
Lecture 5 53

3. When do you need to stratify?

a. Heruristically: when stratifier is a confounder

i. That is, it is related to both exposure and disease

ii. Empirically, the odds ratio will change if both row
and column proportions differ according to stratifier.
R Code SAS Code

A: 4.3.5

C. Varying odds ratios

1. Varying odds ratios represent interactions.

a. If θ for the various strata are different, there is an
interaction between the confounder and exposure.

b. Use Breslow and Day statistic to test homogeneity of
odds ratio in a series of I 2× 2 tables:∑

i,j,k
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• Called Tarone’s correction.
• Agresti says that that generally C is small
• SAS appears to ignore C .
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• Necessary, because Mantel Haenszel estimator
does not minimize the quadratic form.

2. Checking for confounding via hypothesis test
a. Procedure

i. test for association betw. C and D and betw. C
and E ,

ii. adjust if these are significant

b. Uses significance as a proxy for strength of effect

c. To make it work at all, typically make very loose
criteria for significance

d. Fails to control Type 1 error R Code SAS Code

A: 8-8.2

D. Matching
1. Matching is extreme case of stratification

a. Can either be case–control pairs or exposed–unexposed
pairs

b. Exposed-Unexposed
i. Let nil = number of pairs with unexposed at

response level i , exposed at response level l
• Pairs with the same response levels for exposed

and unexposed are called concordant.
• Pairs with different response levels for exposed and

unexposed are called discordant.

c. Case-Control

i. Let nil = number of pairs with case at exposure
level i , control at exposure level l
• Pairs with the same exposure levels for case and

control are called concordant.
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• Pairs with different exposure levels for case and
control are called discordant.

2. Assumption (exposed–unexposed pairs):
a. Let πi

k be the probability of event in exposure group k
for pair i

b. Assume πi
1(1− πi

0)/[π
i
0(1− πi

1)] = θ∀i
3. Use Mantel–Haenszel test

a. For concordant pairs
i. Expected values are exactly observed
ii. Variance is zero
iii. Hence contribution is zero

b. For discordant pairs
i. Expected is all 1

2

ii. Obsd-expected is
• (1− 1

2
) = 1

2
for pairs with + association

• (0− 1

2
) = − 1

2
for pairs with - association

iii. Using hypergeometric distribution,
null variance contribution for pair is
(1× 1× 1× 1)/(2× 2× (2− 1)) = 1

4

• Total variance is 1

4
(n10 + n01) .

c. Test statistic is (n10 − n01)/
√
n10 + n01

i. same as test that binomial proportion equals 1

2

ii. Compare to standard normal
d. Test is called McNemar’s test SAS Code R Code

i. Test where units are pairs
ii. Each pair has two measurements
iii. This is NOT a test of whether the two pairs agree

SAS Code R Code
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4. What should we match on?
a. Often match on traits that are expected to impact

disease
b. Matching is to remove effect of something associated

with both putative cause and effect
c. Matching can reduce efficiency:

i. Matching on something correlated to exposure,
E → D
↓
C

• you get pairs with similar exposure
• that don’t give much info about effect of exposure

on disease
ii. Matching on an intermediate step in causal chain,

E → C → D
• make exposed more similar to non-exposed.
• artificially deflate effect of exposure

iii. Both are known as over-matching

iv. Sometimes matched pairs are multiple observations
on one individual.

A: 2.4.3
5. Estimation for Matched pairs

a. Pairs have probabilities
0 1

0 ψ00ψ10 ψ00ψ11

1 ψ01ψ10 ψ01ψ11

b. n01|n10 + n10 ∼ Bin(ψ00ψ11/(ψ00ψ11 + ψ01ψ10), n10 +
n01) = Bin(θ/(1 + θ), n10 + n01) after conditioning on
n10 + n01 .

https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.
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i. ω = θ/(1 + θ) ; θ = ω/(1− ω) .

c. Hence θ̂ = n01/n10

d. And get CI for θ by transforming binomial CI
e. This is also Mantel–Haenszel estimator R Code

6. Sometimes it is hard to make matched pairs,
a. because collection of subjects doesn’t contain pair
b. or setting up pairs is a lot of work
c. Many models we will employ later will allow us to

adjust for confounders without matching.
Se: 9 pp. 279–280

7. When matched groups are larger than 2
a. and not necessarily all the same size
b. still use Mantel-Haenszel procedure
c. exact binomial results no longer hold
d. Returns in efficiency from many control matches to a

single case diminish
A: 4.3

V. Rates depending on covariates
A. Introduction

1. Previous methods in this course
a. Exposure dichotomous, or categorical with few levels
b. Simple model allowed disease rates to vary from

exposure group to exposure group
2. Now

a. want covariate with more levels
b. Suppose L covariates

i. Includes constant 1
c. Identify K relatively homogeneous groups

i. ie., same (or similar) values for all covariates
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3. Need some structure betw. rates at different exposure
levels
a. Interpret ability
b. stability of estimates
c. We will assume linearity on log scale

B&D2: 4.3a
4. Assume that

a. numbers of events in an interval are Poisson
i. P [Xj = xj ] = exp(−λj)λxj

j /xj !

b. Implies that each person has chance exp(−∆λj) of
surviving interval ∆ without an event.

c. As before, assume individuals act independently.
5. Log linear model for effect of covariates

a. Suppose that zkl is covariate l in group k

b. model says log(λk) =
∑L

l=1
zklβl = zkβ

c. Bold faced quantities are vectors
d. Multiplication in last expression is inner product.

6. Model is an example of a generalized linear model.
a. More specifically, Poisson regression

:
B. Preivious models as regressions

1. One dimension:
a. λk = exp(αk)
b. β = (α0, . . . , αK−1) , zk = (0, . . . , 0, 1, 0, . . . , 0) , with

the 1 in position k .
i. Model now has one parameter for every observation:

saturated

c. L(α) =
∏K−1

k=0
exp([ωk+αk]Xk−exp([ωk+αk]))/Xk!
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d. l(α) =
∑K−1

k=0
[{αk+ωk}Xk−exp(αk+ωk)−log(Xk!)]

e. lk(α) = Xk − exp(αk + ωk)
f. Maximizer satisfies α̂k = log(Xk)− ωk

g. For the submodel with all α ’s equal,

l(α) = αX+ +
∑K−1

k=0
ωkXk − exp(α)

∑K−1

k=0
exp(ωk)−∑K−1

k=0
log(Xk!)

i. l′(α) = X+ − exp(α)
∑K−1

k=0
exp(ωk)

ii. α̂ = log(X+/
∑K−1

k=0
exp(ωk)) .

iii. Profile score statistic is
lk(α̂) = Xk −X+ exp(ωk)/

∑K−1

k=0
exp(ωk)

h. After conditioning on X+ ,
i. distribution is now multinomial with probabilities

πk = exp(ωk + αk)/
∑K−1

m=0
exp(ωm + αm)

ii. Increasing or decreasing all of the αk by the same
amount gives the same probabilities.

iii. Hence one can not identify all of the αk .
iv. Pick one of these (ie., α0 = 0 ), or set sum to zero

(PROC CATMOD)
2. Model contains log of time at risk as an offset

a. Fit component is added to every log rate
b. If you know something that rates might be proportional

to, log of this could be added to the offset as well
i. For ex, rate in unexposed population by age SAS

Code R Code

3. Complications:
a. Do iterations bounce back and forth without

converging?
b. Sometimes best fits for parameters are ±∞
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c. Tests can mislead when some groups have small
expected value

05

https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.sas.html#0.
https://statweb.rutgers.edu/kolassa/960-553/l05.R.html#0.

