WMS: 8.7

H. Designing an Experiment

- 1. Sample Size Determination
 - a. Suppose you want to estimate parameter to within a certain accuracy \boldsymbol{e}
 - i. called $margin\ of\ error$.
 - b. As measured by c.i. of level $1-\alpha$.
 - c. Suppose you have pre-knowledge of the standard deviation.
 - d. Then $\sigma z_{\alpha/2}/\sqrt{n} \leq e$
 - e. Then $\sigma z_{\alpha/2}/e \leq \sqrt{n}$
 - f. Then $n \ge \sigma^2 z_{\alpha/2}^2/e^2$
 - g. Ex., to estimate binomial proportion (ex. poll result) to 2%,

i.
$$\sigma^2 = \theta(1 - \theta) \le .25$$

ii. Can get by with $\,n=.25(1.96)^2/.02^2\approx 2500$.

WMS: 8.8-8.9

- I. Common Applications
 - 1. We just did one-sample examples.
 - a. One-sample normal means confidence intervals
 - i. As above: $\bar{X} \pm z_{\alpha/2} \sigma/\sqrt{n}$ for normal mean

Lecture 5

24

- $\bullet \quad \bar{X} \pm t_{\alpha/2;n-1} S/\sqrt{n} \ \ \mbox{if} \ \ \sigma \ \ \mbox{must be estimated as} \ S$.
- b. Two-sample binomial intervals:
 - i. $X_1 \sim \text{Bin}(n_1, \pi_1)$, $X_2 \sim \text{Bin}(n_2, \pi_2)$.
 - ii. Estimates are $\hat{\pi}_1 = X_1/n_1$, $\hat{\pi}_2 = X_2/n_2$.

iii. c.i. for
$$\pi_1 - \pi_2$$
 is $\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \sqrt{\hat{\pi}_1 (1 - \hat{\pi}_1)/n_1 + \hat{\pi}_2 (1 - \hat{\pi}_2)/n_2}$

- 2. Two-sample mean difference
 - a. Assume
 - i. X_1,\ldots,X_m same expectation and finite variance
 - ii. Y_1, \ldots, Y_n same expectation and finite variance
 - iii. All independent
 - b. Estimate $\theta = E[Y_i] E[X_i]$
 - i. Case with common variance:
 - Pivotal quantity $S=(\bar{Y}-\bar{X}-\theta)/(\sigma\sqrt{1/m+1/n})$ if common variance were known to be σ .
 - Pivotal quantity $S = (\bar{Y} \bar{X} \theta)/(S_p \sqrt{1/m + 1/n})$
 - $S_p = \sqrt{\frac{\sum_{i=1}^m (X_i \bar{X}) + \sum_{i=1}^n (Y_i \bar{Y})}{m+n-2}}$: pooled standard deviation. *********
 - Pivot has distribution approximately N(0, 1)
 - ightarrow More closely, t_{m+n-2} .

ii. Case with variances not known to be common:

• Let
$$\sigma^2 = \operatorname{Var}\left[X_i\right]$$
, $\tau^2 = \operatorname{Var}\left[Y_i\right]$

- \bullet Pivotal quantity $S=(\bar{Y}-\bar{X}-\theta)/\sqrt{\sigma^2/m+\tau^2/n}$ if σ , τ known.
- If σ , τ unknown, estimate by $S_x=\sqrt{\sum_{i=1}^m (X_i-\bar{X})/(m-1)}$, $S_y=\sqrt{\sum_{i=1}^n (Y_i-\bar{Y})/(n-1)}$ respectively.
- Is $S=(\bar{Y}-\bar{X}-\theta)/\sqrt{S_x^2/m+S_y^2/n}$ pivotal? No.

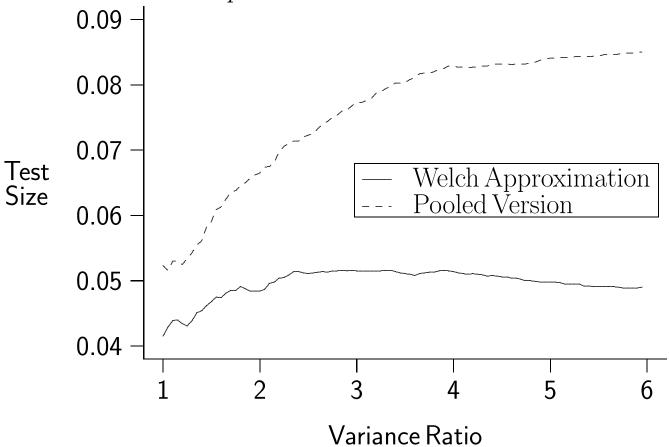
$$ightarrow$$
 If $\sigma= au$, $m=n$, t_{m+n-2} .

- \bullet Standard solution: approximate by t_d , where d is complicated formula of S_x , S_y , m , n .
- See Fig. 4.

WMS: 9.1

- 3. Variance Bounds for estimators:
 - a. How small a variance can one get for an unbiased estimate?
 - b. Precision of estimator comes from derivatives of log likelihood.
 - i. 1st derivative tells how fast density changes with $\, heta$.

Fig. 4: Dependence of the Two Sample Test on Variance Ratio



- ii. 2nd derivative tells how fast density curves with θ .
- c. Idea:
 - i. information about $\, \theta \,$ depends on how quickly on average $f_X(X; \theta)$ as a function of $\, \theta \,$ drops away from its peak
 - ii. This is measured by the inverse of the curvature.
- iii. For this course always interpret log as natural logs.

WMS: 9.2

J. Relative Efficiency

Lecture 6 27

- 1. Efficiency measures variances of estimates.
 - a. Definition: The ratio $\operatorname{Var}\left[\hat{\theta}_1\right]/\operatorname{Var}\left[\hat{\theta}_2\right]$ is the relative efficiency of $\hat{\theta}_2$ re $\hat{\theta}_1$.

05