g. If two random variables are independent, then the joint pdf or pmf is product of marginals
i. For discrete variables, $p_{X, Y}(x, y)=$

$$
\begin{aligned}
& P(\{X=x\} \cap\{Y=y\})=P(X=x) P(Y=y)= \\
& p_{X}(x) p_{Y}(y)
\end{aligned}
$$

ii. For continuous variables, decompose $P(\{X \in(x-\delta, x+\delta)\} \cap$
h. Rule: if two random variables are independent, then expectation of product is product of expectations.
i. Proof for discrete case: $\mathrm{E}[X Y]=\Sigma_{x} \Sigma_{y} x y p_{X, Y}(x, y)=$

$$
\begin{aligned}
& \Sigma_{x} \Sigma_{y} x y p_{X}(x) p_{Y}(y)=\Sigma_{x} x p_{X}(x) \Sigma_{y} y p_{Y}(y)= \\
& \left(\Sigma_{x} x p_{X}(x)\right)\left(\Sigma_{y} y p_{Y}(y)\right)=\mathrm{E}[X] \mathrm{E}[Y]
\end{aligned}
$$

i. Covariance for independent variables is zero
i. Proof for continuous case: $\operatorname{Cov}[X, Y]=\mathrm{E}[(X-\mathrm{E}[X])(Y-$ $\mathrm{E}[Y])]=\mathrm{E}[X-\mathrm{E}[X]] \mathrm{E}[Y-\mathrm{E}[Y]]=0 \times 0=0$.
j. Note that $\operatorname{Cov}[X, X]=\operatorname{Var}[X]$.
k. Note that $\operatorname{Var}[a X]=a^{2} \operatorname{Var}[X]$ and $\operatorname{Cov}[a X, b Y]=$ $a b \operatorname{Cov}[X, Y]$.
i. By previous fact, we need only prove this for covariance.
ii. For discrete variables, $\operatorname{Cov}[a X, b Y]=$

$$
\Sigma_{x} \Sigma_{y}(a x)(b y) p_{X, Y}(x, y)=a b \Sigma_{x} \Sigma_{y} x y p_{X, Y}(x, y)
$$

I. $|\operatorname{Cov}[X, Y]| \leq \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}$.
i. Formal proof uses Cauchy-Schwartz inequality.
ii. Heuristic proof: covariance is largest when X and Y line up in same direction.
m . How big is a big covariance?
i. Divide by its maximum and and see how close to 1 you get.
ii. Result is called correlation
iii. For $a, b>0$, then $\rho] a X, b Y=\rho[] X, Y$.
8. Conditional pmf and pdf:
a. Discrete case: $P(X=x \mid Y=y)=P((X=x) \cap(Y=y)) / P($

$$
p_{X, Y}(x, y) / p_{Y}(y) .
$$

b. Continuous case: $P(X \leq x \mid Y \in(y-\delta, y+\delta))=$ $\int_{-\infty}^{x}{ }_{y-\delta}^{y+\delta} f_{X, Y}(w, z) d w d z /{ }_{y-\delta}^{y+\delta} f_{Y}(z) d z \approx$
$(2 \delta) s_{-\infty}^{x} f_{X, Y}(w, y) d w /\left(2 \delta f_{Y}(y)\right)=$ ${ }^{\int_{-\infty}^{x}} f_{X, Y}(w, y) d w / f_{Y}(y)$ and so $f_{X \mid Y}(x \mid y)=$ $f_{X, Y}(x, y) / f_{Y}(y)$.
Q. Note that $\mathrm{E}[X+Y]=\Sigma_{x} \Sigma_{y}(x+y) p_{X, Y}(x, y)=$

$$
\begin{aligned}
& \Sigma_{x} \Sigma_{y} x p_{X, Y}(x, y)+\Sigma_{x} \Sigma_{y} y p_{X, Y}(x, y)=\Sigma_{x} x \Sigma_{y} p_{X, Y}(x, y)+ \\
& \Sigma_{y} y \Sigma_{x} p_{X, Y}(x, y)=\Sigma_{x} x p_{X}(x)+\Sigma_{y} y p_{Y}(y)
\end{aligned}
$$

1. By extension, holds expectation of sum is sum of expectations for larger sums as well.
2. Since $\mathrm{E}[a Z]=a \mathrm{E}[Z]$, then expectation of average is average of expectations.
3. If things being averaged all have same expectation, expectation of average is that value as well.
R. If random variables X_{j} all have expectation μ then

$$
\begin{aligned}
& \operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\mathrm{E}\left[\left(\left(X_{1}-\mu\right)+\cdots+\left(X_{n}-\mu\right)\right)^{2}\right]= \\
& \Sigma_{j} \mathrm{E}\left[\left(X_{j}-\mu\right)^{2}\right]+\Sigma_{i \neq j} \mathrm{E}\left[\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]
\end{aligned}
$$

1. If X_{j} are independent than for $i \neq j, \mathrm{E}\left[\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]=$ $\mathrm{E}\left[X_{i}-\mu\right] \mathrm{E}\left[X_{j}-\mu\right]=0$
2. If X_{j} are independent and each with variance σ^{2} then $\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=n \sigma^{2}$
a. $\operatorname{Var}[\bar{X}]=(1 / n)^{2} n \sigma^{2}=\sigma^{2} / n$. Hence variance gets smaller as n gets larger.
