pdf("g08.pdf");options(width=64) #setwd("C:\\Users\\kolassa\\Class555") setwd("~/Taught1/960-555/Data")
# Block 1 expensesd<-as.data.frame(scan("friedman.dat", what=list(cat="",g1=0,g2=0,g3=0,g4=0,g5=0,g6=0,g7=0))) # Block 2 expenserank<-t(apply(as.matrix(expensesd[,-1]),1,rank)) rownames(expenserank)<-expensesd[[1]] # Block 3 apply(expenserank,2,mean) # Block 4 friedman.test(as.matrix(expensesd[,-1])) # Block 5 temp1<-temp<-as.data.frame(scan("chicken.dat",what= list(source="", lev=0,fish=0,weight=0,w2=0))) temp1$weight<-temp1$w2;temp$h<-0;temp1$h<-1 temp$w2<-NULL;temp1$w2<-NULL chicken<-rbind(temp,temp1) boxplot(split(chicken$weight,chicken$source), horizontal=TRUE, main="Weight gain for Chickens", ylab="Protein Source", xlab="Weight Gain (g.)") # Block 6 #If necessary, install a version of muStat from archives using #library(devtools) #install_version("muStat") #or download the package from CRAN archives. library(muStat)#For Prentice test. prentice.test(chicken$weight,chicken$source, blocks=chicken$lev) # Block 7 library(MultNonParam)#For aov.P #aov.P requires data sorted by block. Put block ends as the #third argument. chicken<-chicken[order(chicken$lev),] aov.P(chicken$weight,as.numeric(as.factor(chicken$source)), c(8,16,24)) # Block 8 library(crank)#For page.trend.test #Perform the test of Page. page.trend.test(expensesd[,-1],FALSE) # Block 9 library(MultNonParam)#For page.test.unbalanced cat('\n Page test with replicates \n') page.test.unbalanced(chicken$weight,chicken$lev, chicken$source) twinbrain<-as.data.frame(scan("IQ_Brain_Size", what=list(CCMIDSA=0,FIQ=0,HC=0,ORDER=0,PAIR=0,SEX=0, TOTSA=0, TOTVOL=0,WEIGHT=0),skip=27,nmax=20)) fir<-twinbrain[twinbrain$ORDER==1,] fir$v1<-fir$TOTVOL sec<-twinbrain[twinbrain$ORDER==2,] sec$v2<-sec$TOTVOL brainpairs<-merge(fir,sec,by="PAIR")[,c("v1","v2")] brainpairs$diff<-brainpairs$v2-brainpairs$v1 # Block 10 plot(brainpairs$v1,brainpairs$v2, xlab="Volume for Twin 1", ylab="Volume for Twin 2",main="Twin Brain Volumes") # Block 11 cat('\n Permutation test for twin brain data \n') obsd<-c(cor(brainpairs$v1,brainpairs$v2), cor(brainpairs$v1,brainpairs$v2,method="spearman")) # Block 12 out<-array(NA,c(2,20001)) dimnames(out)[[1]]<-c("Pearson","Spearman") for(j in seq(dim(out)[2])){ newv1<-sample(brainpairs$v1) out[,j]<-c(cor(newv1,brainpairs$v2), cor(newv1,brainpairs$v2,method="spearman")) } cat("\n Monte Carlo One-Sided p value\n") apply(apply(out,2,">=",obsd),1,"mean") # Block 13 cat("\n Asymptotic Critical Value\n") -qnorm(0.025)/sqrt(length(brainpairs$v1)-1) # Block 14 c(cor.test(brainpairs$v1,brainpairs$v2)$p.value, cor.test(brainpairs$v1,brainpairs$v2,method="spearman")$p.value)