- K. random variable (r.v.) notation:
 - 1. one or more numerical summaries of experimental results.
 - 2. They are usually written as capital letters (often X) and are functions of s.
 - 3. Examples
 - a. Coin flips: Observed the entire results of the experiment.
 - i. Random variables representing heads or tails on successive flips represent all there is to know about the outcome.
 - ii. With seven successive flips of a coin, there are exactly $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^7 = 128$ points $s \in S$.
 - iii. Alternatively, we might only be interested in a summary reflecting whether heads and tails tend to come up with equal frequency; we are then interested in the r.v. representing the total # of heads.
 - b. Medical Experiment:
 - i. Here it is impossible to measure all aspects of a person's health, or to make sense of an enormous # of even those measurements possible.

- ii. Usually researchers confine their attentions to a few measurements indicating the severity of a specific disease that's being addressed, and a few specific risk factors. For instance, when studying lung cancer one might measure tumor growth or years of survival, and risk factors like smoking habits and age.
- c. Economics:
 - i. Here it is also impossible to measure or analyze all of all individuals' decision.
 - ii. In the study of companies' investment and dividend policies, one might focus on measuring total investment and dividends in a certain set of companies, as well as covariates like size and type of business.
- L. Probability distńs.
 - 1. two classes.
 - a. Discrete distńs, in which possible data values can be listed explicitly. These are called *probability atoms*.
 - i. The # of heads in a # of flips, or the # of patients recovering when on a certain medication, are discrete variables.

glossa Discr

- ii. To get the probability of seeing a set of possible results here,add the probability associated with each value in the set.
- iii. Call the probabilities associated with each element a probability mass function (p.m.f.) at that possible value.
- iv. For instance, to get the probability of six or more favorable outcomes in nine trials add the probabilities associated with six, seven, eight, and nine successes.
- 2. Information about the probability of falling into various ranges is summarized by the distribution function (d.f.) $F_X(x) = P(X \le x)$.
 - a. Examples:
 - i. Spots on 1 die

glossa

glossa

ii. Spots on 2 dice

x	$p_X(x)$	$F_X(x)$
2	1/36	1/36
3	2′/36	1'/12
4	3′/36	1/6
5	4/36	5/18
6	5′/36	5/12
7	6/36	7/12
8	5/36	13/18
9	4/36	5/6
10	3/36	11/12
11	2/36	35/36
12	1/36	1

- iii. Result of spinning spinner on (0, 1] plus 0 if coin tails, 1 if coin heads.
- b. Properties:
 - i. $F_X(x)$ is non-decreasing, since $\{s : X(s) \le x_1\} \subset \{s : X(s) \le x_2\}$ if $x_1 \le x_2$.
 - ii. $\lim_{x\to\infty} F_X(x) = 1$, $\lim_{x\to-\infty} F_X(x) = 0$.
 - To show first conclusion, chose any sequence x_j such that $x_j \to \infty$. Then $\Re = \bigcup_{j=1}^{\infty} (-\infty, x_j]$, and so by Q.11 of §1.10, $1 = P(X \in \Re) = \lim_j P(X \le x_j) = \lim_j F_X(x_j)$.
 - To show second conclusion, chose any sequence x_j

such that $x_j
ightarrow -\infty$. Then $\emptyset = \cap_{j=1}^\infty (-\infty, x_j]$,

and so by Q.12 of $\S1.10$, (do this at home)

$$0 = P(X \in \emptyset) = \lim_{j} P(X \le x_j) = \lim_{j} F_X(x_j).$$

- c. $Continuous distn \hat{s}$, in which the variable could conceivably take on any value in a range of real numbers;
 - i. Ex: change in blood pressure or weight
 - ii. To calculate the probability associated with a particular range of values, integrate a function called a *probability density function* (p.d.f.) over the range.

glos

05

Conti distńs