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A: 8.5.5

2. Measure reliability using proportion of agreement.

a. Excess of observed proportion agreeing over pe =
∑

i πi+π+i=

expected under independence.

i. Expectation same as for χ2 test

ii. All divided by itsmaximal value 1− pe

iii. Result is called kappa statistic. R Code

:

G. Reliability

1. Reliability Question

a. Do variousmeasurements (items) contributing to scale all

measure the same thing?

2. Notation:

a. I items over all.

b. Xji is measurement of item i from subject j

c. Xj· =
∑I

i=1Xji

d. si is standard deviation of item i , with σi the population

version

e. s· is standard deviation of total, with σ· the population version

https://statweb.rutgers.edu/kolassa/960-553/l11.R.html#0.
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3. In this context, redundant variables are a good sign.

a. If Xji are independent, Var
[

Xj·
]

=
∑I

i=1Var
[

Xji
]

b. If Xji are exact copies of one another, Var
[

Xj·
]

=

I2Var
[

Xji
]

∀i .

c. More generally, Var
[

Xj·
]

=
∑I

i=1Var
[

Xji
]

+
∑I−1

i=1

∑I
ℓ=i+1 Cov

[

Xji, Xj,ℓ

]

d. Themore the items contain redundant information, the smaller

is
∑I

i=1Var
[

Xji
]

/Var
[

Xj·
]

e. If variables are negatively correlated, chance teh sign of these

items.

i. Otherwise summation cancels data out.

4. Measure reliability

a. Use 1−
∑I

i=1Var
[

Xji
]

/Var
[

Xj·
]

i. By same reasoning as for dividing by n − 1 rather than n for

the SD, rescaled by I/(I − 1)

ii. Generally replace σi and σ· by si and s· resp.

b. Define Cronbach’s α = I
I−1(1−

∑I
i=1 s

2
i/s

2
· )

i. Also called Guttman’s γ3 , K-R 20, etc.

c. A collection ofmeasurementsmightmeasure the same thing,
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butmight be on different scales.

i. In this case, apply alpha to the standardized values

ii. There’s amore direct formula in terms of the correlations. R

Code

A: 5.4.6

XI. ExactMethods

A. Contingency tables:

1. Model:

a. Xij ∼ P(λij)

b. log(λij) = µ + αi + βj + γij

c. α0 = 0 , β0 = 0 , γi0 = γ0j = 0∀i, j .

d. H0 : γij = 0∀i, j vs. HA : γij 6= 0 for some i, j .

2. Test statistics:

a. Score statistic is Pearson χ2 : T =
∑

i,j(Xij −

Xi·X·j/X··)
2/(Xi·X·j/X··) .

b. LR statistic

c. Fisher’s statistic 1/P [X ]

3. Remove effect of unknown parameters:

a. Remove αi by conditioning on Xi·

https://statweb.rutgers.edu/kolassa/960-553/l11.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l11.R.html#0.
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i. Reduces I × J independent Poisson variables to J

independentmultinomials, eachwith I bins.

ii. Xi· are exactly ancillary

iii. Little loss due to discreteness

b. Remove βj by conditioning on X·j

i. Reduces J independentmultinomials, eachwith I bins, to

generalized geometric

ii. Probabilities are (
∏I

i=1 xi·!)(
∏J

j=1 x·j!)/(x··!
∏I

i=1
∏J

j=1 xij!)

iii. Violates conditionality principal: column totals are not

ancillary

iv. Bigger problem: discreteness

4. Computation

a. Either enumerate all tables, and calculate probabilities

straight–forwardly, or

b. (Pagano andHalvorsen, 1981) calculate recursively

i. P [X11 = x11|X1·, X·1, X··]

=
x1·!x·1!(x·· − x1·)!(x·· − x·1)!

x··!x11!(x·1 − x11)!(x1· − x11)!(x·· − x1· − x·1 + x11)!
ii. Probabilities do not depend on other aspects of conditioning

event.
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iii. Hence same expression holds for P

[

X11 = x11|Xi·, X·j∀i, j
]

iv. P [X21 = x21|X11 = x11, X1·, X·2, X·1, X··]

= x2·!(x·· − x1· − x2·)!(x·1 − x11)!(x·· − x2· − x·1 + x11)!/

[(x·· − x1·)!x21!(x·1 − x11 − x21)!(x2· − x21)!

× (x·· − x1· − x·1 − x2· + x11 + x21)!]

v. More generally, split table into 9 bits, some possibly

empty:





∗ ∗ ‡
∗ Xij †
∗ † †





• Condition on all marginals of collapsed table, and on totals

marked ∗ .

• ‡ cell fixed by conditioning event as well

• Result is hypergeometric distribution with rows and columns

containing † .

• As before, collapse over rows and columns containing † to

obtain a hypergeometric distribution from 2× 2 table.

• Hence P
[

X = x|X·j = x·j∀j,Xi· = xi·∀i
]

=
∏

ij pij for

hypergeometric probabilities pij . SAS Code R Code R Code

A: 5.4.4–5.4.5

B. Logistic Regression

1. The Logistic RegressionModel andNotation

https://statweb.rutgers.edu/kolassa/960-553/l11.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l11.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l11.R.html#0.
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a. Xj ∼ Bin(exp(zjθ)/(1 + exp(zjθ), nj)

b. T = Z
⊤
X

c. Probabilities exp(t⊤θ −
∑

j nj log(1 + exp(zjθ))c(t) , for

i. c(t) the number of x vectors with Z
⊤
x = t .

2. Conditional probabilties

a. Calculate these to remove effect of parameter not of immediate

interest.

b. T = (U ,V ) , θ = (ω, τ )

c. P [V = v|U = u] = c(u,v) exp(vτ )/
∑

v c(u,v) exp(vτ )

d. Allows construction of null distribution for tests of τ without

knowing ω .
11


