- 2. Recall that if $X_1, \ldots, X_n \sim \mathsf{N}(\mu, \sigma^2)$ and the observations are independent then $(\bar{X} \mu)/(\sigma/\sqrt{n}) \sim \mathsf{N}(0, 1)$
- 3. If we don't know σ , can we replace it by its estimator s and compare to N(0,1)?
- 4. ie., what is the distribution of $T=(\bar{X}-\mu)/(s/\sqrt{n})=((\bar{X}-\mu)/\sigma)/(s/(\sigma\sqrt{n}))$?
- 5. μ and σ wash out.
- 6. Probabilities can be calculated by integral of product of normal and χ^2 density.
 - a. T has same distribution as $Z/\sqrt{C/(n-1)}$ for $C\sim\chi^2_{n-1}$.
 - b. For $t\geq 0$, $P(T\geq t)=\frac{1}{2}P\left(T^2\geq t^2\right)=\frac{1}{2}P\left(Z^2(n-1)\geq t^2C\right)$
 - c. Let $U=Z^2$ with density $\exp(-u/2)(1/2)^{1/2}u^{-1/2}/\sqrt{\pi}$.
 - d. For $t \geq 0$,

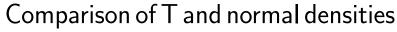
$$\begin{split} P\left(T \geq t\right) &= \frac{1}{2} P\left(U(n-1) \geq t^2 C\right) \\ &= \frac{1}{2} \int_0^\infty \int_{ct^2/(n-1)}^\infty f_U(u) f_C(c) \, du \, dc \end{split}$$

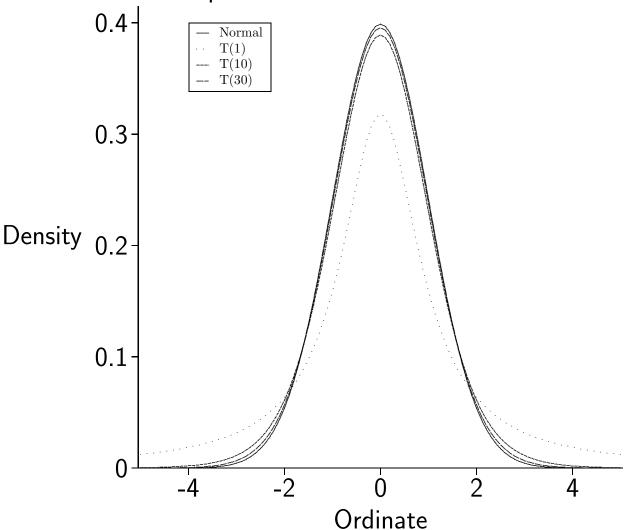
7. Density is $\frac{1}{2} \int_0^\infty f_U(ct^2/(n-1)) f_C(c) (2tc/(n-1)) \, du \, dc$

Lecture 23 89

a. Resulting integral is a gamma integral, times a constant in $\,c\,$.

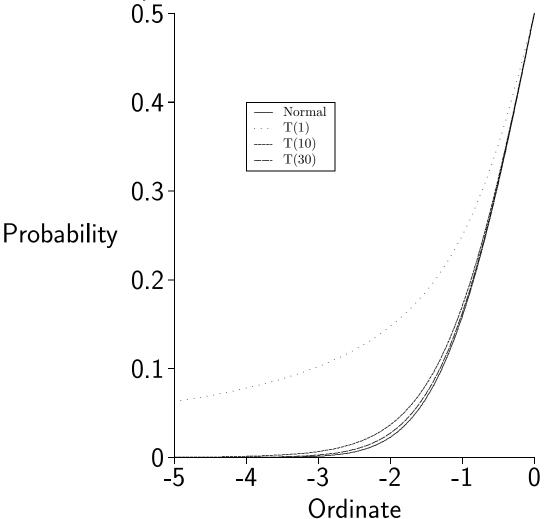
b. Result is
$$f_T(t) \propto (1 + t^2/(n-1))^{n/2}$$





- c. When n=2 we get the Cauchy density providing the counterexample to the CLT
- 8. Result is called t_{n-1} , read "t distribution on n-1 degrees of freedom".

Lecture 23 90



- 9. CDF accessible by pt(x,n-1) in R.
- 10. For $n \ge 40$, result is indistinguishable from standard normal.
- F. Describing estimators
 - 1. The difference between the expectation of the estimator and the quantity that it is estimating is called the bias.
 - a. Formally, bias of an estimator T of a parameter θ is $\mathrm{E}[T] \theta$.
 - 2. An estimate of the standard deviation of an estimator is called its

standard error.

⊥ glo

3. Expected difference between estimator and parameter is called $mean\ square\ error$.

gloss

a. Combines ideas of bias and variance

b.
$$MSE = E[(T - \theta)^2] = E[(T - E[T])^2] + E[(E[T] - \theta)^2] + E[(E[T] - \theta)(T - E[T])] = Var[T] + (E[T] - \theta)^2 + 0 = bias squared plus variance$$

: 7.4

- G. Given a probability model for data with one or more unknown parameters, how do we construct a good estimator
 - 1. Method of Moments
 - a. Assume observations are iid.
 - b. Define equations equating sample moments with population moments
 - i. If you have one parameter, solve $ar{X} = \mathrm{E}[X_j]$
 - ii. If you have two parameters, solve previous and $\Sigma_{i=1}^n X_i^2/n = \mathrm{E}[X_i^2]$
 - Same as $\bar{X}=\mathrm{E}[X_j]$ and $\Sigma_{j=1}^n(X_j-\bar{X})^2/n=\mathrm{Var}\left[X_j\right]$.
 - Similar to $\bar{X} = \mathrm{E}[X_j]$ and $\Sigma_{j=1}^n (X_j \bar{X})^2/(n-1) =$

Lecture 24 ${\rm Var}\left[X_j\right] \mbox{, which the book sugests. Let's do this one.}$

c. Examples

- i. Ex. $X_j \sim \mathsf{Pois}(\lambda)$
 - Estimator satisfies $\bar{X} = \hat{\lambda}$.
 - It's conventional to denote an estimator for the parameter by the symbol for the estimator with a hat on it.
- ii. Ex. $X_j \sim \Gamma(k,\lambda)$, for k known
 - Estimator satisfies $\bar{X}=k/\hat{\lambda}$, or $\hat{\lambda}=k/\bar{X}$. and $\Sigma_{j=1}^n X_j^2/n=\mathrm{E}[X_j^2]$.
- iii. Ex. $X_j \sim \Gamma(k, \lambda)$
 - Estimator satisfies $\bar{X} = \hat{k}/\hat{\lambda}$, $s^2 = \hat{k}/\hat{\lambda}^2$.
 - $\hat{\lambda} = \bar{X}/s^2$; $\hat{k} = (\bar{X})^2/s^2$.
- iv. Ex. $X_j \sim \mathsf{N}(\mu, \sigma^2)$
 - $\bullet \;\;$ Estimator satisfies $\bar{X}=\hat{\mu}$, $\,s^2=\hat{\sigma}^2$.
- v. Ex. $X_j \sim \mathsf{U}(0,\theta)$
 - ullet $\hat{ heta}$ satisfies $heta/2=ar{X}$, or $heta=2ar{X}$.
 - Estimator is unbiased: $\mathrm{E}[2ar{X}] = heta$

92