads

to the smallest forecast errors, for 1 month to 5 months horizons. The statistically significant

forecast enhancements of the composite models in the six-step-ahead forecast gives researchers a

reasonable period to implement the forecasting models. The dominance of the composite forecasting

model performance is consistent with the Madridakis forecasting competitions of the past 38 years.

The forecasting literature has an extensive literature reporting that the average forecast is the

better forecast out of sample, see Bates and Granger (1969); Clemen (1989); Makridakis and Hibon

(1979) and the summary results from the M-forecasting competitions (Makridakis et al., 1982,

1993; Makridakis and Hibon, 2000; Makridakis et al., 2020). When the horizons are larger than or

equal to 6 months, no methods can make significantly better predictions than the no-change model,

indicating the non-predictability at large horizons.
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P1 P2 P3 P4 P5 P6 All P1 P2 P3 P4 P5 P6 All

One Step Ahead Two Step Ahead

I 2.00 1.95 1.72 4.02 2.88 1.55 2.35

II 1.60 2.08 1.39 2.29 2.29 1.51 1.86 1.57 2.06 1.38 2.31 2.29 1.46 1.85

III 1.90 1.96 1.56 2.44 2.90 1.47 2.04 1.87 2.06 1.61 2.59 2.93 1.54 2.10

IV 1.67 1.86 1.31 2.10 2.43 1.29 1.77 1.63 2.06 1.26 2.00 2.02 1.43 1.73

V 2.16 2.05 1.52 1.81 2.41 1.26 1.87 1.84 2.23 1.34 1.53 2.28 1.40 1.77

VI 1.61 1.87 1.28 1.86 2.39 1.31 1.72 1.57 2.00 1.27 1.86 2.29 1.41 1.73

Three Step Ahead Four Step Ahead

II 1.52 2.06 1.40 2.59 2.20 1.55 1.89 1.56 2.20 1.41 2.82 2.06 1.50 1.93

III 1.74 2.07 1.61 2.94 2.80 1.49 2.11 1.81 2.13 1.68 3.19 2.75 1.47 2.17

IV 1.51 2.09 1.42 2.69 2.19 1.52 1.90 1.60 2.22 1.43 2.84 2.06 1.53 1.95

V 1.83 2.25 1.45 2.00 2.60 1.49 1.94 1.85 2.88 1.47 1.91 2.26 1.60 2.00

VI 1.48 2.03 1.33 2.35 2.37 1.47 1.84 1.56 2.24 1.42 2.56 2.21 1.49 1.91

Five Step Ahead Six Step Ahead

II 1.61 2.13 1.38 2.98 2.05 1.51 1.94 1.63 2.09 1.40 3.33 2.15 1.55 2.02

III 1.86 2.01 1.55 3.29 2.73 1.45 2.15 1.88 1.96 1.66 3.42 2.82 1.46 2.20

IV 1.63 2.10 1.40 2.97 2.11 1.52 1.95 1.65 2.06 1.42 3.31 2.21 1.56 2.03

V 1.67 2.26 1.32 2.38 2.23 1.58 1.91 1.70 2.15 1.43 3.24 2.29 1.65 2.08

VI 1.64 2.07 1.38 2.85 2.22 1.49 1.94 1.69 2.02 1.46 3.30 2.32 1.52 2.05

Nine Step Ahead Twelve Step Ahead

II 1.71 2.12 1.48 3.78 2.12 1.67 2.15 1.71 2.11 1.45 4.01 2.25 1.76 2.22

III 1.96 1.96 1.72 3.72 2.86 1.51 2.29 2.02 1.99 1.71 3.94 3.03 1.60 2.38

IV 1.74 2.10 1.51 3.81 2.35 1.68 2.20 1.75 2.12 1.49 4.09 2.29 1.78 2.25

V 1.81 2.25 1.53 3.69 2.48 1.88 2.27 1.86 2.60 1.47 3.81 2.52 2.21 2.41

VI 1.77 2.06 1.54 3.73 2.40 1.65 2.19 1.79 2.13 1.50 3.93 2.47 1.78 2.27

Table 1: Mean squared rolling forecase error (MSE) (⇥102) by 5-year periods. The first row gives

the MSE of the Null model. The rest of the table should be understood as a 4 ⇥ 2 block matrix,

corresponding to 1, 2, 3, 4, 5, 6, 9 and 12 step ahead forecasts respectively. In particular, the top

two blocks are for 1- and 2-step predictions, and the rest are self-evident. For each of the 8 blocks,

the rows correspond to models, and the columns P1 to P6 the 5-year periods: 90-94, 95-99, 00-04,

05-09, 10-14, 15-19 respectively. The column “All” gives the MSE over all 30 years.
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Null SARIMA TAR Transfer-1 Transfer-2 Average

Null -------- ---1--22 -------1 ------22 -------2

SARIMA -1-12--- 222222-- ---1--22 ---2-222 ------11

TAR -------- -------- -------- ------12 --------

Transfer-1 22--2--- -1------ 222222-- ---2-222 ------

Transfer-2 ----1--- -------- -2--1--- -------- --------

Average 221-2--- 221----- 222222-- --1----- 1-12-222

Table 2: Comparing the absolute forecast errors by paired t tests. “2” and “1” stand for a p-value

less than or equal to 0.05 and 0.10 respectively, and indicates that the row method is better than

the column method in terms of absolute forecast errors. “-” stands for a p-value larger than 0.1.

For each pairwise competition, there are 8 “-”, “1” and/or “2”, corresponding to 1, 2, 3, 4, 5, 6, 9,

12 step ahead forecasts respectively.

1-step 2-step 3-step 4-step 5-step 6-step 9-step 12-step

Null 0.975 0.975 0.975 0.975 0.975 0.975 0.972 0.972

0.707 0.708 0.708 0.709 0.709 0.710 0.711 0.713

SARIMA 0.981 0.981 0.975 0.978 0.975 0.967 0.967 0.967

0.658 0.658 0.668 0.677 0.685 0.690 0.699 0.703

TAR 0.972 0.972 0.969 0.969 0.972 0.969 0.967 0.967

0.678 0.678 0.694 0.710 0.724 0.727 0.738 0.742

Transfer-1 0.978 0.981 0.975 0.978 0.975 0.967 0.967 0.967

0.600 0.624 0.655 0.670 0.677 0.682 0.692 0.697

Transfer-2 0.978 0.983 0.978 0.981 0.975 0.967 0.964 0.969

0.593 0.613 0.634 0.648 0.665 0.681 0.691 0.693

Table 3: Empirical coverage probabilities of the 95% prediction intervals. The prediction intervals

are constructed for the rolling forecasts from January 1990 to December 2019. The second row for

each method reports the average width of the prediction intervals.

We also report in Table 3 the empirical coverage probabilities of the 95% prediction intervals

corresponding to each of the five methods, as well as the average length of the prediction intervals

given by each method. More details of the tables are provided in the captions. It can be seen that

the empirical coverage of the prediction interval is slightly higher than the designed coverage of

95%, showing the estimated prediction variance is larger than the truth. On the other hand, the

prediction interval length is less than 0.7% (or ±0.35%) for the transfer functions models, showing

that the out-of-sample predictions are quite accurate. The interval length would be smaller if we

set the empirical coverage to 95%.
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5 Conclusion and Suggestions for Future Research

In this study, we study the performance of a Seasonal ARIMA model, a Threshold AR model, a

transfer function model using ISCA along, and a transfer function model using both ICSA and

LEI, for the purpose of forecasting the U.S. unemployment rate during the 1959-2019 time period.

We report additional statistically significant association regarding the relationship among transfer

functions and average forecast models in the 1- to 5-step-ahead forecasts during the 1990 – 2019 time

period. We replicate the seminal study of MZTT and extend the analysis to cover a much longer and

post publication period. It serves as an updated benchmark analysis from that o↵ered by MZTT.

Moreover, the statistical models produce lower relative errors in the Global Financial Crisis and

its aftermath time period, 2008-2019. In summary, we report on the statistically significant impact

of the LEI and weekly unemployment claims time series on the unemployment rate series. The

MZTT variable relationships are confirmed, in-sample, and post- publication. The unemployment

rate was at a 50-year low at the time we estimated our LEI and unemployment rate analysis. It

will be interesting, at the end of the pandemic, to examine the relationship between the LEI and

its components and the unemployment rate.
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6 Appendix

We provide the comparison of di↵erent models/methods in terms of the mean absolute rolling

forecast error (MAE) in the Appendix.

P1 P2 P3 P4 P5 P6 All P1 P2 P3 P4 P5 P6 All

One Step Ahead Two Step Ahead
I 1.10 1.02 0.98 1.48 1.22 0.98 1.13

II 1.08 1.11 0.94 1.22 1.18 1.02 1.09 1.07 1.10 0.94 1.22 1.18 1.00 1.09
III 1.15 1.06 0.99 1.26 1.31 1.01 1.13 1.14 1.10 1.00 1.29 1.32 1.04 1.15
IV 1.07 1.05 0.91 1.20 1.20 0.95 1.06 1.12 1.11 0.87 1.19 1.11 0.98 1.06
V 1.20 1.14 0.96 1.09 1.20 0.95 1.09 1.15 1.24 0.92 1.04 1.18 0.99 1.09
VI 1.06 1.06 0.90 1.12 1.20 0.97 1.05 1.08 1.11 0.87 1.15 1.17 0.98 1.06

Three Step Ahead Four Step Ahead
II 1.04 1.09 0.95 1.29 1.19 1.03 1.10 1.01 1.14 0.97 1.32 1.09 1.01 1.09
III 1.06 1.10 1.02 1.36 1.30 1.02 1.14 1.07 1.14 1.05 1.41 1.27 1.02 1.16
IV 1.03 1.10 0.96 1.29 1.19 1.02 1.10 1.03 1.14 0.98 1.33 1.09 1.04 1.10
V 1.12 1.17 0.98 1.16 1.26 1.01 1.12 1.12 1.35 1.01 1.17 1.16 1.08 1.15
VI 1.01 1.09 0.92 1.26 1.21 1.01 1.08 1.00 1.15 0.98 1.29 1.13 1.03 1.10

Five Step Ahead Six Step Ahead
II 1.03 1.09 0.95 1.33 1.08 1.03 1.08 1.06 1.10 0.95 1.41 1.11 1.03 1.11
III 1.08 1.06 1.00 1.37 1.25 0.98 1.12 1.11 1.05 1.04 1.41 1.29 0.99 1.15
IV 1.03 1.08 0.95 1.33 1.10 1.03 1.09 1.07 1.09 0.96 1.41 1.13 1.03 1.11
V 1.07 1.11 0.94 1.25 1.11 1.05 1.09 1.10 1.11 0.97 1.40 1.14 1.06 1.13
VI 1.04 1.07 0.95 1.32 1.11 1.01 1.08 1.08 1.07 0.97 1.40 1.15 1.01 1.12

Nine Step Ahead Twelve Step Ahead
II 1.08 1.10 0.97 1.48 1.08 1.09 1.13 1.09 1.10 0.96 1.52 1.13 1.11 1.15
III 1.12 1.05 1.02 1.45 1.26 0.99 1.15 1.14 1.04 1.01 1.48 1.29 1.02 1.16
IV 1.10 1.10 0.98 1.48 1.12 1.10 1.14 1.10 1.11 0.96 1.53 1.13 1.12 1.16
V 1.14 1.15 1.00 1.47 1.15 1.17 1.18 1.16 1.23 0.98 1.51 1.18 1.24 1.22
VI 1.10 1.08 0.99 1.47 1.14 1.08 1.14 1.11 1.11 0.97 1.51 1.16 1.11 1.16

Table 4: Mean absolute rolling forecase error (MAE) (⇥10) by 5-year periods. The first row gives

the MAE of the Null model. The rest of the table should be understood as a 4 ⇥ 2 block matrix,

corresponding to 1, 2, 3, 4, 5, 6, 9 and 12 step ahead forecasts respectively. In particular, the top

two blocks are for 1- and 2-step predictions, and the rest are self-evident. For each of the 8 blocks,

the rows correspond to models, and the columns P1 to P6 the 5-year periods: 90-94, 95-99, 00-04,

05-09, 10-14, 15-19 respectively. The column “All” gives the MAE over all 30 years.
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