A: 2.4

- 3. Testing in the General case (J or K greater than 2.)
 - a. Score statistic in this case is Pearson Statistic
 - i. Calculate expected values $E_{kj} = X_{j+}X_{+k}/X_{++}$
 - ii. As in one-dimensional case, $T = \sum_{j=0}^{J-1} \sum_{k=0}^{K-1} (X_{kj} E_{kj})^2 / E_{kj}$.
 - iii. $T \sim \chi^2_{(K-1)(J-1)}$ (approximately) for all models, under null:
 - Independent Poisson
 - $J \times K$ category multinomial
 - Separate multinomials
 - Generalization of hypergeometric (to be shown below).
 - iv. Same requirement of expectations > 5 .
 - v. Under hypothesis for $\theta_{ij} \neq 1$,
 - ullet $E_{00}E_{k\ell}/(E_{k0}E_{0\ell})= heta_{k\ell}^\circ$, and $E_{i+}=X_{i+}$ $E_{+j}=X_{+j}$.
 - No closed-form solution.
 - vi. Note that T and reference distribution do not depend on which variable you make rows, and which you make columns.

4.
$$J = K = 2$$

A: 2.2.1

- a. Square of proportion differences coincids with the Pearson statistic.
 - i. $Z^2=T$ for Z the standard normal theory test statistic and $T=\sum_{j,k}(X_{jk}-E_{kj})^2/E_{kj}\,.$

ii. since

$$Z^{2} = \left[(\hat{\pi}_{10} - \hat{\pi}_{00}) / \sqrt{\hat{\pi}_{0}\hat{\pi}_{1}/X_{+0} + \hat{\pi}_{0}\hat{\pi}_{1}/X_{+1}} \right]^{2} \sim \chi_{1}^{2}$$

$$= \frac{X_{++}X_{0+}X_{1+}}{X_{+0}X_{+1}} (X_{00}/X_{0+} - X_{10}/X_{1+})^{2}$$

$$= \frac{X_{++}X_{0+}X_{1+}}{X_{+0}X_{+1}} (X_{00}(1/X_{0+} + 1/X_{1+}) - X_{+0}/X_{1+})^{2}$$

$$= \frac{X_{++}X_{0+}X_{1+}}{X_{+0}X_{+1}} (X_{00}X_{++}/[X_{0+}X_{1+}] - X_{+0}/X_{1+})^{2}$$

$$= (X_{00} - E_{00})^{2}v$$

iii. For $E_{kj} = X_{j+}X_{+k}/X_{++}$

$$\begin{aligned} \text{iv. For } v &= (X_{+1}X_{0+}X_{+0}X_{1+})^{-1}X_{++}^3 \\ &= \frac{X_{++}}{X_{+0}X_{0+}} + \frac{X_{++}}{X_{+0}X_{1+}} + \frac{X_{++}}{X_{+1}X_{0+}} + \frac{X_{++}}{X_{+1}X_{1+}} \\ &= \sum E_{kj}^{-1} \end{aligned}$$

- v. Working backwards through the above calculations, $\,v\,$ is inverse of variance of $\,X_{00}-E_{00}\,$
- vi. Keep in mind that E_{00} is random.

vii. Note $(X_{kj}-E_{kj})^2$ is the same for all pairs $\,i,j\,$

- viii. Use χ^2 test statistic as before: $T = \sum_{j,k=0}^1 (X_{kj} E_{kj})^2/E_{kj}$
 - Expectation satisfies $E_{j+}=X_{j+}$ $E_{+k}=X_{+k}$, (3 equations, 4 unknowns) R Code SAS Code
- 5. Conditional Moments of Cell Counts
 - a. WOLOG calculate moment sfor first row and column.

b.
$$E_{\theta=1}\left[X_{jk}|\text{margins}\right] = X_{+k}X_{j+}/X_{++}$$

i.
$$\mathrm{E}\left[X_{00}|\mathrm{margins}\right] = \sum_{X_{00}=\mathrm{max}(0,x_{+0}+x_{0+}-x_{++})}^{\mathrm{min}(X_{+0},X_{0+})} x_{00} \mathrm{P}\left[X_{00}=x_{0}-x_{0}\right] \mathrm{P}\left[X_{00}=x_{0}-x_{0}\right]$$

- ii. Remove term with $x_{00} = 0$
- iii. Cancel factors x_{00} in numerator and denominator.
- iv. Reparameterize sum to $y = x_{00} 1$.
- v. Note that terms are $X_{+0}X_{0+}/X_{++}$ times hypergeometric probabilities with one fewer observations in first row and column.

c.
$$\operatorname{Var}_{\theta=1}\left[X_{jk}|\operatorname{margins}\right] = \frac{(X_{++} - X_{j+})X_{j+}X_{+k}(X_{++} - X_{+k})}{X_{++}^2(X_{++} - 1)}$$

- i. Consider $\mathrm{E}\left[X_{00}(X_{00}-1)|\mathsf{margins}\right]$
- ii. Treat as in $\mathbb{E}\left[X_{00}|\mathsf{margins}\right]$, except now cancelling two factors in numerator and denominator.

42

- iii. Use $\operatorname{Var}\left[X_{00}|\operatorname{margins}\right] = \operatorname{E}\left[X_{00}(X_{00}-1)|\operatorname{margins}\right] + \operatorname{E}\left[X_{00}|\operatorname{margins}\right] \operatorname{E}\left[X_{00}|\operatorname{margins}\right]^2$
- d. For $j\neq \ell$, Cov $\left[X_{jk}X_{\ell k}\right]=-X_{j+}X_{\ell+}X_{+k}(X_{++}-X_{+k})/(X_{++}^2(X_{++}-1))$
 - i. Already know $\operatorname{Var}\left[X_{jk}\right]$
 - ii. Summation trick gives covariances for two entries in the same column.
 - $\operatorname{Var}\left[X_{jk} + X_{\ell k}\right] = (X_{j+} + X_{\ell+})(X_{++} X_{+j} X_{+\ell})X_{+k}(X_{++} X_{k+})/(X_{++}^2(X_{++} 1))$
 - $\operatorname{Cov}\left[X_{jk}, X_{\ell k}\right] = \left(\operatorname{Var}\left[X_{jk} + X_{\ell k}\right] \operatorname{Var}\left[X_{jk}\right] \operatorname{Var}\left[X_{\ell j}\right]\right)/2$
- e. For $m\neq k$, ${\rm Cov}\left[X_{jk},X_{jm}\right]=-X_{+k}X_{+m}X_{j+}(X_{++}-X_{j+})/(X_{++}^2(X_{++}-1))$
 - i. by symmetry.
- f. For $j \neq \ell$, $k \neq m$, $\operatorname{Cov}\left[X_{jk} + X_{\ell m}\right] = X_{+k}X_{+m}X_{j+}X_{\ell+}/(X_{++}^2(X_{++}-1))$
 - i. Expanding $\operatorname{Var}\left[X_{ij}+X_{il}+X_{kj}+X_{kl}\right]$ gives equation for $\operatorname{Cov}\left[X_{ij},X_{kl}\right]+\operatorname{Cov}\left[X_{kj},X_{il}\right]$.
 - These two covariances are the same, but I don't see how to

Lecture 4 show this symmetry without brute-force calculation.

ii. Without loss of generality, take $\,k=j=1\,$ and $\,i=l=2\,$.

43

- iii. For $oldsymbol{y}$ and $oldsymbol{z}$ three-component vectors of non-negative integers, let
 - $\mathcal{A}(\boldsymbol{y}, \boldsymbol{z}) = \{(x_{00}, \dots, x_{22}) | x_{ij} \geq 0, \sum_{i=0}^{2} x_{ij} = y_j \, \forall j, \sum_{j=0}^{2} x_{ij} = z_i \, \forall i \}.$
 - $\mathcal{B}(\boldsymbol{y}, \boldsymbol{z}) = \{(x_{00}, \dots, x_{22}) | x_{ij} \ge 0, x_{11} \ge 1, x_{22} \ge 1, \sum_{i=0}^{2} x_{ij} = y_j \forall j, \sum_{j=0}^{2} x_{ij} = z_i \forall i \}$
 - $c(\boldsymbol{y}, \boldsymbol{z}) = \sum_{\boldsymbol{x} \in \mathcal{A}(\boldsymbol{y}, \boldsymbol{z})} \frac{1}{\prod_{i=0}^{2} \prod_{j=0}^{2} x_{ij}!}$.

iv. Note that

$$\mathsf{P}\left[X_{ij} = x_{ij} \, \forall i,j\right] = \frac{y_0! y_1! y_2! z_0! z_1! z_2!}{(y_0 + y_1 + y_2)! \prod_{i=0}^2 \prod_{j=0}^2 x_{ij}!}.$$

- Then $c(\boldsymbol{y}, \boldsymbol{z}) = \frac{(y_0 + y_1 + y_2)!}{y_0! y_1! y_2! z_0! z_1! z_2!}$.
- Let e_i be the three-component vector of all zeros except for 1 in component i.
- Then $\sum_{m{x}\in\mathcal{A}(m{y},m{z})} rac{x_{11}x_{22}}{\prod_{i=0}^2\prod_{j=0}^2x_{ij}!}$ is

44

$$= \sum_{\boldsymbol{x} \in \mathcal{B}(\boldsymbol{y}, \boldsymbol{z})} \frac{1}{x_{00}! x_{10}! x_{20}! x_{01}! (x_{11} - 1)! x_{21}! x_{02}! x_{12}! (x_{22} - 1)!}$$

$$= \sum_{\boldsymbol{x} \in \mathcal{A}(\boldsymbol{y} - \boldsymbol{e}_1 - \boldsymbol{e}_2, \boldsymbol{z} - \boldsymbol{e}_1 - \boldsymbol{e}_2)} \frac{1}{x_{00}! \cdots x_{22}!}$$

$$= c(y - e_1 - e_2, z - e_1 - e_2)$$

•
$$E[X_{11}X_{22}] = X_{1+}X_{+1}X_{2+}X_{+2}/(X_{++}(X_{++}-1))$$

- 6. Use covariances to build correct quadratic form.
 - a. Define standardized quantities.

i.
$$Y_{ij} = (X_{ij} - X_{i+}X_{+j}/X_{++})\sqrt{X_{i+}} - 1/\sqrt{X_{i+}X_{+j}}$$

ii.
$$\beta_i = \sqrt{X_{i+}/X_{++}}$$

iii.
$$\gamma_j = \sqrt{X_{+j}/X_{++}}$$

- iv. $\delta_{ij} = 1$ if i = j and 0 otherwise.
- b. Cov $\left[Y_{ij},Y_{kl}\right]=(\delta_{ik}-\beta_i\beta_k)(\delta_{jl}-\gamma_j\gamma_l)$
- c. In matrix terms, $\mathsf{Cov}\left[Y_{ij},Y_{kl}\right] = (\boldsymbol{I} \boldsymbol{\beta}^{\top}\boldsymbol{\beta}) \otimes (\boldsymbol{I} \boldsymbol{\gamma}^{\top}\boldsymbol{\gamma})$
 - i. Operator \otimes represents Kronecker product.
- d. Hence covariance matrix for standardized cell counts is

 Kronecker product of matrices with same form as variance
 matrices for one-dimensional multinomial counts.
 - i. Presumes that

- the matrix Y_{ij} is turned into a vector,
- four-dimensional variance array compacted to two dimensions.
- e. Take (generalized) inverse by inverting separate factors.
- 7. Here we approximate discrete distribution by continuous distribution
 - a. Probability of observed outcome must be added to the p value
 - b. On the raw obs scale, the lump has width 1
 - c. Again move upper corner by $\frac{1}{2}$ before calculating T
 - d. Normal approx. works poorly unless $E_{kj} \geq 5 \forall j,k$. See Fig. 10.
 - e. Unbalanced example. See Fig. 11.
- 8. Example of Eliminating Tables through Conditioning
 - a. Observe table with 1,1 on diagonal, 0 elsewhere:
 - i. Sample space:

0 0																
0 0	0	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0
0 0	0	1	0	1	0	1	1	1	0	1	0	1	1	2	0	2
0 2																
0 0	0	2	0	2	0	2	2	0	0	0	1	0	1	0	1	1
0 2	2	2	0	2	0	2	2	1	1	2	2	0	2	1	1	2

Fig. 10: Approximations to the Hypergeometric Distribution

Row margins are 10, 10 and column margins are 10, 10

- b. Removed tables with total not 2, moving from 0 to 1,
- c. Removed tables with row totals not 1,1, moving from 1 to 2.

Fig. 11: Approximations to the Hypergeometric Distribution

Row margins are 20 , 10 and column margins are 10 , $20\,$

d. Removed tables with column totals not 1,1, moving from 2 to 3.

R Code SAS Code

A: 2.3.3

- 9. Likelihood ratio
 - a. $L(\theta)$ is probability for table as function of θ
 - b. Compare value at 1 to highest value it takes

c.
$$2 \times \log(L) \sim \chi^2$$

- d. Stratified cohort study (ie., condition on row totals).
 - i. Estimate π_j under H_0 as $\hat{\pi_j} = X_{+j}/X_{++}$.

- D. Ordered rows, unordered columns
 - 1. Test using scores.
 - a. Test null hypothesis of equality of distribution using sum of squared columwise score statistics.
 - b. Rows scored to reflect ordering.
 - c. Assign row j a score u_j
 - d. Calculate columnwise sum $T_k = \sum_{j=0}^{K-1} u_j (X_{jk} E_{jk})$
 - i. $E[T_k] = 0$.
 - ii. Variance of scored statistic uses conditional covariances of table entries: ${\rm Var}\left[T_k\right]=$

$$= \frac{(X_{++} - X_{+k})X_{+k}}{X_{++}(X_{++} - 1)} \left\{ \sum_{j=0}^{K-1} u_j^2 \frac{X_{j+}}{X_{++}} - \left(\sum_{j=0}^{K-1} u_j \frac{X_{j+}}{X_{++}} \right)^2 \right\}$$

- 2. Squaring and rescaling makes columnwise sum $pprox \chi_1^2$
 - a. Rescaling is done using exact variance
 - b. Covariances of T_k use $\operatorname{Cov}\left[X_{jk}, X_{li}\right]$.

- c. Properly rescaled, $S = \sum_k T_k^2/c_k \sim \chi_{K-1}^2$
 - i. Since $\sum_k T_k = 0$, the T_k are not independent.
- d. S gives test of H_0 independence vs. H_A : some rows have column probabilities putting more weight on higher columns than low rows
- 3. Some alternative existing procedures.
 - a. Treating this as standard least—squares regression gives you reasonable SE for test statistic
 - i. Regresssing scores on 0 and 1 gives standard two—sample pooled $\,t\,$ test
 - ii. Squaring $\hat{\beta}/{\rm SE}$ gives χ_1^2 statistic
- 4. Choice of score:
 - a. Additive constant washes out of test statistic when one subtracts expectation.
 - b. Spacing washes out of test statistic when one divides by the standard error.
 - c. By default these are equally spaced
 - d. Alternatively, one can use $Ridit\ scores\ u_k = [\sum_{i < k} X_{i+} + (X_{k+} + 1)/2]/X_{++}$

- i. Gives Mann–Whitney–Wilcoxon test
- ii. Interpret test statistic as estimated probability that a random individual from one group scores higher than random individual from the other.
- 5. Ordered row and column categories
 - a. Give scores for second dimension as well $\,v_k\,$
 - b. Called Mantel-Haenszel test.
 - c. When J=2 or K=2 , called $Cochran-Armitage\ test$. R Code SAS Code
 - i. this is the same as the previous example, with any second dimension scores
 - d. Test is a multiple of correlation betw. row and column scores (1 for column $\,k$, and 0 for all other colums):
 - e. Calculate $T = \sum_{k} v_k T_k = \sum_{j=0}^{K-1} \sum_{k=0}^{J-1} v_k u_j (X_{jk} E_{jk})$
 - f. Multiple of correlation betw. row and column scores
 - g. Squaring and rescaling makes it $pprox \chi_1^2$
 - i. T gives test of H_0 independence vs. H_A : higher rows have column probabilities putting more weight on higher columns than low rows

51

ii. Since $\sum_k T_k = 0$, the T_k are not independent. R Code SAS Code

- IV. Controling for additional variables
 - A. Introduction
 - 1. Additional variable provides an alternative explanation for association between disease and exposure
 - a. Add superscript i to tell which table
 - b. Phenomenon is called *confounding*.
 - c. Definition: distortion of disease/exposure association by other factor
 - i. Other factor related to exposure

$$C \to D$$

- ii. Other factor causally related to disease $\,E\,$
- d. Can change direction of relationship: Simpson's Paradox (See example)

e. Define the effect of exposure to be that with everything else held constant.

2. Definitions

a. Split contingency table into separate tables defined by confounder

- b. Separate odds ratios are called $conditional\ odds\ ratios$
- c. Over-all odds ratio is called $marginal\ odds\ ratio$
- d. If distribution of exposure and disease are independent in each separate table, they are $conditionally independent \iff$ conditional odds ratios are all 1.
- e. If conditional odds ratios are all the same, association between disease and exposure is homogeneous, even if the common odds ratio is not 1.

3. Example

- a. Aspirin is associated with stomach upset
- b. Does aspirin cause stomach upset?
- c. Alternative explanation: stress causes
 - i. stomach upset
 - ii. diseases like headaches for which aspirin is likely treatment.
- d. Direction of causation not indicated in an observational study

B. Common odds ratios

- 1. Testing common odds ratio
 - a. Hypotheses:
 - i. Null hypothesis: all tables have a common odds ratio $\,1\,$
 - ii. Alternative hypothesis: All tables have a common odds ratio that is not 1.

b. Use
$$T = \sum_{i=1}^{I} w_i (X_{11}^i - E_{11}^i)$$

- i. Intuition might suggest $w_i = 1/\sqrt{\mathrm{Var}\left[X_{00}^i|\mathrm{margins}\right]}$
- ii. We will use $w_i = 1$
- iii. Use as standard error sum of exact variances.
 - Implies assumption that tables are independent.
- c. Called Mantel-Haenszel test.
- d. Is a score test for the stratified binomial model. R Code SAS Code

2. Estimation of the common odds ratio

a.
$$Mantel-Haenszel\ estimator\ \hat{\theta} = \frac{\sum_{i=1}^{I} X_{00}^{i} X_{11}^{i} / X_{++}^{i}}{\sum_{i=1}^{I} X_{10}^{i} X_{01}^{i} / X_{++}^{i}}$$

i. ∞ only if all bottom products are 0

b. logit estimator

$$\hat{\theta} = \exp\left(\frac{\sum_{i=1}^{I} w_i \log(X_{00}^i X_{11}^i / [X_{10}^i X_{01}^i])}{\sum_{i=1}^{I} w_i}\right)$$

i.
$$w_i = \left(\frac{1}{X_{00}^i} + \frac{1}{X_{01}^i} + \frac{1}{X_{10}^i} + \frac{1}{X_{11}^i}\right)^{-1}$$

- ii. Omit term i if $X_{jk}^i=0$ for some j,k
 - $\bullet \quad w_i = 0$
 - ullet Corresponding logit will be ∞
 - Acceptable since $\lim_{x\to 0} x \log(x) = 0$
 - Alternative method is to add a bit to zero counts.
- iii. This w_i minimizes variance
- iv. SE of $\log(\hat{\theta})$ is $1/\sqrt{\sum_j w_j}$