- b. More generally, if A_i are all disjoint, and $\cup_i A_i = S$, from information about $P(B|A_i)$, can we determine $P(A_i|B)$? $P(A_i|B) = P(A_i \cap B) / P(B)$ $= P(A_i \cap B) / \sum_j P(A_j \cap B)$ $= P(B|A_i) P(A_i) / \sum_j P(B|A_j) P(A_j)$
- 2. Answer is need also information about $P(A_i)$ as well.
- 3. Example: If a
 - a. disease is present in a population in proportion $\,r$,
 - b. one tests positive $\,p\,$ of the time when one has the disease
 - c. one tests positive 1-q of the time when one doesn't have the disease,
 - d. then the probability of having the disease after testing positive is

$$pr/(pr+(1-q)(1-r))$$

e. If r = .0001 and p = q = .9, then probability of having the disease conditional on testing positive is .0009/(.0009 + .09999) = .009.

: 1.7

- J. Combinatorics
 - 1. Simplest idea for probability: equally likely outcomes.

- a. In cases in which outcomes can be seen as occurrences of separate processes, the number of outcomes is the product of the numbers from the separate processes: *multiplication rule*.
- b. Assuming combinations of outcomes are equally likely is equivalent to assuming independence.
- c. Ex. flipping coin 10 times gives $2^{10} = 1024$ outcomes, which are equally likely if separate flips are equally likely, and if flips are independent.
- d. Top card from each of two decks of cards: Every one of 52×52 outcomes are equally likely.
 - i. Same as if you use one deck with first choice replaced and deck shuffled: *Sampling with replacement*.
- e. Ex. Pinochle deck: doubles of 9, 10, ..., A: 6 ranks times 4 suites, doubled.
 - i. Outcome of first and second cards have 24×24 outcomes, but not equally likely, since doubles are less likely.
- f. Ex., guessing computer password:
 - i. 4 digits: $10^4 = 10,000$ possibilities.
 - ii. 8 characters, all lower case: 26^8 possibilities.

multi

glossa Samp replao

- Lots of time people pick dictionary words, and so effective probability of guessing is better than $1/26^8$.
- That's why systems administrators require use of numbers too.
- 2. What if you draw n things from a fixed set of objects,
 - a. items that you can tell apart
 - i. ex. bills OK, since they have serial number, but coins aren't.
 - b. paying attention to the order of items drawn,
 - c. without replacing drawn items: sampling without replacement

glossa samp witho replae

- d. If you plan to draw out all items,
 - i. you have n ways to pick the first item,
 - ii. and for each first item drawn, you have n-1 ways to pick the next,
- iii. and for each first two items drawn, you have n-2 ways to pick the third.
- iv. Continue until there's only one way to pick the last item.
- v. Total is $n \times (n-1) \times (n-2) \cdots \times 1$.
- vi. These are called the *permutations* of the items, and we write

the above product as n!.

- e. Sometimes we expect to only pick some of the objects.
 - i. Call the number we expect to draw $\,k$.
 - ii. Ex., we might deal out the first five cards.
- iii. In this case, we have $52 \times 51 \times 50 \times 49 \times 48 = 311875200$.

iv. Write
$$P_k^n = n!/(n-k)!$$
.

• Ex., $P_3^5 = 5 \times 4 \times 3 = 60$:						
	1,2,3		2,4,5	3,4,1	4,2,3	5,1,4
	1,2,4	1,5,4	2,5,1	3,4,2	4,2,5	5,2,1
	1,2,5	2,1,3	2,5,3	3,4,5	4,3,1	5,2,3
	1,3,2	2,1,4	2,5,4	3,5,1	4,3,2	5,2,4
	1,3,4	2,1,5	3,1,2	3,5,2	4,3,5	5,3,1
	1,3,5	2,3,1	3,1,4	3,5,4	4,5,1	5,3,2
	1,4,2	2,3,4	3,1,5	4,1,2	4,5,2	5,3,4
	1,4,3	2,3,5	3,2,1	4,1,3	4,5,3	5,4,1
	1,4,5	2,4,1	3,2,4	4,1,5	5,1,2	5,4,2
	1,5,2	2,4,3	3,2,5	4,2,1	5,1,3	5,4,3

- f. In card games, we often don't care which cards we got first and which we got later.
 - i. Every set of cards is counted k! times.

ii. So the number of collections of cards, without respect to order,

22

glossa

04

 $\text{ is } P^n_k/k! = n!/((n-k)!k!)$

- iii. Often written as C_k^n or $\binom{n}{k}$.
- iv. Called the number of combinations .
- v. Note that the collections of items selected are exactly determined by those not selected: $\binom{n}{k} = \binom{n}{n-k}$.