960-381- Theory of Probability- Fall, 2021

Exam 1

You have until 12:20 PM to finish this exam.

1. (20 pts) (From DeGroot (1989) p. 67) Three different machines were used to produce a large batch of similar manufactured items. Of these items, .2 come from machine $1, .3$ come from machine 2 , and .5 come from machine 3 . Furthermore, .01 of those items produced by machine 1 are defective, and .02 of those items produced by machine 2 are defective, and . 03 of those items produced by machine 3 are defective. Suppose that one of this type of item is selected at random. Conditional on this item being defective, find the probabilities that the item came from machine 1,2 , or 3 .

Use Bayes' Rule:

$$
\begin{aligned}
& P(\text { machine } 1 \mid \text { defective }) \\
&=\frac{P(\text { defective } \mid \text { machine } 1) P(\text { machine } 1)}{\sum_{j=1}^{3} P(\text { defective } \mid \text { machine } j) P(\text { machine } j)} \\
&=\frac{.01 \times .2}{.01 \times .2+.02 \times .3+.03 \times .5} \\
&=\frac{2}{23}=.087 \\
& P(\text { machine } 2 \mid \text { defective })=\frac{.02 \times .3}{.01 \times .2+.02 \times .3+.03 \times .5} \\
&=\frac{6}{23}=.261 \\
& P(\text { machine } 3 \mid \text { defective })=\frac{.03 \times .5}{.01 \times .2+.02 \times .3+.03 \times .5} \\
&=\frac{15}{23}=.652
\end{aligned}
$$

2. Consider a collection of six cards, numbered 1 through 6 . Supposed that the cards are randomly rearranged so that all rearrangements are equally likely. Let X be the sum of the first two cards in the deck.
a. (10 pts) Give the probability distribution for X.

The cells in this table are all equally likely:

	1	2	3	4	5	6
1		3	4	5	6	7
2	3	5	6	7	8	
3	4	5		7	8	9
4	5	6	7		9	10
5	6	7	8	9		11
6	7	8	9	10	11	

Then the sums have the following p.m.f.:

x	3	4	5	6	7	8	9	10	11
p	$1 / 15$	$1 / 15$	$2 / 15$	$2 / 15$	$1 / 5$	$2 / 15$	$2 / 15$	$1 / 15$	$1 / 15$

b. (10 pts)Calculate $\mathrm{E}(X)$.

$$
\begin{aligned}
E(X) & =3 \times 1 / 15+4 \times 1 / 15+5 \times 2 / 15+6 \times 2 / 15+7 \times 3 / 15 \\
& +8 \times 2 / 15+9 \times 2 / 15+10 \times 1 / 15+11 \times 1 / 15=7
\end{aligned}
$$

c. (10 pts)Calculate $\mathrm{V}(X)$.

$$
\begin{gathered}
E\left(X^{2}\right)=3^{2} \times 1 / 15+4^{2} \times 1 / 15+5^{2} \times 2 / 15+6^{2} \times 2 / 15+ \\
7^{2} \times 3 / 15+8^{2} \times 2 / 15+9^{2} \times 2 / 15+10^{2} \times 1 / 15+ \\
11^{2} \times 1 / 15=53.66667 \\
V(X)=E\left(X^{2}\right)-E(X)^{2}=53.667-49=4.667
\end{gathered}
$$

3. (20 pts) (From DeGroot (1989) p. 55) Supposed that a die is independently rolled 3 times, and that X_{i} represents the outcome from roll i. Find $\mathrm{P}\left(X_{1}>X_{2}>X_{3}\right)$.

Let $A=\left\{X_{1} \neq X_{2}, x_{1} \neq X_{3}, X_{2} \neq X_{3}\right\}$, and $B=\left\{X_{1}>X_{2}>X_{3}\right\}$. Note that $P(A)=(5 / 6)(2 / 3)=5 / 9, P(B \mid A)=1 / 6$, and $P\left(B \mid A^{c}\right)=0$. Then $P(B)=(1 / 6)(5 / 9)=5 / 54$. The brute-force way to to this is to note that the following sequences of rolls satisfy the event:

X_{1}	X_{2}	X_{3}	Number	X_{1}	X_{2}	X_{3}	Number
6	5	$1-4$	4	6	4	$1-3$	3
6	3	$1-2$	2	6	2	1	1
5	4	$1-3$	3	5	3	$1-2$	2
5	2	1	1	4	3	$1-2$	2
4	2	1	1	3	2	1	1

There are 20 such sets, and $6^{3}=216$ tables total, for a probability $20 / 2016=5 / 54$. One student noted that the number of tables satisfying this requirement is $\binom{6}{3}$, since every set of ordered dice rolls corresponds to one selection of three items from $\{1, \ldots, 6\}$.
4. I buy a carton of toothbrushes. The carton has 20 tooth brushes. Three of them are blue. I pull out four tooth brushes at random, one for each member of my family. Let X represent the number of toothbrushes that my family uses that are blue.
a. (10 pts) What is the expectation of the distribution of X ?

$$
E(X)=3 \times 4 / 20=.6
$$

b. (10 pts) Calculate $\mathrm{P}(X \geq 2)$.
$P(X \geq 2)=P(X=2)+P(X=3)=\frac{\binom{3}{2}\binom{17}{2}}{\binom{00}{4}}+\frac{\binom{3}{3}\binom{17}{1}}{\binom{20}{4}}=\frac{3 \times 17 \times 8}{5 \times 19 \times 3 \times 17}+\frac{17}{5 \times 19 \times 3 \times 17}=$ $425 / 4845=5 / 57=0.0877$.
c. (10 pts) What term is given for the sampling scheme given above?

Sampling without replacement.

