Homework 5 Solutions, 18 Nov

1. Question 5.38, page 246. Let Y_{1} denote the weight (in tons) of a bulk item stocked by a supplier at the beginning of a week and suppose that Y_{1} has a uniform distribution over the interval $0 \leq y_{1} \leq 1$. Let Y_{2} denote the amount (by weight) of this item sold by the supplier during the week and suppose that Y_{2} has a uniform distribution over the interval $0 \leq y_{2} \leq y_{1}$, where y_{1} is a specified value of Y_{1}.
a. Find the joint density function for Y_{1} and Y_{2}.

Note that

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right) .
$$

Since $f_{Y_{1}}\left(y_{1}\right)=1$ and $f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)=\frac{1}{y_{1}}$, the joint density is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}1 / y_{1} & \text { if } 0<y_{2}<y_{1}<1 \\ 0 & \text { otherwise }\end{cases}
$$

b. If a supplier stocks a half-ton of the item, what is the probability that she sells more than a quarter-ton?
$(1 / 2-1 / 4) /(1 / 2)=1 / 2$.
c. If it is known that the suppliers sold a quarter-ton of the item, what is the probability that she had stocked more than a half-ton?
$f_{Y_{2}}\left(y_{2}\right)=\int_{y_{2}}^{1} y_{1}^{-1} d y_{1}=-\ln \left(y_{2}\right)$ for $y \in(0,1)$. Then $f_{Y_{1} \mid Y_{2}}\left(y_{1} \mid y_{2}\right)=$
$\left\{\begin{array}{ll}-1 /\left(y_{1} \ln \left(y_{2}\right)\right. & \text { if } 1>y_{1}>y_{2} . \\ 0 & \text { other }\end{array}\right.$.
2. Question 5.65 , page 254 . Suppose that, for $-1 \leq \alpha \leq 1$, the probability density function of $\left(Y_{1}, Y_{2}\right)$ is given by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}{\left[1-\alpha\left\{\left(1-2 \exp \left(-y_{1}\right)\right)\left(1-2 \exp \left(-y_{2}\right)\right)\right\}\right] \exp \left(-y_{1}-y_{2}\right)} & 0 \leq y_{1}, 0 \leq y_{2} \\ 0 & \text { elsewhere }\end{cases}
$$

a. Show that the marginal distribution of Y_{1} is exponential with mean 1.

$$
\begin{aligned}
f_{Y_{1}}\left(y_{1}\right) & \left.=\int_{0}^{\infty}\left[1-\alpha\left\{\left(1-2 \exp \left(-y_{1}\right)\right)\left(1-2 \exp \left(-y_{2}\right)\right)\right\}\right] \exp \left(-y_{1}-y_{2}\right)\right] d y_{2} \\
& =(1-\alpha) \exp \left(-y_{1}\right) \\
& +\alpha \int_{0}^{\infty}\left[2 \exp \left(-2 y_{1}-y_{2}\right)+2 \exp \left(-2 y_{2}-y_{1}\right)-4 \exp \left(-2 y_{1}-2 y_{2}\right)\right] d y_{2} \\
& =(1-\alpha) \exp \left(-y_{1}\right)+\alpha\left[2 \exp \left(-2 y_{1}\right)+\exp \left(-y_{1}\right)-2 \exp \left(-2 y_{1}\right)\right] \\
& =(1-\alpha) \exp \left(-y_{1}\right)+\alpha\left[\exp \left(-y_{1}\right)\right] \\
& =\exp \left(-y_{1}\right)
\end{aligned}
$$

b. What is the marginal distribution of Y_{2} ?

By symmetry, the distribution of Y_{2} is also exponential with mean 1.
c. Show that Y_{1} and Y_{2} are independent if and only if $\alpha=0$.

If $\alpha=0$, then the joint density is $\exp \left(-y_{1}\right) \exp \left(-y_{2}\right)$. Since this is the product of functions of the arguments representing random variables, these random variables are independent. If the two variables are independent, then $f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)$ must not depend on y_{1}. But $f_{Y_{2} \mid Y_{1}}\left(y_{2} \mid y_{1}\right)=\left[1-\alpha\left\{\left(1-2 \exp \left(-y_{2}\right)\right)\left(1-2 \exp \left(-y_{2}\right)\right)\right\}\right] \exp \left(-y_{2}\right)$. This depends on y_{1} unless $\alpha=0$.

Observing that $E\left(Y_{1} Y_{2}\right) \neq E\left(Y_{1}\right) E\left(Y_{2}\right)$ if $\alpha \neq 0$ proves that independence requires $\alpha=0$, but observing that $E\left(Y_{1} Y_{2}\right)=E\left(Y_{1}\right) E\left(Y_{2}\right)$ if $\alpha=0$ is not sufficient to prove that $\alpha=0$ guarantees independence.
3. Question 5.82 , page 263. In exercise 5.38 , we determined that the joint density function for Y_{1}, the weight in tons of a bulk item stocked by a supplier, and Y_{2}, the weight of the item sold by the supplier, has a joint density

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}1 / y_{1}, & 0 \leq y_{2} \leq y_{1} \leq 1 \\ 0, & \text { elsewhere }\end{cases}
$$

In this case, the random variable $Y_{1}-Y_{2}$ represents the amount of stock remaining at the end of the week, a quantity of great importance to the supplier. Find $\mathrm{E}\left(Y_{1}-Y_{2}\right)$.

$$
\int_{0}^{1} \int_{0}^{y_{1}}\left(y_{1}-y_{2}\right) / y_{1} d y_{2} d y_{1}=\int_{0}^{1}\left(y_{1} y_{2}-y_{2}^{2} / 2\right) /\left.y_{1}\right|_{0} ^{y_{1}} d y_{1}=\int_{0}^{1}\left(y_{1} / 2\right) d y_{1}=1 / 2
$$

4. Question 5.114 , page 278. For the daily output of an industrial operation, let Y_{1} denote the amount of sales and Y_{2} denote the cost, in thousands of dollars. Assume the density functions for Y_{1} and Y_{2} are given by

$$
f_{1}\left(y_{1}\right)= \begin{cases}(1 / 6) y_{1}^{3} \exp \left(-y_{1}\right), & y_{1}>0 \\ 0 & y_{1} \leq 0\end{cases}
$$

and

$$
f_{2}\left(y_{2}\right)= \begin{cases}(1 / 2) \exp \left(-y_{2} / 2\right), & y_{1}>0 \\ 0 & y_{1} \leq 0\end{cases}
$$

The daily profits are given by $U=Y_{1}-Y_{2}$.
a. Find $\mathrm{E}(U)$.

In the Wackerly notation, $Y_{1} \sim \Gamma(4,1)$ and $Y_{2} \sim \Gamma(1,2)$. Hence $E\left(Y_{1}\right)=4$ and $E\left(Y_{2}\right)=2$. Hence $E(U)=E\left(Y_{1}\right)-E\left(Y_{2}\right)=4-2=2$.
b. Assuming that Y_{1} and Y_{2} are independent, find $\mathrm{V}(U)$.

In the Wackerly notation, $Y_{1} \sim \Gamma(4,1)$ and $Y_{2} \sim \Gamma(1,2)$. Hence $V\left(Y_{1}\right)=4$ and $V\left(Y_{2}\right)=4$. By independence, variances add. Hence $V(U)=V\left(Y_{1}\right)+V\left(Y_{2}\right)=4+4=8$.
c. Would you expect the daily profit to drop below zero very often? Why?

960-381- Theory of Probability - Fall, 2021

Yes. $P\left(Y_{2}>Y_{1}\right)=\int_{0}^{\infty} \int_{0}^{y_{2}}(1 / 6) y_{1}^{3} \exp \left(-y_{1}\right)(1 / 2) \exp \left(-y_{2} / 2\right) d y_{1} d y_{2}=16 / 81$.
5. Question 5.123, page 283. The National Fire Incident Reporting Service stated that, among residential fires, 73% are in family homes, 20% are in apartments, and 7% are in other types of dwellings. If four residential fires are independently reported on a single day, what is the probability that two are in family homes, one is in an apartment, and one is in another type of dwelling?
$\frac{4!}{2!1!1!} 0.73^{2} \times 0.20 \times 0.07=12 \times 0.73^{2} \times 0.20 \times 0.07=0.0895$.
6. Question 5.142, page 290. Suppose that Y has a binomial distribution with parameters n and p but that p varies from day to day according to a beta distribution with parameters α and β. Show that
a. $\mathrm{E}(Y)=\frac{n \alpha}{\alpha+\beta}$. Here use $\mathrm{E}(Y)=\mathrm{E}(\mathrm{E}(Y \mid p))=\mathrm{E}(n p)=n \mathrm{E}(p)=n \alpha /(\alpha+\beta)$.
b. $\mathrm{V}(Y)=\frac{n \alpha \beta(\alpha+\beta+n)}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.

Here use $V(Y)=V(E(Y \mid p))+E(V(Y \mid p))=V(n p)+E(n p(1-p))=$
$n V(p)+n E(p)-n E\left(p^{2}\right)=n \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}+n \alpha /(\alpha+\beta)-n \frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}$.
7. Question 6.31, page 317. The joint distribution for the length of life of two different types of components operating in a system was given in Exercise 5.18 by

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}(1 / 8) y_{1} \exp \left(-\left(y_{1}+y_{2}\right) / 2\right), & y_{1}>0, y_{2}>0 \\ 0 & \text { elsewhere }\end{cases}
$$

The relative efficiency of the two types of components is measured by $U=Y_{2} / Y_{1}$. Find the probability density function for U.

Begin by integrating the joint density over the set $U \leq u$. Then $F_{U}(u)=$ $\int_{0}^{\infty} \int_{0}^{u y_{1}}(1 / 8) y_{1} \exp \left(-\left(y_{1}+y_{2}\right) / 2\right) d y_{2} d y_{1}=\int_{0}^{\infty} \int_{0}^{u y_{1} / 2}(1 / 4) y_{1} \exp \left(-y_{1} / 2\right) \exp (-x) d x d y_{1}=$ $\int_{0}^{\infty}(1 / 4) y_{1} \exp \left(-y_{1} / 2\right)\left(1-\exp \left(-u y_{1} / 2\right)\right) d y_{1}=\int_{0}^{\infty}(1 / 4) y_{1}\left(\exp \left(-y_{1} / 2\right)-\exp (-(1+\right.$ $\left.u) y_{1} / 2\right) d y_{1}=1-1 /(1+u)^{2}$. Then $f_{U}(u)=\frac{d}{d u}\left(1-1 /(1+u)^{2}\right)=2 /(1+u)^{3}$. Alternatively, use the transformation formula. Let $Z=Y_{1}$. Then $Y_{1}=Z$ and $Y_{2}=Y_{1} U=U Z$. Then $f_{U, Z}(u, z)=f_{Y_{1}, Y_{2}}(z, u z) J^{-}$where $J^{-}=$ $\left|\left(\begin{array}{ll}\partial y_{1} / \partial u & \partial y_{1} / \partial z \\ \partial y_{2} / \partial u & \partial y_{2} / \partial z\end{array}\right)\right|=\left|\left(\begin{array}{cc}0 & 1 \\ z & u\end{array}\right)\right|=z$. Then $f_{U, Z}(u, z)=(1 / 8) z^{2} \exp (-z(1+u) / 2)$, and $f_{U}(u)=\int_{0}^{\infty}(1 / 8) z^{2} \exp (-z(1+u) / 2) d z=\int_{0}^{\infty}(1+u)^{-3} v^{2} \exp (-v) d v=2(1+u)^{-3}$.

