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KM: 8.3pn2
3. Infinite Estimates

a. If values of single covariate are in same order as event
times, then estimator of associated β is ±∞
i. Each term of ℓ′ for covariate j is

zij −
∑

k∈R(i)
zkj exp(zkβ))

∑

k∈R(i)
exp(zkβ))

ii. Hence MLE β̂ satisfies

zij −
∑

k∈R(i)
zkj exp(zkβ̂))

∑

k∈R(i)
exp(zkβ̂))

= 0 .

iii. “same order” condition means zkj ≥ zij for all
k ∈ R(i) .

iv. Second part is weighted average of zkj
v. In order to make weighted average = zij all weight

must be on zij
vi. If zkj ≤ zij for k ∈ R(i) then βk = ∞ works

b. Algorithm can’t converge in standard sense.
c. Diagnose from convergence behavior.

i. Warning message says algorithm hasn’t converged.
ii. Or Very large parameter estimates.

d. Also can happen with linear combination of β

i. Harder to see by looking at data R Code SAS Code
4. Factors that make infinite estimators more likely

a. Covariates are dichotomous
i. Since a single observation with time and covariate in

the opposite direction makes the estimate finite.
b. The sample size is small.
c. The model has a large number of covariates.
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d. At least one covariate has a large effect.
5. Bayesian Inference and Regularization

a. Recall: Regression model has unknown baseline hazard,
unknown parameters

b. Baysian Paradigm:
i. Treat unknown quantities as random
ii. Put prior distribution on these
iii. Calculate distribution conditional on data: posterior

c. Partial likelihood approach: remove baseline hazard via
profiling.
i. We continue this here.
ii. Alternatively, can put a prior on function space.
iii. Let ̟(β) be prior density on parameter space.

6. The posterior as a regularization method.
a. Posterior is ∝ L(β)̟(β)

i. Parameter estimate maximizes posterior.
ii. If lim‖β‖→∞ ̟(β) = 0 , then the posterior does not

have the monotonicity problem that we saw could
arise in frequentist approach.

b. On log scale, log (partial) posterior is ℓ(β)− ς(β) + C
for ς(β) = − log(̟(β))
i. Equivalent to frequentist technique of regularization
ii. ς(β) = λ

∑

j |βj |2 if β independent N(0, 1/λ)

iii. ς(β) = λ
∑

j |βj | if β independent Laplace with

scale 1/
√
λ

iv. We investigated both of these regularizations for
multiple regession
• ℓ(β) ∝∑j(Yj − βzj)

2
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v. Most common procedure is to use Jeffreys prior. R
Code SAS Code

KM: 8.7
E. Model Building

1. Same regression techniques, constraints
a. Measure quality: AIC, p -value.

i. using Akaike’s Information criterion: −2ℓ+ 2p
• for p the number of parameters
• Lower is better

ii. Using test p -value
• Typically set significance higher: 0.15?
• To ensure stability, put level for removal higher

than that of inclusion.
b. Search through models using stepwise:

i. Start with an initial model.
ii. Consider models with separate (groups of)

parameters added or removed, one at a time.
iii. Try nonlinear terms, interactions, etc
iv. Dichotomize continuous variables.
v. Move to model with numerical criteria improved.
vi. Gives a local, rather than guaranteed global,

optimum.
vii. At each step, one can add or remove variables.

• Only considering additions: Forward stepwise.
• Only considering deletions: Backwards stepwise.

2. Interpretation after selection:
a. Model parameters measure effect of explanatory

variable in light of all other variables in model.
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b. Hence interpretation of parameter changes as other
variables move in and out of the model.

c. Inference after selection has multiple-comparisons issue.
i. Effect of variables in a best-fitting model will be

exaggerated relative to a model selected a priori.
ii. One must adjust for this exaggerated effect.
iii. Solutions:

• test and training set.
• build model without explanatory variable for

primary hypothesis.
d. Model selection is impacted by coordinate system for

variables.
i. Ex., a model containing baseline value and a change

from baseline will be treated differently from a model
containing baseline and later value.

e. Same warnings and rules for including variables
i. No interactions without main effects
ii. Watch for multiple comparisons R Code SAS

Code
KM: 8.8

F. Baseline survival estimation.
1. Introduction

a. Before was treated as nuisance parameter
b. Now might be of interest

i. Corresponds to person with z = 

ii. With suitable redefining, can refer to any fixed z

c. We will consider only no-ties case
2. Estimate via Cumulative Hazard

a. Order event times

http://statweb.rutgers.edu/kolassa/960-542/l07.R.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.sas.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.R.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.R.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.sas.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.R.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.sas.html#0.
http://statweb.rutgers.edu/kolassa/960-542/l07.sas.html#0.
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b. Estimator of baseline hazard at event time k is
Dk

∑

j∈R(k) exp(zjβ)

c. Ĥ(t) =
∑

k|tk≤t
Dk

∑

j∈R(k)
exp(zjβ)

.

d. Ŝ(ti) = exp

(

−∑i

k=1
dk

∑

j∈R(i)
exp(zjβ)

)

i. With no covariates this corresponds to exponentiated
Nelson–Aalen estimator

e. Can estimate S at arbitrary z by Ŝ(t)exp(zβ)

f. If β known, can calculate SE just as for Kaplan–Meier
g. Must be increased for having to estimate β

3. Alternate estimator:
a. First estimate survival function

Ŝ(ti) =
∏i

k=1

(

1− dk
∑

j∈R(i)
exp(zjβ)

)

i. Made by substituting exp(−x) ≈ 1− x
ii. Weighted Kaplan–Meier curve
iii. Adjusted for ties if necessary

b. Then estimate cumulative hazard function

Ĥ(ti) =

i
∑

k=1

log

(

1− dk
∑

j∈R(i) exp(zjβ)

)

.

c. Both estimators have expressions for standard error
SAS Code R Code

KM: 9.4
G. Late Entry

1. Subject not observed at beginning of study
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a. As with Kaplan–Meier, get data set representing
survival conditional on having entered

b. As before, adjust risk set to only contain those who
have already entered

c. Requires entry time to be independent of life time.
d. treatment is different from adding entry time as

covariate
i. See Fig. 11.

Fig. 11: Delayed Entry

............................

.....................................................

..............................................................................................................

.................................................................................................................................................................................................

............................................................................................................................................................................................................................

x

x

x

o

o

x Event
o Censored

ii. Partial likelihood :

L(β) =
exp(β)

exp(β) + exp(0) + exp(β) + exp(0)

× exp(0)

exp(0) + exp(β) + exp(0) + exp(β)
× exp(β)

exp(β)

SAS Code R Code
2. Subject removed and returned leaves partial likelihood

unchanged
a. Subject now has two lines

i. First entry censored
ii. Second entry late.
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b. Each risk set under initial struture containing subject
now has either first copy or second copy.
i. Hence partial likelihood unchanged.

c. Can be repeated to give as many records for a subject
as desired. R Code

07
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