Lecture 7

- Non-existence: Suppose $P(X = j) = j^{-2}/c$ for $j = \pm 1, \pm 2, \cdots$. Note that $c = 2\Sigma_1^{\infty} j^{-2} < \infty$, as can be seen by comparing $\Sigma_1^{\infty} j^{-2} \leq 1 + \beta_1^{\infty} x^{-2} dx =$ $1 + \lim_{a \to \infty} (-x^{-1})|_1^a = 1 + 1 - a^{-1} = 2$. However, $E[X] = \Sigma_1^{\infty} j^{-1}/c = \infty$, as can be seen by comparing $\Sigma_1^{\infty} j^{-1} \geq \beta_1^{\infty} x^{-1} dx = \lim_{a \to \infty} \log(x)|_1^a = \infty$.
- b. Most intuitive: Median.
 - i. Definń:
 - The median corresponding to a r.v. X with d.f. F_X is that value ν_X such that $P(X \le \nu_X) \ge .5$ and $P(X \ge \nu_X) \ge .5$.
 - In terms of the d.f., the median ν_X satisfies $F_X(\nu_X) \ge .5$ $F_X(a) < .5$ if $a < \nu_x$; for a discrete distń with p.m.f. p_X it satisfies $\sum_{x \le \nu_X} p_X(x) \ge .5$ and $\sum_{x \ge \nu_X} p_X(x) \ge .5$, and for a continuous distń with p.d.f. f_X it satisfies $\int_{-\infty}^{\mu_X} f_X(x) dx = .5$.
 - Example:
 - ▷ Exponential: $F_X(x) = .5 \rightarrow 1 \exp(-x) = .5 \rightarrow \exp(-x) = .5 \rightarrow x = \log(2)$.

glossa

Lecture 7 ▷ Two dice

x	$p_X(x)$	$F_X(x)$
2	1/36	1/36
3	2/36	1'/12
4	3/36	1/6
5	4/36	5/18
6	5/36	5/12
7	6/36	7/12
8	5/36	13/18
9	4/36	5/6
10	3/36	11/12
11	2/36	35/36
12	1/36	1

Median is 7

 \triangleright One die

x	$p_X(x)$	$F_X(x)$
1	1/6	$1/\hat{6}$
2	1/6	1/3
3	1/6	1/2
4	1/6	2/3
5	1'/6	5′/6
6	1′/6	1

Median is any number between 3 and 4.

- ii. Disadvantage:
 - The median can't be given explicitly, but only as the solution to an equation involving bounds on integrals or sums,
 - sometimes isn't unique,

Lecture 7

- sometimes doesn't give much information.
- iii. Advantage: always exists.

: 2.4

- 2. Measure of variation
 - a. Background: If Y = E[aX + b] = aE[X] + b
 - i. Let ${\mathcal X}$ be the support for X , and ${\mathcal Y}$ be the support space for Y .
 - The *support* of a random variable is a set that contains all possible values of it.

ii.
$$\mathcal{Y} = \{ax + b | x \in \mathcal{X}\}$$

iii.
$$P(Y = y) = P(aX + b = y) = P(X = (y - b)/a)$$

- iv. When X is discrete, $E[Y] = \sum_{y \in \mathcal{Y}} yP(Y = y) =$ $\sum_{x \in \mathcal{X}} (ax + b)P(X = x) = a \sum_{x \in \mathcal{X}} xP(X = x) +$ $b \sum_{x \in \mathcal{X}} P(X = x) = aE[X] + b.$
- b. Variance: $E[(X E[X])^2]$: average value of distance from mean, squared.
 - i. Alternative: Mean Absolute Deviation: E[|X E[X]|]
 - Seldom used, because it doesn't have some of the nice mathematical properties we will see later.

glossa

Lecture 8

ii. Example: value on one die.

x	$p_{\mathbf{V}}(x)$	$x - \mathrm{E}[X]$	$p_{\mathbf{X}}(x)(x - \mathbf{E}[X])^2$
1	1/6	-5/2	25/24
2	1'/6	-3′/2	9/24
3	1'/6	-1/2	1/24
4	1/6	1/2	1/24
5	1/6	3/2	9′/24
6	1/6	5/2	25/24

Total of last column is $\operatorname{Var}[X] = 70/24 = 35/12$.

- 3. Note that units for Var[X] is square of original units.
 - a. Fix by taking square root.
 - b. Call the result the standard deviation.

07