
Lecture 7 36
WMS: 9.4

L. Sufficiency:

1. Sufficiency Criterion

a. Howmuch of information dowe have to consider,

b. and howmuch canwe toss away as not giving information about

the quantity of interest?

c. Express generic data as X1, · · · , Xn = X , with observed

values x1, · · · , xn = x .

2. Sufficiency Example:

a. X ∼ Bin(m, θ) an ind. sample.

b. θ̂ =
∑n

i=1Xi/(mn) is an unbiased, consistent estimator of θ .

c. Is there any other part of the data, other than that summarized

by θ̂ , that gives information about θ ?

d. The separate p.m.f.s for the variables are
(m
xi

)

πxi(1− π)m−xi.

e. Hence the joint p.m.f. is pX(x; π) =
∏n

i=1

(m
xi

)

πxi(1 −
π)m−xi.

i. Collect exponents

pX(x; π) = π
∑n

i=1
xi(1− π)mn−

∑n
i=1

xi
n
∏

i=1

(

m

xi

)

ii. Substitute in statistic value
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pX(x; π) = πmnθ̂(1− π)mn−mnθ̂
n
∏

i=1

(

m

xi

)

iii. Calculatemarginal probability from distribution of sum of

binomials:

p(θ̂;π) =

(

mn

mnθ̂

)

πmnθ̂(1− π)mn−mnθ̂;

f. Hence p
X|θ̂(x|θ̂; π) =

∏n
i=1

(m
xi

)

/
( mn
∑n

i=1
xi

)

.

g. Hence the additional information given by the Xi beyond their

total tells nothing about π .

3. SufficiencyDefinition:

a. T (X) is sufficient for θ if the distń of X conditional on T

doesn’t depend on θ .

b. factorization theorem : T is sufficient if and only if full p.m.f.

can be factored as

pX(x) = g(t(x); θ)u(x).

i. T sufficient ⇒ p.m.f. pX(x; θ) is pT (t; θ)pX|T (x|t(x)) .
• the latter factor independent of θ

ii. p.m.f. factors as described ⇒ pX|T (x|t; π) =

g(t; θ)u(x)/
∑

z|t(z)=t g(t; θ)u(z) =

u(x)/
∑

z|t(z)=t u(z) .
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• The conditional p.m.f. does not depend on θ .

c. The ideas and theorems above also hold for densities.

d. Entire data set X is sufficient.

i. For independent data, so is ordered data set.

ii. Generally wantmore concise summary.

4. Example: *********** ***********

a. Consider X1, · · · , Xn ∼ N(µ, σ2) .

b. The joint p.d.f. is

fX(x) =
n
∏

i=1

exp(−(xi − µ)2/(2σ2))

σ
√
2π

i. Simplify exponentials:

fX(x) =
exp(−(

∑n
i=1(xi − µ)2)/(2σ2))

σn(2π)n/2

ii. Expand squares:

fX(x) =

exp

(

−∑n
i=1

x2i+2µ
∑n

i=1
xi−nµ2

2σ2

)

(σn(2π)n/2)

iii. Simplify to obtain density
exp((2µ

∑n
i=1

xi−nµ2)/(2σ2))×exp((−
∑n

i=1

σn(2π)n/2

c. If σ is knownwithout looking at the data, sum of observations is

sufficient.

i. Factorization shows that
∑n

i=1Xi is sufficient for µ .
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ii. So is µ̂ = T/n .

iii. µ̂ is a good estimator but T is not.

iv. Factorization shows that (
∑n

i=1X,
∑n

i−1X
2
i ) is sufficient for

(µ, σ2) .

v. So is X̄, s2 =
∑n

i−1(Xi − X̄)2/(n− 1)

5. Poisson Example

a. X, Y ∼ P(θ)

b. Consider summary µ̂ = 1
3X + 2

3Y

i. µ̂ = 2
3 ⇒ X = 2 and Y = 0 or X = 0 and Y = 1

ii. P
[

X = 2|µ̂ = 2
3

]

=

exp(−µ)µ2/2! exp(−µ)

exp(−µ)µ2/2! exp(−µ) + exp(−µ) exp(−µ)µ1/1!
=

µ2

µ2 + 2µ
,

iii. depends on µ : µ̂ not sufficient

c. Consider summary µ̂ = 1
2X + 1

2Y

i. P [X = x|µ̂ = u] =

exp(−µ)µx/x! exp(−µ)µ2u−x/(2u− x)!

exp(−2µ)µ2u/(2u)!
=

2u!

x!(2u− x)!
,

ii. does not depend on µ : sufficient

6. Example where sufficient statistic doesn’t tell whole story:

a. A collection of cars is inspected for defective wheels

b. Estimate the proportion π of wheels which are defective.



Lecture 8 40
c. Under the binomial model, the sample proportion is sufficient for

inference on π .

d. Table 2 contains two scenarios:“TAm

Scenario 1: Scenario 2:
# of wheels# of times # of wheels# of times

defective observed defective observed

0 5 0 44

1 19 1 0

2 36 2 0

3 27 3 0

4 13 4 56

Total 100 Total 100

i. Both scenarios give the same estimate of π

ii. the second case gives strong evidence that the binomial model

is wrong.

iii. Hence the sufficient statistic tells about the parameters in the

model; remainder tells about the suitability of themodel itself.
07


