A: 8.5.5

- 2. Measure reliability using proportion of agreement.
 - a. Excess of observed proportion agreeing over $p_e = \sum_i \pi_{i+} \pi_{+i} =$ expected under independence.
 - i. Expectation same as for χ^2 test
 - ii. All divided by its maximal value $1 p_e$
 - iii. Result is called kappa statistic. R Code
- G. Reliability
 - 1. Reliability Question
 - a. Do various measurements (items) contributing to scale all measure the same thing?
 - 2. Notation:
 - a. I items over all.
 - b. X_{ji} is measurement of item i from subject j
 - c. $X_{j.} = \sum_{i=1}^{I} X_{ji}$
 - d. s_i is standard deviation of item i , with σ_i the population version
 - e. s_{\cdot} is standard deviation of total, with σ_{\cdot} the population version

- 3. In this context, redundant variables are a good sign.
 - a. If X_{ji} are independent, $\operatorname{Var} \left[X_{j.} \right] = \sum_{i=1}^{I} \operatorname{Var} \left[X_{ji} \right]$
 - b. If X_{ji} are exact copies of one another, $\operatorname{Var} [X_{j.}] = I^2 \operatorname{Var} [X_{ji}] \forall i$.
 - c. More generally, $\operatorname{Var} [X_{j.}] = \sum_{i=1}^{I} \operatorname{Var} [X_{ji}] + \sum_{i=1}^{I-1} \sum_{\ell=i+1}^{I} \operatorname{Cov} [X_{ji}, X_{j,\ell}]$
 - d. The more the items contain redundant information, the smaller is $\sum_{i=1}^{I} \operatorname{Var} [X_{ji}] / \operatorname{Var} [X_j]$
 - e. If variables are negatively correlated, chance teh sign of these items.
 - i. Otherwise summation cancels data out.
- 4. Measure reliability
 - a. Use $1 \sum_{i=1}^{I} \operatorname{Var} \left[X_{ji} \right] / \operatorname{Var} \left[X_{j.} \right]$
 - i. By same reasoning as for dividing by $n-1\,$ rather than $\,n\,$ for the SD, rescaled by $\,I/(I-1)\,$
 - ii. Generally replace σ_i and σ . by s_i and s. resp.
 - b. Define Cronbach's $\alpha = \frac{I}{I-1}(1 \sum_{i=1}^{I} s_i^2/s_{\cdot}^2)$
 - i. Also called Guttman's γ_3 , K-R 20, etc.
 - c. A collection of measurements might measure the same thing,

but might be on different scales.

- i. In this case, apply alpha to the standardized values
- ii. There's a more direct formula in terms of the correlations. ${\rm R}$ $_{\rm Code}$
 - A: 5.4.6

- XI. Exact Methods
 - A. Contingency tables:
 - 1. Model:
 - a. $X_{ij} \sim \mathsf{P}(\lambda_{ij})$
 - **b.** $\log(\lambda_{ij}) = \mu + \alpha_i + \beta_j + \gamma_{ij}$
 - c. $\alpha_0=0$, $\beta_0=0$, $\gamma_{i0}=\gamma_{0j}=0 orall i,j$.
 - d. $H_0: \gamma_{ij} = 0 \forall i, j \text{ vs. } H_A: \gamma_{ij} \neq 0 \text{ for some } i, j$.
 - 2. Test statistics:
 - a. Score statistic is Pearson χ^2 : $T = \sum_{i,j} (X_{ij} X_i \cdot X_{ij} / X_{\cdot \cdot})^2 / (X_i \cdot X_{\cdot j} / X_{\cdot \cdot})$.
 - b. LR statistic
 - c. Fisher's statistic $1/\mathsf{P}\left[\boldsymbol{X}\right]$
 - 3. Remove effect of unknown parameters:
 - a. Remove α_i by conditioning on X_i .

- i. Reduces $I \times J$ independent Poisson variables to J independent multinomials, each with I bins.
- ii. X_i . are exactly ancillary
- iii. Little loss due to discreteness
- b. Remove β_j by conditioning on $X_{\cdot j}$
 - i. Reduces J independent multinomials, each with I bins, to generalized geometric
 - ii. Probabilities are $(\prod_{i=1}^{I} x_i !)(\prod_{j=1}^{J} x_{.j}!)/(x_{..}! \prod_{i=1}^{I} \prod_{j=1}^{J} x_{ij}!)$
- iii. Violates conditionality principal: column totals are not ancillary
- iv. Bigger problem: discreteness
- 4. Computation
 - a. Either enumerate all tables, and calculate probabilities straight–forwardly, or
 - b. (Pagano and Halvorsen, 1981) calculate recursively

i.
$$\mathsf{P} \left[X_{11} = x_{11} | X_{1.}, X_{.1}, X_{.1} \right] \\ x_{1.}! x_{.1}! (x_{..} - x_{1.})! (x_{..} - x_{.1})!$$

 $-\frac{1}{x..!x_{11}!(x_{.1}-x_{11})!(x_{1.}-x_{11})!(x_{..}-x_{1.}-x_{.1}+x_{11})!}$

ii. Probabilities do not depend on other aspects of conditioning event.

iii. Hence same expression holds for $P[X_{11} = x_{11}|X_{i}, X_{j}\forall i, j]$

107

iv.
$$\mathsf{P} \left[X_{21} = x_{21} | X_{11} = x_{11}, X_{1.}, X_{.2}, X_{.1}, X_{.1} \right]$$

= $x_{2} ! (x_{..} - x_{1.} - x_{2.})! (x_{.1} - x_{11})! (x_{..} - x_{2.} - x_{.1} + x_{11})! /$
[$(x_{..} - x_{1.})! x_{21}! (x_{.1} - x_{11} - x_{21})! (x_{2.} - x_{21})!$
 $\times (x_{..} - x_{1.} - x_{.1} - x_{2.} + x_{11} + x_{21})!$]

- v. More generally, split table into 9 bits, some possibly empty: $\begin{pmatrix} * & * & \ddagger \\ * & X_{ij} & \dagger \\ * & \pm & \pm \end{pmatrix}$
 - Condition on all marginals of collapsed table, and on totals marked *.
 - ‡ cell fixed by conditioning event as well
 - Result is hypergeometric distribution with rows and columns containing [†].
 - As before, collapse over rows and columns containing \dagger to obtain a hypergeometric distribution from 2×2 table.
 - Hence P [X = x | X.j = x.j∀j, Xi. = xi.∀i] = ∏ij pij for
 hypergeometric probabilities pij. SAS Code R Code R Code

- B. Logistic Regression
 - 1. The Logistic Regression Model and Notation

- a. $X_j \sim \text{Bin}(\exp(\boldsymbol{z}_j \boldsymbol{\theta})/(1 + \exp(\boldsymbol{z}_j \boldsymbol{\theta}), n_j)$
- b. $oldsymbol{T} = oldsymbol{Z}^ op oldsymbol{X}$
- c. Probabilities $\exp(\boldsymbol{t}^{\top}\boldsymbol{\theta} \sum_{j} n_{j} \log(1 + \exp(\boldsymbol{z}_{j}\boldsymbol{\theta}))c(\boldsymbol{t})$, for
 - i. c(t) the number of \boldsymbol{x} vectors with $\boldsymbol{Z}^{ op} \boldsymbol{x} = \boldsymbol{t}$.
- 2. Conditional probabilties
 - a. Calculate these to remove effect of parameter not of immediate interest.

b.
$$oldsymbol{T} = (oldsymbol{U},oldsymbol{V})$$
 , $oldsymbol{ heta} = (oldsymbol{\omega},oldsymbol{ au})$

- c. $\mathsf{P}\left[\boldsymbol{V}=\boldsymbol{v}|\boldsymbol{U}=\boldsymbol{u}\right]=c(\boldsymbol{u},\boldsymbol{v})\exp(\boldsymbol{v}\boldsymbol{\tau})/\sum_{\boldsymbol{v}}c(\boldsymbol{u},\boldsymbol{v})\exp(\boldsymbol{v}\boldsymbol{\tau})$
- d. Allows construction of null distribution for tests of au without knowing ω .

11

108