Lecture 10
A:8.3-8.4

X. Symmetry Models for Square Tables
A. Introduction
1. Two-Way Setup:
a. X areindependent P(\;;)Vj, k € {0,1,2,...,J — 1}
b. We areinterested in hypotheses like A;; = A, ;Vj
. hypothesisisimplied by A = Ap; Vj, k
ii. Converse holdsonlyof J = 2

iii. Model under null hypothesis has S\jk = (X + Xi;)/2

c. Let i = log(Aj)

d. njp =B} + B + 85"

e. Symmetry holdsif E {Xjk} are symmetric
2. Recall that model is over-parameterized

a. Fix by setting ﬁj-X = ﬁ}f/ =0

b. Fix by setting 53)-6}/ = 6(‘))]?/ =0

c. Fix by setting contrasts to zero.

I. A contrastis alinear combination of model parameters that

one either wants to estimate or to test whether they are zero.

d. Suppose that over-parameterization is fixed symmetricly.
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B. Test of symmetry

1. Parameterizing Alternatives to Symmetry
a. Set main effects to zero

b. Choose null hypothesis rates )\XYO satisfying )\XYO )\XYO,

c. For k > j,choose alternative hypothesis rates
)‘]k = )\Ok exp(+0;1) and )\A = )‘k] exp(—dk)
2. Recall McNemar's test
a. ltems categorized in table are pairs
i. Row represents category for one entry in pair
ii. Column represents category for other entry in pair
b. Pairidentifier links pair entries.

c. Treatment/control status is represented by which measure gets

put on which dimension (row or column)
3. Thescore statistic

a. Derivatives of log likelihood with respect to components of 9 are

pair differences.

i £ = Zj>k[< keXp<+5]k:>) gk — )\lexp(+5jk)—|—
(AL exp(—0)3) X1 — AL exp(—0)]
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i. Forj > k, @6 = [(Agk exp(+01)) X1 —
Nk exp(+073) — (A exp(=85)) Xy + A exp(~p)
. d 0 0 0
iii. For 7 >k, (5]']{7 =0, @f = [)\ijjk - Ajk B )‘ijk:j +

0 0
Akl = AKXk — Xi5)
b. Nullvarianceis Var [Xjk — Xk]} = 2(A(J)-k)2.
c. Scorestandardized to unit varianceis (X5, — X};)/, /2)\%
d. With MLE of nuisance parameters inserted, (Xj —

ij)/\/Xjk: + Xy

4. Assembling components of the score statistic.

a. Note that score vector components are independent
b. Getoverall score statistic using Zj>k(Xjk — ij)z/(Xjk +
Xki) o ~ Xim
i. m=J(J—1)/2 if nodenominators are zero
ii. m = number of nonzero denominators more generally.
c. Called Bowker’s test for symmetry.
d. Reducesto McNemar'stest when J = 2 . :Rodé:SAS Tode
C. Test of quasi-symmetry:

1. Definition of quasi-symmetry


https://statweb.rutgers.edu/kolassa/960-553/l10.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.sas.html#0.
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a. Allow potentially different main effects

i. Use some technique to remove redundant interactions
ii. Letlevel O be baseline.
lii. Interceptis ngo
iv. B =m0 — noo
v. BY =mn; — oo
e j
vi. B33 = mij — moj — mio + 700
b. Null hypothesis interactions are symmetric:
- XY _ XY\
I )‘jk = )‘kj Vi, 7 > 0.
c. This H( implies certain constraints:
1. Implies 7;; —n0; —ni0+ 100 = M5 — M0i —Nj0+ 100 Vi, J > 0
ii. Clearly holdsfor i = 0 or 5 = 0 aswell.
i, Implies ;5 — 105 — nio = M55 — Moi — M0 Ve, J
iv. Implies
Nii — Nji = Moj + Mio — Moi — 10 Vi, J (4) =~
v. Easytocheck that these constraints imply Hj,.
2. Testing quasi-symmetry

a. One can test quasi-symmetry using either Wald, score, or

generalized likelihood ratio
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b. When testing H(: quasi-symmetry, vs. H 4 : general

alternative, DF = (J — 1)(J — 2)/2.
c. Doesthisdepend on which group is baseline?
i. Pick another baseline group b.
i M — My — Mip — Nji + My +Mjp =07
lii. Replace coefficients with both indices not known to be zero by
(4).
iv. No.

A:8.3
D. Other Square Table Tests
1. Test of marginal symmetry
a. Marginal Symmetry Definition
i. Conditionisthat A\j; = A ; V)
li. Summation is on raw scale rather than log scale

iii. Thisisnot atypical contrast

A:85.3


https://statweb.rutgers.edu/kolassa/960-553/l10.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.R.html#0.
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2. Test of quasi-independence

a. Definition of quasi-independence: Saturated model with
off-diagonal interactions zero.
i. Level of one variable contains information about whether the
other variable takes this value.
ii. Conditional on other variable not taking value of first variable,

the first variable has no information about which remaining
value of second occurs.
lii. Fit using Poisson regression with contrasts. iR Cods SAS Tode
E. Summary of tests
1. Summary of tests for two ariables with identical categories
a. Various of these null hypotheses are nested.
b. Figure 17/ displays test relationships.

F. Measures of association

Brown: 5.3
1. Correlation of underlying latent variable
a. Called Polychoric Covariance
b. assuming underlying multivariate normal model

c. Ordered categorical variables are deetermined by making


https://statweb.rutgers.edu/kolassa/960-553/l10.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l10.sas.html#0.
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Fig. 17: Models for square (J x J ) tables
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d. fitting cutpoints and correlation via maximum likelihood
. Likelihood TT7= Ty (®((7j 11, V41, p) —
O((75, vg41)s p) — PU(Tj41, vg)s p) + (75, Vg ), p))

I, ) = V) = —O

X
i T] = VK =&
iv. ®((7,vy),p)) represents bivariate normal CDF with mean o,

unit variances, and correlation p. :SAS CodeR"Cudéa

____________________
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