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3. Laplace’'s method

a. Suppose that data arise as n independent and approximately
identically distributed observations
i. Treat £(0) = log(L(6)) as nt°(0)
e (° dependson n through the data
e Heuristically ignore this dependenceon n .
b. Wewant I4 = [, exp(nt°(0))w(0) do
c. Let 0 bethe MLE.

d. Do Taylor series approximation for £° and w(f)) separately.
Ty~ exp(nl®()) [, exp(nt® (0)(6 — 0)2/2)(1 +
nt®" (0)(0 — 0)3/3)(ww(0) + = (0)(0 — 0)) db
e. Reparameterize to remove sample size from exponent
i Let 9 = W@ 0) )/, cp = 02" (0)(—°" (5))73/2,
¢y = @ (0)(—"(8))"V/?/w(6) and A’ =

{(0—0)/+/—0°"(0)]0 € A} ..

i Then T4 ~c Y2ORWCONBO) | 9291 4
")

19 /(6y/n))(1 + co0//)) dv.

ii. Denominatoris I, o) = /i exp(nf°(0))eo(8)y/—¢"(6)/(2:
iv. Then P [0 < c|data] is approximately
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P (a(c — 9)) — ¢(\/ﬁ<\7/(;— ) [01 (naQ(c —0)° + 2) /6 — 02}

v. Sowith sample size increasing, prior kept constant, posterior is

approximately Gaussian,
vi. and expectation and standard deviation of approximating
distribution are the same as in frequentist likelihood inference.
vii. Largest deviations from approximate normality are driven by
asymmetry of prior and likelihood about MLE.
f. Extendsto multiple dimensions and higher-order
approximatons.
g. Example: Inference on Binomial Proportion, Beta Prior
i. Loglikelihood /(7)) = X log(m) + (n — X ) log(1 — 7).
i. //(m)=X/m—(n—-X)/(1—-m).
ii. (1) =—-X/m*—(n—-X)/(1—17).
X/n
v. —0"(7) = n/((X/n)(1 - X/n)).
vi. Pl <c|X]=®((c— X/n)v/n/(X/n)(1—X/n))).

4. Many integration methods scale poorly with 6 dimension

V. 7T

A:5.4-54.2
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5. Bayesian Methods for Regression Models

a. Useexisting generalized linear model for likelihood.
b. Put prior on model parameters.
i. Regression parameters take valuesin (—oo, 00) .
e Priorsshould put positive probability in all plausible regions of
this line.
e One might consider a prior flat in the same sense as the prior
uniformon (0,1).
e Any prior density that is constant over the real line cannot
integrate to a finite quantity.
e Such flat priors on the real line are examples of improper
PTIOTS .
ii. Other model parameters also need priors
e Ex., dispersion parameter in error distribution for continuous

response variables.
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