WMS: 3.4

- E. Particular Distributions
 - 1. Binomial Distribution:
 - a. observe m trials, each of which could be success or failure. Binomial variable is one whose distribution is number of S.
 - i. all independent
 - ii. all with same probability π of S (hand hence probability 1π of F).
 - b. Example:
 - i. Identical twins reared by different parents, with one set of parents mentally ill.
 - ii. Success is that child with ill parents is just as healthy as child with well parents
 - iii. If environment has no effect, $\,S\,$ should happen half of the time.
 - c. How many strings of S and F are there?
 - i. If the m items are identifiable, there are $m! = m \times (m-1) \times (m-2) \times \cdots \times 2 \times 1$ ways to order labels for S and F.
 - ii. Not all of these orderings are unique.

- each legitimate ordering of S is permuted x! times, and
- each legitimate ordering of F is permuted (m x)! times.
- iii. In order to have this notation make sense when x = 0 , define x! = 1 .
- iv. Hence there are $\binom{m}{x} = \frac{m!}{x!(m-x)!}$ orderings of S and F giving rise to the same total number of S.
 - This is the way of choosing x items from m items without regard to the order of selection, or the number of *combinations* of x items form m items.

d.
$$\mathsf{P}(X = x) = \binom{m}{x} \pi^x (1 - \pi)^{m-x}$$
.

- i. Sample space is the set of all sequences of $S\,$ and $\,F\,$ of length $\,m\,.\,$
- ii. Many sequences of S and F give the same total number of S : SFSF , FFSS , FSSF for example.
- iii. The probability of any one of these strings is the same: $\pi^x(1-\pi)^{m-x}\,.$
- iv. Since sample space is finite, probability of the event X = x is sum of all strings with $x \ S$
- v. Equals probability of one string times number of strings giving

- x S.
- $\binom{m}{x}$ is called a *binomial coefficient*
- vi. Do these things sum to 1?
 - Note that $1 = (\pi + (1 \pi))^m = \sum_{j=0}^m {m \choose j} \pi^j (1 \pi)^{m-j}$: The binomial theorem.
- 2. Denote the distribution by $\mathsf{Bin}(n,\pi)$
 - a. Example:
 - i. Urn contains $M\,\operatorname{red}{\rm tickets}\,{\rm among}\,{\rm a}\,{\rm total}\,{\rm number}\,{\rm of}\,\,N$.
 - ii. Draw tickets and put the tickets back and reshuffle each time.

iii.
$$\pi=M/N$$
 ,

iv. X is the number of red tickets drawn.

b. Moments:
$$\mathsf{E}(X) = m\pi$$
, $\mathsf{V}(X) = \mathsf{E}(X^2) - \mathsf{E}(X)^2$

- i. Expectation is $\mathsf{E}\left(X\right)=m\pi$, because
 - By definition, $E(X) = \sum_{x=0}^{m} x {m \choose x} \pi^x (1-\pi)^{m-x}$
 - Since multiplier x for first term is zero, we can drop the first term: $E(X) = \sum_{x=1}^{m} \frac{m!}{x!(m-x)!} x \pi^x (1-\pi)^{m-x}$
 - Cancel x in numerator and denominator: $E(X) = \sum_{x=1}^{m} \frac{m! \pi^x (1-\pi)^{m-x}}{(x-1)! (m-x)!}$
 - Adjust to make function of x 1 and m 1:

$$\mathsf{E}(X) = \sum_{x=1}^{m} \frac{m(m-1)!\pi\pi^{x-1}(1-\pi)^{m-x}}{(x-1)!((m-1)-(x-1))!}$$

- Reindex by z = x 1: $\mathsf{E}(X) = \pi m \sum_{z=0}^{m-1} \frac{(m-1)!}{z!((m-1)-z)!} \pi^z (1-\pi)^{(m-1)-z}$
- Note $\sum_{z=0}^{m-1} \frac{(m-1)!}{z!((m-1)-z)!} \pi^z (1-\pi)^{(m-1)-z} = 1$, because

it is the sum of binomial probabilities with m-1 trials.

ii. Variance is $m\pi(1-\pi)$, by

•
$$V(X) = E(X^2) - E(X)^2$$

$$\triangleright E(X(X-1)) + E(X) - E(X)^2$$

- $\triangleright \ \ {\sf Use \ cancellation \ trick \ to \ evaluate \ {\sf E} \left(X(X-1) \right) }$
- or easier trick to follow.
- c. Calculation of distribution function:
 - i. Table 1 from text (Just kidding!)
 - ii. pbinomin R.
- 3. (Discrete) Uniform Distribution:
 - a. All probability atoms have the same probability
 - b. If there are k of them each probability is 1/k.

WMS: 3.5

- 4. Geometric Distribution
 - a. Observe trials yielding either success or failure (like a coin flip)

- i. each with the same probability π of yielding success,
- ii. until the first success is observed.
- b. Let number of trials needed be random variable $\,N$.
- c. What is the probability of seeing the first success in the $\,n\,$ trial?
 - i. This can only result from n-1 failures followed by one success;
 - ii. The probability of this is $p_N(n) = (1-\pi)^{n-1}\pi$, as before.
- iii. distribution function is $\mathsf{P}\left(N\leq n\right)=1-\mathsf{P}\left(N>n\right)=1-(1-\pi)^n$.
 - The last term is the probability of failure on the first n trials.

iv. $\lim_{n\to\infty} F_N(n) = 1$, as it should.

- d. Denote the distribution by $\operatorname{Geom}(\pi)$.
 - i. Calculate CDF by pgeom(n-1,p).
 - ii. R definition is number of failures before first success.
 - DeGroot text and other sources also use this definition.
- e. Expectation $1/\pi$
 - i. $\sum_{n=1}^{\infty} n p_N(n) = \sum_{n=1}^{\infty} n(1-\pi)^{n-1} \pi$
 - ii. This infinite sum is not one that you will likely recognize.
- iii. We know the result for a geometric series: $\sum_{n=1}^{\infty} (1-\pi)^n =$

$$(1 - \pi)/\pi$$

 λI

- Let $Q = \sum_{n=1}^{\infty} (1 \pi)^n$.
- Then $Q = (1 \pi) + \sum_{n=2}^{\infty} (1 \pi)^n = (1 \pi) + (1 \pi)Q$.

•
$$(\pi - 1 + 1)Q = 1 - \pi$$
.

- iv. Trick: note that summands contain something raised to a power times the power plus 1.
- v. Recognize this as as a derivative

• That is,
$$n(1-\pi)^{n-1} = -\frac{d}{d\pi}(1-\pi)^n$$

vi. So
$$E(N) = -\pi \sum_{n=1}^{\infty} \frac{d}{d\pi} (1-\pi)^n$$

vii. If we can interchange derivative and sum, E(N) =

$$-\pi \frac{d}{d\pi} \sum_{n=1}^{\infty} (1-\pi)^n = -\pi \frac{d}{d\pi} (1-\pi)/\pi = -\pi \frac{d}{d\pi} (1/\pi - 1)$$

 It is technically easier to justify the interchange if we work backwards, treating it as the integral of a sum equalling the sum of the integrals.

viii.
$$E(N) = -\pi(-1/\pi^2) = 1/\pi$$

- f. Variance $1/\pi^2 1/\pi$.
 - i. Use $V(N) = E(N^2) E(N)^2 = E(N(N-1)) + E(N) E(N)^2$.

Lecture 6 ii.

$$\mathsf{E}(N(N-1)) = \sum_{n=1}^{\infty} n(n-1)p_N(n)$$

= $\sum_{n=1}^{\infty} n(n-1)(1-\pi)^{n-1}\pi$

iii. Make this look like second derivative:

$$\mathsf{E}(N(N-1)) = (1-\pi)\pi \sum_{n=1}^{\infty} n(n-1)(1-\pi)^{n-2}$$
$$= -(1-\pi)\pi \sum_{n=1}^{\infty} \frac{d}{d\pi} n(1-\pi)^{n-1}$$
$$= (1-\pi)\pi \sum_{n=1}^{\infty} \frac{d^2}{d\pi^2} (1-\pi)^n$$

iv. As before, can interchange differentiation and summation:

$$\mathsf{E}(N(N-1)) = (1-\pi)\pi \frac{d^2}{d\pi^2} \sum_{n=1}^{\infty} (1-\pi)^n$$
$$= (1-\pi)\pi \frac{d^2}{d\pi^2} (1/\pi - 1)$$
$$= 2(1-\pi)\pi \pi^{-3} = 2(1-\pi)\pi^{-2}$$

- v. So: $E(N^2) = 2(1-\pi)\pi^{-2} + 1/\pi = 2/\pi^2 1/\pi$ vi. So: $V(N) = 2/\pi^2 - 1/\pi - 1/\pi^2 = 1/\pi^2 - 1/\pi$
- g. Memoryless property of Geometric Tail Probabilities

i. As before, $\mathsf{P}\left(N>n\right)=(1-\pi)^{n}$.

ii. For
$$y > n$$
, $P(N > y|N > n) =$
 $P(\{N > y\} \cap \{N > n\}) / P(N \ge n) =$
 $P(N > y) / P(N > n) = (1 - \pi)^{y-n}$.

iii. So the distribution of N-n , conditional on N>n , is $\operatorname{Geom}(\pi)\,.$

06