## A: 8.3-8.4

## X. Symmetry Models for Square Tables

## A. Introduction

- 1. Two-Way Setup:
  - a.  $X_{jk}$  are independent  $P(\lambda_{kj}) \forall j, k \in \{0, 1, 2, \dots, J-1\}$
  - b. We are interested in hypotheses like  $\lambda_{j+} = \lambda_{+j} \, \forall j$ 
    - i. hypothesis is implied by  $\lambda_{jk} = \lambda_{kj} \, \forall j, k$
    - ii. Converse holds only of J=2
  - iii. Model under null hypothesis has  $\,\hat{\lambda}_{jk} = (X_{jk} + X_{kj})/2\,$
  - c. Let  $\eta_{jk} = \log(\lambda_{jk})$
  - $\mathsf{d.} \ \eta_{jk} = \beta_j^X + \beta_k^Y + \beta_{jk}^{XY}$
  - e. Symmetry holds if  $\operatorname{\mathbb{E}}\left[X_{jk}\right]$  are symmetric
- 2. Recall that model is over-parameterized
  - a. Fix by setting  $\beta^X_j=\beta^Y_k=0$
  - b. Fix by setting  $\beta_{j0}^{XY}=\beta_{0k}^{XY}=0$
  - c. Fix by setting contrasts to zero.
    - i. A contrast is a linear combination of model parameters that one either wants to estimate or to test whether they are zero.
  - d. Suppose that over-parameterization is fixed symmetricly.

## B. Test of symmetry

- 1. Parameterizing Alternatives to Symmetry
  - a. Set main effects to zero
  - b. Choose null hypothesis rates  $\,\lambda_{jk}^{XY0}\,$  satisfying  $\,\lambda_{jk}^{XY0}=\lambda_{kj}^{XY0}\,$  ,
  - c. For k>j , choose alternative hypothesis rates  $\lambda_{jk}^A=\lambda_{jk}^0\exp(+\delta_{jk}) \text{ and } \lambda_{kj}^A=\lambda_{kj}^0\exp(-\delta_{jk})$
- 2. Recall McNemar's test
  - a. Items categorized in table are pairs
    - i. Row represents category for one entry in pair
    - ii. Column represents category for other entry in pair
  - b. Pair identifier links pair entries.
  - c. Treatment/control status is represented by which measure gets put on which dimension (row or column)
- 3. The score statistic
  - a. Derivatives of log likelihood with respect to components of  $\,\delta\,$  are pair differences.

i. 
$$\ell = \sum_{j>k} [(\lambda_{jk}^0 \exp(+\delta_{jk})) X_{jk} - \lambda_{jk}^0 \exp(+\delta_{jk}) + (\lambda_{kj}^0 \exp(-\delta_{jk})) X_{kj} - \lambda_{kj}^0 \exp(-\delta_{jk})]$$

Lecture 10 98

ii. For 
$$j>k$$
, 
$$\frac{d}{d\delta_{jk}}\ell=[(\lambda_{jk}^0\exp(+\delta_{jk}))X_{jk}-\lambda_{jk}^0\exp(+\delta_{jk})-(\lambda_{kj}^0\exp(-\delta_{jk}))X_{kj}+\lambda_{kj}^0\exp(-\delta_{jk})]$$

iii. For 
$$j>k$$
,  $\delta_{jk}=0$ , 
$$\frac{d}{d\delta_{jk}}\ell=[\lambda_{jk}^0X_{jk}-\lambda_{jk}^0-\lambda_{kj}^0X_{kj}+\lambda_{kj}^0]=\lambda_{jk}^0(X_{jk}-X_{kj})$$

- b. Null variance is  $\operatorname{Var}_0\left[X_{jk}-X_{kj}\right]=2(\lambda_{jk}^0)^2$  .
- c. Score standardized to unit variance is  $(X_{jk}-X_{kj})/\sqrt{2\lambda_{jk}^0}$
- d. With MLE of nuisance parameters inserted,  $(X_{jk}-X_{kj})/\sqrt{X_{jk}+X_{kj}}$
- 4. Assembling components of the score statistic.
  - a. Note that score vector components are independent
  - b. Get overall score statistic using  $\sum_{j>k}(X_{jk}-X_{kj})^2/(X_{jk}+X_{kj})$  ,  $\sim \chi_m^2$ 
    - i. m = J(J-1)/2 if no denominators are zero
    - ii. m = number of nonzero denominators more generally.
  - c. Called Bowker's test for symmetry.
  - d. Reduces to McNemar's test when J=2 . R Code SAS Code
- C. Test of quasi-symmetry:
  - 1. Definition of quasi-symmetry

Lecture 10 99

- a. Allow potentially different main effects
  - i. Use some technique to remove redundant interactions
  - ii. Let level 0 be baseline.
- iii. Intercept is  $\eta_{00}$

iv. 
$$\beta_i^X = \eta_{i0} - \eta_{00}$$

v. 
$$\beta_j^Y = \eta_{0j} - \eta_{00}$$

vi. 
$$\beta_{ij}^{XY} = \eta_{ij} - \eta_{0j} - \eta_{i0} + \eta_{00}$$

b. Null hypothesis interactions are symmetric:

i. 
$$\lambda_{jk}^{XY} = \lambda_{kj}^{XY} \, \forall i, j > 0$$
.

c. This  $H_0$  implies certain constraints:

i. Implies 
$$\eta_{ij} - \eta_{0j} - \eta_{i0} + \eta_{00} = \eta_{ji} - \eta_{0i} - \eta_{j0} + \eta_{00} \, \forall i, j > 0$$

ii. Clearly holds for i=0 or j=0 as well.

iii. Implies 
$$\eta_{ij} - \eta_{0j} - \eta_{i0} = \eta_{ji} - \eta_{0i} - \eta_{j0} \, \forall i, j$$

iv. Implies

$$\eta_{ij} - \eta_{ji} = \eta_{0j} + \eta_{i0} - \eta_{0i} - \eta_{j0} \,\forall i, j \tag{4}$$

- v. Easy to check that these constraints imply  $\,H_0\,.$
- 2. Testing quasi-symmetry
  - a. One can test quasi-symmetry using either Wald, score, or generalized likelihood ratio

- b. When testing  $H_0$ : quasi-symmetry, vs.  $H_A$ : general alternative, DF = (J-1)(J-2)/2.
- c. Does this depend on which group is baseline?
  - i. Pick another baseline group b.

ii. 
$$\eta_{ij} - \eta_{bj} - \eta_{ib} - \eta_{ji} + \eta_{bi} + \eta_{jb} = 0$$
?

- iii. Replace coefficients with both indices not known to be zero by(4).
- iv. No.
- d. No serious simplification for test. R Code SAS Code

A: 8.3

- D. Other Square Table Tests
  - 1. Test of marginal symmetry
    - a. Marginal Symmetry Definition
      - i. Condition is that  $\lambda_{j+} = \lambda_{+j} \, \forall j$
      - ii. Summation is on raw scale rather than log scale
    - iii. This is not a typical contrast
    - iv. Need model fitter allowing for nonlinear constraints. SAS Code R Code

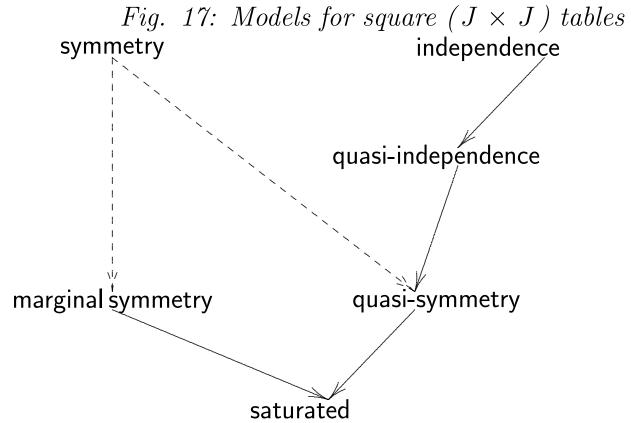
Lecture 10 101

- 2. Test of quasi-independence
  - a. Definition of quasi-independence: Saturated model with off-diagonal interactions zero.
    - i. Level of one variable contains information about whether the other variable takes this value.
    - ii. Conditional on other variable not taking value of first variable, the first variable has no information about which remaining value of second occurs.
  - iii. Fit using Poisson regression with contrasts. R Code SAS Code
- E. Summary of tests
  - 1. Summary of tests for two ariables with identical categories
    - a. Various of these null hypotheses are nested.
    - b. Figure 17/ displays test relationships.
- F. Measures of association

Brown: 5.3

- 1. Correlation of underlying latent variable
  - a. Called Polychoric Covariance
  - b. assuming underlying multivariate normal model
  - c. Ordered categorical variables are deetermined by making

Lecture 11 102



multivariate normals discrete.

d. fitting cutpoints and correlation via maximum likelihood

i. Likelihood 
$$\prod_{j=0}^{J-1} \prod_{k=0}^{K-1} (\Phi((\tau_{j+1}, \upsilon_{k+1}), \rho) - \Phi((\tau_{j}, \upsilon_{k+1}), \rho) - \Phi((\tau_{j+1}, \upsilon_{k}), \rho) + \Phi((\tau_{j}, \upsilon_{k}), \rho))^{X_{jk}}$$

ii. 
$$\tau_0 = v_0 = -\infty$$

iii. 
$$\tau_J = v_K = \infty$$

iv.  $\Phi((\tau_j, \upsilon_k), \rho))$  represents bivariate normal CDF with mean  ${\bf o}$ , unit variances, and correlation  $\rho$ . SAS Code R Code