Lecture 16

- F. Central Limit Theorem:
 - 1. If a large collection of n random variables X_j all have the same distribution and are independent independent and identically distributed (iid), then their mean is approximately normally distributed, if $Var[X_j] < \infty$.
 - 2. Since the only difference between the mean and the sum is division by n, then the same holds for the sum
 - 3. Pedantic version:
 - a. Suppose X_1, \ldots, X_n iid.
 - b. Let $Z = \sum_{j=1}^n X_j n\mu)/(\sqrt{n}\sigma)$
 - c. Then $\lim_{n\to\infty} P\left(Z \leq z\right) \to \Phi(z)$.
 - 4. Example: 100 subjects are given two medications in turn (ex. two pain relievers) and are asked which did a better job for them. 57 of them chose medication A as better. Is it plausible that both medications are equally effective?

5.
$$X \sim \text{Bin}(100, .5); P(X \ge 57) \approx 1 - \Phi((57 - 50)/\sqrt{100 \times .5 \times .5}) = 1 - \Phi(7/5) = 1 - .92 = .08$$
.

6. Why?

Lecture 17

- a. Suppose $\mu=0$, $\sigma=1$.
- b. Theorem says that as n increases, the distribution of Z should get closer to symmetric.
- c. Let's use $E[Z^3]$ (called kurtosis) as measure of *skewness* (asymmetry).
- d. $Z^3 = \sum_{j=1}^n X_j^3 / (n\sqrt{n}) + \text{ terms that involve either one of the}$ $X_j \, \text{s}$ squared and another X_k , or a product of three different $X_j \, \text{s}$.
- e. Expectation of product of independent X_j s is product of expectations.
- f. So cross terms have zero expectation.
- g. So $E[Z^3] = \sum_{j=1}^n E[X_j]/(n\sqrt{n}) = \sum_{j=1}^n E[X_1]/(n\sqrt{n}) = E[X_1]/\sqrt{n} \to 0$.
- h. Similar arguments hold for other measures of differences between the distribution of Z and ${\sf N}(0,1)$.

glossa skewi