56

WMS: 3.3

D. The Expectation

- 1. The expectation represents a mean or average value.
 - a. Suppose random variable X
 - i. Set of possible values $\mathcal X$
 - ii. probability function $p_X(x)$
 - b. $E(X) = \sum_{x \in \mathcal{X}} x p_X(x)$.
 - c. Operationalize expressing ${\mathcal X}$ as list indexed by integers, and do traditional infinite sum.
 - i. Express ${\mathcal X}$ as $\{x_1,x_2,\ldots\}$.
 - ii. $\mathsf{E}(X) = \sum_{j=1}^{\infty} x_j p_X(x_j)$.
 - d. Defines a typical value
 - i. Advantage: explicitly and uniquely defined.
 - Explicit in that I gave you a formula above that returns a number
 - Unique: Does it depend on how we chose to express \mathcal{X} ?
 - ii. Disadvantage: Sometimes isn't defined.

Examples:

- a. Single Die
 - i. $\mathcal{X} = \{1, ..., 6\}$

ii.
$$p_X(x)=1/6$$
 for all $x\in\mathcal{X}$. iii. $\mathrm{E}(X)=1\times\frac{1}{6}+2\times\frac{1}{6}+3\times\frac{1}{6}+4\times\frac{1}{6}+5\times\frac{1}{6}+6\times\frac{1}{6}=21/6=3.5$

- b. Bernoulli trial
 - i. Variable takes on value 1 with some probability $\pi \in [0, 1]$
 - ii. Variable is zero otherwise.
 - iii. $\mathcal{X} = \{0, 1\}$

Lecture 5

Fig. 13: Integral Test Applied to $\sum_{j=1}^{\infty} 1/j$

- 5. The logarithm to be used in class is the natural log.
 - a. Here and everywhere else it appears in class, ln(x) is the natural log function.
 - i. Satisfies $e^{\ln(x)} = \exp(\ln(x)) = x$
 - b. There are other alternative log definitions.
 - i. common log $\log_{10}(x)$ satisfying $10^{\log_{10}(x)} = x$.
 - Called "common" because it was a tool for performing multiplications before the advent of floating-point portable calculators.
 - Also a device for measuring ship's speed in knots
 - ii. Base-2 $\log_2(x)$ satisfying $2^{\log_2(x)} = x$.
- 6. Expectation of a transformation of a random variable

iv.
$$E(X) = 0 \times (1 - \pi) + 1 \times \pi = \pi$$
.

- 3. Define expectation only when expectation of absolute value is finite.
 - a. Note $E(X) = \sum_{x \in \mathcal{X}, x < 0} x p_X(x) + \sum_{x \in \mathcal{X}, x > 0} x p_X(x)$.
 - b. Problem: if $\sum_{x \in \mathcal{X}} |x| p_X(x) = \infty$ then either $\sum_{x\in\mathcal{X},x<0}(-x)p_X(x)=\infty$ or $\sum_{x \in \mathcal{X}, x > 0} x p_X(x) = \infty$ or both.
 - i. In the last case, $\infty \infty$ is ambiguous.
 - ii. In the $\infty \infty$ case, generally, one find two different expressions $\mathcal{X} = \{x_1, x_2, \ldots\}$ and $\mathcal{X} = \{y_1, y_2, \ldots\}$ so that $\sum_{i=1}^n x_j p_X(x_j)$ and $\sum_{i=1}^n y_j p_X(y_j)$ do not converge to the same limit.
 - c. Don't define expectation if $\sum_{x \in \mathcal{X}} |x| p_X(x) = \infty$.
- 4. A counterexample for which the expectation doesn't exist.
 - a. Suppose $P(X=j)=j^{-2}/c$ for $j=1,2,\cdots$
 - b. To make these probabilities sum to 1, $c=\sum_{j=1}^{\infty}j^{-2}$.
 - i. Integral test shows that c finite:

$$\int_1^\infty \frac{dx}{x^2} = \lim_{a \to \infty} \int_1^a \frac{dx}{x^2} \ dx = \lim_{a \to \infty} \frac{-1}{x} \bigg|_1^a = \lim_{a \to \infty} (1 - \frac{1}{a}) = 1 < \infty.$$

- ii. Euler showed that $c=\pi^2/6$, but we won't need
- c. However, $\,{\rm E}\,(X) = \sum_1^\infty j^{-1}/c = \infty$.
 - i. Integral test to see sum infinite: $\int_{1}^{\infty} (1/x) dx = \lim_{a \to \infty} \int_{1}^{a} (1/x) dx = \lim_{a \to \infty} \ln(x)|_{1}^{a} = \lim_{a \to \infty} \ln(a) = \infty$
 - ii. See Fig. 13.

55

Lecture 5

- a. For now, restrict attention to discrete random variables.
- b. First construct probability function of a transformation of a random variable r(X).
 - i. Suppose that Y = r(X) for some function r.
 - ii. Want $p_Y(y)$.
 - iii. Let $r^{-1}(\{y\}) = \{x | r(x) = y\}$ be the set of values for X giving a Y value of y.
 - Note that $\{s|Y(s)=y\} = \bigcup_{x\in r^{-1}(\{y\})} \{s|X(s)=0\}$
 - Note that if $x_1 \neq x_2$, then $\{s|X(s) = x_1\} \cap \{s|X(s) = x_2\} = \emptyset$.

- c. Expectation E(r(X)) is defined using original definition for new variable.
 - i. Make new random variable Y = r(X).
 - ii. Determine range of possible values ${\cal Y}$.
 - iii. Calculate probability function $p_Y(y)$
 - iv. Report $\sum_{y \in \mathcal{Y}} y p_Y(y)$.
 - v. Note $\mathcal{X} = \bigcup_{y \in \mathcal{Y}} r^{-1}(\{y\})$.
- 7. Calculation can be done summing over original space
 - a. One need not first construct the distribution for the new variable.
 - b. $E(r(X)) = \sum_{x \in \mathcal{X}} r(x) p_X(x)$

$$\sum_{y \in \mathcal{Y}} y p_Y(y) = \sum_{y \in \mathcal{Y}} y \sum_{x \in r^{-1}(\{y\})} p_X(x)$$
$$= \sum_{y \in \mathcal{Y}} \sum_{x \in r^{-1}(\{y\})} r(x) p_X(x)$$
$$= \sum_{x \in \mathcal{X}} r(x) p_X(x)$$

8. Linearity

a. Let Y = aX + b for some constants a , b

b. Use transformation rule to show
$$\, {\rm E} \, (Y) = a {\rm E} \, (X) + b \, .$$

i.
$$\mathsf{E}\left(Y\right) = \sum_{x \in \mathcal{X}} (ax + b) p_X(x) = \\ \sum_{x \in \mathcal{X}} ax p_X(x) + \sum_{x \in \mathcal{X}} b p_X(x) = \\ a \sum_{x \in \mathcal{X}} x p_X(x) + b \sum_{x \in \mathcal{X}} p_X(x) = a \mathsf{E}\left(X\right) + b \, .$$

9. Other moments defined:

- a. The expectation is often referred to as the first moment of a random variable X;
- b. The r-th moment is defined as $E(X^r)$.
- c. The r-th $central\ moment$ is defined as $\operatorname{E}\left((X-\operatorname{E}(X))^r\right)$.
- 10. Describing spread
 - a. Variance: V(X) is the second central moment: average squared distance from mean.

i.
$$V(X) = E((X - E(X))^2)$$

- ii. Alternate formulation:
 - Square out what's inside:

$$V(X) = E(X^2 - 2XE(X) + E(X)^2)$$

Break up using linearity:

$$\mathsf{V}\left(X\right) = \mathsf{E}\left(X^{2}\right) - 2\mathsf{E}\left(X\mathsf{E}\left(X\right)\right) + \mathsf{E}\left(\mathsf{E}\left(X\right)^{2}\right).$$

• Pull out constants:

$$V(X) = E(X^2) - 2E(X)^2 + E(X)^2$$

iii. Obtain $V(X) = E(X^2) - E(X)^2$.

- b. $standard\ deviation$: average distance from expectation: $SD(X) = \sqrt{V(X)}$
- c. Scaling: $V(aX + b) = a^2V(X)$.

i. Scaling.
$$\mathbf{v}(a\mathbf{A} + b) = a \mathbf{v}(\mathbf{A})$$

$$\begin{split} \mathsf{V}\left(aX+b\right) &= \mathsf{E}\left((aX+b-\mathsf{E}\left(aX+b\right))^2\right) \\ &= \mathsf{E}\left((aX+b-\mathsf{E}\left(aX\right)-b\right)^2\right) \\ &= \mathsf{E}\left(a^2(X-\mathsf{E}\left(X\right))^2\right) \\ &= a^2\mathsf{V}\left(X\right) \end{split}$$

- d. Hence SD(aX + b) = |a| SD(X)
- e. Other dispersion measures: $mean\ absolute\ deviation$ $\mathrm{E}\left(|X-\mathrm{E}\left(X\right)|\right)$ or $\mathrm{E}\left(|X-\mathrm{median}\left(X\right)|\right)$.
 - i. MAD scales the same way as SD, but will lack some useful properties later.

Lecture 6

This page intentionally left blank.

59 Lecture 6

This page intentionally left blank.

60