- Non-existence: Suppose $P(X=j)=j^{-2} / c$ for
$j= \pm 1, \pm 2, \cdots$. Note that $c=2 \Sigma_{1}^{\infty} j^{-2}<\infty$, as
can be seen by comparing $\Sigma_{1}^{\infty} j^{-2} \leq 1+\int_{1}^{\infty} x^{-2} d x=$
$1+\left.\lim _{a \rightarrow \infty}\left(-x^{-1}\right)\right|_{1} ^{a}=1+1-a^{-1}=2$. However,
$\mathrm{E}[X]=\Sigma_{1}^{\infty} j^{-1} / c=\infty$, as can be seen by comparing $\Sigma_{1}^{\infty} j^{-1} \geq \int_{1}^{\infty} x^{-1} d x=\left.\lim _{a \rightarrow \infty} \log (x)\right|_{1} ^{a}=\infty$.
b. Most intuitive: Median.
i. Definń:
- The median corresponding to a r.v. X with d.f. F_{X} is that value ν_{X} such that $P\left(X \leq \nu_{X}\right) \geq .5$ and $P\left(X \geq \nu_{X}\right) \geq .5$.
- In terms of the d.f., the median ν_{X} satisfies $F_{X}\left(\nu_{X}\right) \geq .5$ $F_{X}(a)<.5$ if $a<\nu_{x}$; for a discrete distń with p.m.f. p_{X} it satisfies $\Sigma_{x \leq \nu_{X}} p_{X}(x) \geq .5$ and $\Sigma_{x \geq \nu_{X}} p_{X}(x) \geq .5$, and for a continuous distń with p.d.f. f_{X} it satisfies ${ }_{j_{-\infty}}^{\mu_{X}} f_{X}(x) d x=.5$.
- Example:
\triangleright Exponential: $F_{X}(x)=.5 \rightarrow 1-\exp (-x)=.5 \rightarrow$

$$
\exp (-x)=.5 \rightarrow x=\log (2) .
$$

\triangleright Two dice

x	$p_{X}(x)$	$F_{X}(x)$
2	$1 / 36$	$1 / 36$
3	$2 / 36$	$1 / 12$
4	$3 / 36$	$1 / 6$
5	$4 / 36$	$5 / 18$
6	$5 / 36$	$5 / 12$
7	$6 / 36$	$7 / 12$
8	$5 / 36$	$13 / 18$
9	$4 / 36$	$5 / 6$
10	$3 / 36$	$11 / 12$
11	$2 / 36$	$35 / 36$
12	$1 / 36$	1

Median is 7
\triangleright One die

Median is any number between 3 and 4 .
ii. Disadvantage:

- The median can't be given explicitly, but only as the solution to an equation involving bounds on integrals or sums,
- sometimes isn't unique,
- sometimes doesn't give much information.
iii. Advantage: always exists.

2. Measure of variation
a. Background: If $Y=\mathrm{E}[a X+b]=a \mathrm{E}[X]+b$
i. Let \mathcal{X} be the support for X, and \mathcal{Y} be the support space for Y.

- The support of a random variable is a set that contains all possible values of it.
ii. $\mathcal{Y}=\{a x+b \mid x \in \mathcal{X}\}$.
iii. $P(Y=y)=P(a X+b=y)=P(X=(y-b) / a)$
iv. When X is discrete, $\mathrm{E}[Y]=\Sigma_{y \in \mathcal{Y}} y P(Y=y)=$
$\Sigma_{x \in \mathcal{X}}(a x+b) P(X=x)=a \Sigma_{x \in \mathcal{X}} x P(X=x)+$ $b \Sigma_{x \in \mathcal{X}} P(X=x)=a \mathrm{E}[X]+b$.
b. Variance: $\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$: average value of distance from mean, squared.
i. Alternative: Mean Absolute Deviation: $\mathrm{E}[|X-\mathrm{E}[X]|]$
- Seldom used, because it doesn't have some of the nice mathematical properties we will see later.
ii. Example: value on one die.

x	$p_{X}(x)$	$x-\mathrm{E}[X]$	$p_{X}(x)(x-\mathrm{E}[X])^{2}$
1	$1 / 6$	$-5 / 2$	$25 / 24$
2	$1 / 6$	$-3 / 2$	$9 / 24$
3	$1 / 6$	$-1 / 2$	$1 / 24$
4	$1 / 6$	$1 / 2$	$1 / 24$
5	$1 / 6$	$3 / 2$	$9 / 24$
6	$1 / 6$	$5 / 2$	$25 / 24$

Total of last column is $\operatorname{Var}[X]=70 / 24=35 / 12$.
3. Note that units for $\operatorname{Var}[X]$ is square of original units.
a. Fix by taking square root.
b. Call the result the standard deviation.

