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A:2.4

3. Testinginthe General case ( J or K greaterthan?2.)
a. Score statistic in this case is Pearson Statistic
i. Calculate expected values E; = X, X /X1
ii. Asinone-dimensional case, T' = ij—ol Zé(:_ol(ij —
Ey;)?/Ey; .
ii. 1"~ X%K—l)(J—l) (approximately) for all models, under null:
e Independent Poisson
e J x K category multinomial
e Separate multinomials
> either by row or by column
e Generalization of hypergeometric (to be shown below).
iv. Same requirement of expectations > 5.
v. Under hypothesisfor 0;; # 1,
o EnLy/(EroLor) =0y,,and Ejy = X Ej=X;.
e No closed-form solution.

vi. Notethat 7" and refererence distribution do not depend on

which variable you make rows, and which you make columns.

4. J=K =2
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A:22.1

a. Square of proportion differences coincids with the Pearson
statistic.
i. Z? =T for Z thestandard normal theory test statistic and
T =3 k(Xji — Erj)?/Ep;j.
Il. since
Z* = (710 — 7ATOO>/\/7ATO7A71/X+O + o1/ X 1)? ~ i

X1 X X
_ ++A04+A 1+ (XOO/XO+ . XlO/X1+>2
X40X41
X4+ Xgr X
St e o e (XQQ(l/XQ_|_ + 1/X1+> — X+O/X1+>2
X40X 41
_ X Xop Xy

(XooX1+/[Xos:X14] — X0/ X14)°
X10X 41

= (Xgo — Eoo)*

I, FOI’ Ek] = Xj+X+k/X++

v. For v = (X1 X4 X X14) 71 X2,
Xt Xt Xt Xt

XpoXor  XpoX14 X Xop X Xqg

:ZEk_jl

v. Working backwards through the above calculations, v is

inverse of variance of Xy — Ejy

vi. Keepinmindthat Ej israndom.
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vii. Note (X},; — Ej;j)* isthe same for all pairs i, ;j

viii. Use x? test statistic as before: T = Z},k:O(ij —
Eyj)?/ Ex;
e Expectationsatisfies £/, = X;, E ., = X1, (3
5. Conditional Moments of Cell Counts
a. WOLOG calculate moment sfor first row and column.
b. Eg—1 {X]’Mmargins} = X, X/ X1
. E[Xoo|margins| = Z?(;%fgﬁxféogjom ) 00P [Xoo =
ii. Remove termwith zgy = 0
lii. Cancelfactors xg in numerator and denominator.
iv. Reparameterizesumto y = xgg — 1.
v. Notethattermsare X (X /X timeshypergeometric
probabilities with one fewer observations in first row and

column.

(X =X ) X X (X =X )
X5 (X11-1)

i. Consider E [Xyo(Xgg — 1)|margins]

c. Varg_; {Xjk|margins} =

ii. Treatasin E [X(|margins|, except now cancelling two factors

in numerator and denominator.
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iii. Use Var | Xgg|margins] = E [Xo(Xog — 1)|margins| +

E [Xoo|margins| — E [Xgo|margins|”
d. For j # ¢, Cov {Xjkxgk} — X X X (X —
X /(X2 Xy — 1)
i. Already know Var {Xj }

ii. Summation trick gives covariances for two entries in the same

column.
o Var {Xjk + ng,} = (Xjy + X ) (X — X5 —
X)X (X — X)) /(X2 (X — 1)
e Cov [Xjk,ng} — (Var {Xjk—l—ng} ~ Var [Xj } -
Var [ng} )/2
e. For m # k, Cov | X, Xjom| = =X p Xom X4 (Xoq —
Xj)/ (X3 (Xpq = 1)
I. by symmetry.
f Forj # ¢,k # m, Cov [ijxgm} —
X+kX+ij+X€+/<X42r+<X++ —1))
I. Expanding Var {Xz-j + X+ Xpj + Xkl} gives equation for
Cov [Xz'jan:l} + Cov {ijaXil} .

e [ hesetwo covariances are the same, but | don't see how to
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show this symmetry without brute-force calculation.

ii. Without loss of generality,take k =j=1andt1=1=2.

lii. For y and z three-component vectors of non-negative

integers, let

o Aly,z) = {(z00;---.m22)|wij > 0,37 gxij =
Yy Vj, Z?:O Tij = ZZ'\V/’L}.

o B(y,z) = {(z00,--.,x2)|rij = 0,211 > 1,290 >
1 ZZ 0Tij = YV, ZJ 0Tij = 2 Vi}

* c(y,z)= ZmGA(y,z) szzo H?:O _—

iv. Notethat
X yo'y1lyo!zo!21 20!
P [ij = Ty VZ,]] = > . 1
(o + 1+ y2)! TTi— [ T—g ;!
e Then c(y, z) — (yo+y1+y2)!

Yo'y1'yalzplzrlzo!
e let e; bethethree-component vector of all zeros except for 1

in component ¢ .

] Then ZweA(y,z) Zﬁxm()%] IS
J
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> 1
N zoonlzin'zonlzni (11 — D)lzorlzool o (299 — 1)!
v Bly.z) P00 T101720 o1/ (11 — Dlzoglzpelzol(zon — 1)
S > :
B xoo! - - - 199!
zEAly—e—eyz—e —ey) 2

=cly—e —eyz—e —ey)
o E[X11 X=X X 1 X0y X o/ (X4 (Xpy — 1))

6. Use covariances to build correct quadratic form.

a. Define standardized quantities.
Y= (X — X X/ X VX — 1/ /X Xy
i B =Xt/ Xi+
i, ;= \/X+j/X++
iv. 9;; =1ifi=7j and ( otherwise.
b. Cov Y, Yiu| = (04, — BiBe) (051 — 1)
c. Inmatrixterms, Cov |V, Yy| = (I — B'B) (I —-~")

I. Operator ® represents Kronecker product.

d. Hence covariance matrix for standardized cell counts is
Kronecker product of matrices with same form as variance

matrices for one-dimensional multinomial counts.

I. Presumesthat
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e thematrix Y;; isturned into a vector,

e four-dimensional variance array compacted to two

dimensions.
e. Take (generalized) inverse by inverting separate factors.

7. Here we approximate discrete distribution by continuous

distribution
a. Probability of observed outcome must be added to the p value
b. Ontheraw obsscale, the lump haswidth 1
c. Again move upper corner by % before calculating 1T
d. Normal approx. works poorly unless £}.; > 5Vj, k. See Fig. 10.
e. Unbalanced example. See Fig. 11.
8. Example of Eliminating Tables through Conditioning
a. Observe table with 1,1 on diagonal, 0 elsewhere:

I. Sample space:

coo0o 1011 011 000 000 20)2
coo0o o000 OO0 1011 011 O0O|O
coo0o 101 011 101 011 202
022 000 000 1112 101 101
co00 202 022 000 101 011
022 202 022 112 2012 112
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Fig. 10: Approximations to the Hypergeometric Distribution

19 T
0.8 —  Exact
/o -+ Normal
[ Approx.
0.6 Shifted
[ by Half
CDF
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Table Corner
Row margins are 10 , 10 and column margins are 10 , 10
011 01/]1 000 303 033 000
101 011 11/]2 000 OO0 303
112 022 11|12 303 033 303
000 2113 202 2012 123
033 000 101 011 000
033 213 303 213 123

b. Removed tables with total not 2, moving fromOto 1,

C. , moving from 1 to 2.
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Fig. 11: Approximations to the Hypergwmetmc Distribution
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Table Corner

Row margins are 20 , 10 and column margins are 10 , 20

d. Removed tables with column totalsnot 1,1, moving from 2 to 3.

""RCode:SAS Code

A:2.3.3
9. Likelihood ratio
a. L(#) is probability for table as function of 4

b. Comparevalueat 1 to highest value it takes
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C.

d.

2 x log(L) ~ x?

Stratified cohort study (ie., condition on row totals).

. Estimate 7; under Hyas7; = X ;/ X4 .

A:25

D. Ordered rows, unordered columns

1. Test using scores.

d.

. Calculate columnwise sum T} = Zj(:f)l wi (X, — Ejp)

Test null hypothesis of equality of distribution using sum of
squared columwise score statistics.
Rows scored to reflect ordering.

Assign row j ascore

J J

E [Tk] =0.
Variance of scored statistic uses conditional covariances of

table entries: Var [T}.] =

( 2\
K—1 K-1
(Xt — X ) Xy 3y u2_Xj+ - Y u& >
Xit(Xpr =) ) i X D R
\ Y

2. Squaring and rescaling makes columnwise sum = X%

a. Rescalingis done using exact variance

b. Covariances of 7T}. use Cov {X s Xh} .

J
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c. Properlyrescaled, S = >, T]E/Ck ~ X5

i. Since > .1} = 0, the T}, are notindependent.

d. S givestestof H( independencevs. H 4 : somerows have

column probabilities putting more weight on higher columns

than low rows
3. Some alternative existing procedures.

a. Treatingthis as standard least—squares regression gives you

reasonable SE for test statistic

i. Regresssing scoreson 0 and 1 gives standard two—sample

pooled ¢ test
ii. Squaring B/SE gives X% statistic
4. Choice of score:

a. Additive constant washes out of test statistic when one

subtracts expectation.

b. Spacing washes out of test statistic when one divides by the

standard error.
c. Bydefault these are equally spaced

d. Alternatively, one can use Ridit scores uj, =

D ek Xiv + (Xgp +1)/2]/ X544
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i. Gives Mann—Whitney—Wilcoxon test

ii. Interpret test statistic as estimated probability that a random
individual from one group scores higher than random individual
from the other.

5. Ordered row and column categories

a. Give scores for second dimension as well vy,
b. Called Mantel-Haenszel test.
c. When J = 2 or K = 2, called Cochran—Armitage test. r

r"TCode SAS Code

I. thisis the same as the previous example, with any second

dimension scores

d. Testisa multiple of correlation betw. row and column scores (1

for column &, and 0 for all other coluns):
e. Calculate T'= >, v. 1) = Z Zk 0 vku]( ik — Ej)
f. Multiple of correlation betw. row and column scores
g. Squaring and rescaling makes it ~ X%

i. T givestestof H( independencevs. H 4: higher rows have
column probabilities putting more weight on higher columns

than low rows


https://statweb.rutgers.edu/kolassa/960-553/l04.R.html#0.
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A:2.7-2.7.3
V. Controling for additional variables
A. Introduction
1. Additional variable provides an alternative explanation for
association between disease and exposure

a. Addsuperscript 7 to tell which table

b. Phenomenonis called confounding.

c. Definition: distortion of disease /exposure association by other

factor

I. Other factor related to exposure
C —D

!

ii. Other factor causally related to disease F
d. Canchange direction of relationship: Simpson’s Paradoz (See
example)
A:2.7.4-2.75
e. Definethe effect of exposure to be that with everything else held

constant.


https://statweb.rutgers.edu/kolassa/960-553/l04.R.html#0.
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2. Definitions

a. Split contingency table into separate tables defined by

confounder
b. Separate odds ratios are called conditional odds ratios
c. Over-all odds ratio is called marginal odds ratio

d. Ifdistribution of exposure and disease are independent in each
separate table, they are conditionally independent <=

conditional odds ratios are all 1.

e. If conditional odds ratios are all the same, association between
disease and exposure is homogeneous, even if the common odds

ratioisnot 1.
3. Example
a. Aspirinis associated with stomach upset
b. Does aspirin cause stomach upset?
c. Alternative explanation: stress causes
I. stomach upset
ii. diseases like headaches for which aspirin is likely treatment.

d. Direction of causation not indicated in an observational study

A:2.7.6
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B. Common odds ratios

1. Testing common odds ratio
a. Hypotheses:
I. Null hypothesis: all tables have a common odds ratio 1

ii. Alternative hypothesis: All tables have a common odds ratio
thatisnot 1.
A:43.4

b. Use T = S°L_ wy(X?, — Ei))

i. Intuition might suggest w; = 1/\/Var [ 8O\margins]
ii. Wewilluse w; =1
lii. Use asstandard error sum of exact variances.

e |mpliesassumption that tables are independent.

c. Called Mantel-Haenszel test.

Al:3.2.3

2. Estimation of the common odds ratio

/ o .
YL XXy /X
>i=1 X10X01/ X4+
i. oo onlyif all bottom products are 0

a. Mantel-Haenszel estimator § =
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b. logit estimator

; o o
b= exp ( i—1 Wi 10g(X80X%1/[Xf0X51])>
= i

Zizlwi

1 1 1 I \—1
. — 4+ =+ =)
Xoo  Xo1 X0 X

ii. Omitterm i if X;.k = () forsome j, k

Low; = ( +
o w; =0
e Corresponding logit will be oo
e Acceptablesince lim,_,xlog(x) =0
e Alternative method is to add a bit to zero counts.
lii. This w; minimizes variance

iv. SEof log(0) is 1/4/>_;w;

04




