Lecture 1
MPV: 1

|. Introduction
A. The problem:
1. Explainaresponse or dependent variable
a. using one or more explanatory or independent variables
b. Motivation
I. Theresponse is what you want to explain
e Inthe height example, child height
ii. Theexplanatory variable is what you use to explain.
iii. Thedependent variable is one that depends on the rest of the
variables
iv. Theindependent variable is one that does not depend on other
variables
c. Alternatively “response” and “explanatory” are often called
“dependent” and “independent” resp.
i. Theseterms are too close too probabilistic terms that they
might cause confusion.
ii. “independent” implies the ability to adjust these, which is not

present in the height example.
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iii. |suggest not using “dependent” and “independent” in this

way.
2. Uses of regression
a. Description

b. Inference about parameters with some interpretation beyond

statistics
c. Interpolation
d. Bioassay

I. Thatis, find covariate values associated with a certain

(conditional) expectation for the response.
e. Extrapolation (dangerous!)
B. Themodel:
1. Notation

a. Consider bivariate observations (X,Y).
b. Y representsthe response.

c. X representsthe explanatory variable.

d. Inthiscase, both quantities are random

I. Whether this matters will be discussed shortly.

2. Treatrelationship aslinear
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a. Thatis, Y =5y + 61X +¢

b. € istheerror.
c. Let fty|x represent the expectation of Y conditionalon X .
d. For most of the course, we will define the errors so that
Ele] =0.
e. Infact, we need this to hold even with X held constant:
Ele|X]=0.
i. Thatis, we won't be satisfied with systematically overshooting

forsome X and undershooting for others.
f. So py|x = bo+ 51X
3. Variances and Covariances

a. Most models we will explore will treat these pairs as

independent.

b. Most models we will explore will have errors with constant

variance, conditional on the explanatory variable
i. Let 02 = Var [Y'|X] = Var [¢| X].
c. Notethat Var |Y] = E [Var [Y|X]] + Var [E [V | X]],
i. Hence marginal variance is higher than conditional variance.

4. Linear model is often just an approximation to the truth.
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a. A curvethat mostly follows the regression line but wiggles a

small amount might not be distinguishable from a straight line.
i. Thedifference is likely not to matter.

b. Atrue relationship might actually be curved, but the observed
values of X may be too concentrated to distinguish this from a

straight line.

i. Hence the linear fit may be reasonable for explanatory variables

in the range observed, but fit poorly for X outside the range.
ii. Henceinterpolation is safer than extrapolation
5. Parameter interpretation:
a. [31 represents the expected change in the response as the
explanatory variable increases by one unit.
b. [y represents the expected value of the response variable when
the explanatory variable is zero.
i. Note the warning above about extrapolation, if X = 0 isnotin
the range of values observed.
ii. Thevalue zero may not be plausible, or even plausible.
e /Zerodegrees Celsius corresponds to freezing,

e /erodegrees Fahrenheit corresponds to freezing point of a
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salt water solution,

e /erodegrees Kelvin corresponds to a complete absence of any

kinetic energy.
6. A particular model for errors
a. Distribution of € conditional on X is normal for all values of X .

b. Earlier assumptions are that expectation is zero and variance is

1.

c. Deviations from this assumption will have generally mild

consequences.
7. Review of Assumptions
a. Y = By + 81X + €, € centered about zero.
I. Crucial.
b. Errors € areindependent:
I. very important.
c. Errors have the same variance
I. Goodto have.
d. Errorsare normal.

I. Except for very small samples, central limit theorem comes to

the rescue.
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C. Extensions:

1. Multiple regression

a.
b.

C.

f.

Multiple explanatory variables:

Iy xy,..x;, = Po+ 1 X1+ - + B Xy,
Var [Y| X1, ..., X = o2

. Ex., daughter’s height might depend on mother’s, father's

heights: k = 2.
We will need to review some ideas from linear algebra in order to
handle these cases.

This will make up the bulk of the course.

2. Observations with a more complicated relationship between

a.
b.

C.

response and explanatory variables

Address by transforming response
Address by transforming explanatory variables

Address by adding multiple transformations of explanatory

variables into a multiple regression.

3. Observations with differing variances

a.

b.

Phenomenon is called heteroscedasticity

As opposed to homoscedasticity: equal variances.
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c. Techniques will adjust to treat those observations as less

informative
4. Non-normal errors
a. In many cases non-normality is a serious issue.
b. We will see how to modify our procedures to address this.
[I. Data Sources
A. Observational study:
1. Definition of an Observational Study

a. Relyon processes not of our design to generate sets of response

and explanatory variables
b. Weimpact the process only in so far as we collect data
2. Advantages and Disadvantages

a. Upsides:

i. Usually cheap.

ii. No ethicalissues arising from assigning subjects to treatments
b. Downsides:

I. Generally can’t measure why an association is present.

ii. Ex.,akind of treatment whose intensity is related to disease

severity might be judged ineffective if the most severely ill get
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the highest dose.

3. Subtype: Retrospective study
a. Data are measurements collected in the past.
i. Almost always for purposes other than the study at hand.
b. Upsides:
I. Even cheaper
ii. Fast.
c. Downsides:

i. Often the things measured aren’t exactly what we want

measured.

ii. Therecan beethical considerations in whether observations on

human subjects may be used.
d. Acommon example: chart review.
B. Designed experiments
1. Definition of a Designed Experiment
a. Investigator chooses values of X .

b. If experimental subjects are in some sense identical,

experimental treatment differences can be seen as causative.

i. Ex., one canrandomly assign subjects to treatments.
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c. Adesigned experiment in medicine is often called clinical trial

2. Model Building

a. Determine expected relationship between explanatory and

response variables

b. Embed in a mathematical structure broad enough to be able to

tell you if you are wrong.
c. Fitthe model
i. Look for evidence that the model fits poorly.
ii. Look for evidence that the model performs poorly.

li. Interpret parameter estimates.

MPV:2.0-2.1
[Il. The Simple Linear Regression Model
A. Using One Covariate
1. The Model
a. Y;=0p+ 01X+ €
i. Here j indicates which subject it is ( “indexes subject” ) and
runs from 1 to n
b. Errors € have “center’ zero

i. Otherwise 3y doesn't have meaning.
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c. Errorsare uncorrelated

I. Might assume something slightly stronger: errors are

independent.
d. Errors have constant dispersion
e. Errorsare normal

i. Least important assumption, as long as the tails are not too

heavy

ii. Cauchy errorswon't work.

MPV: 2.2
B. Least Squares estimation

1. Parameter estimates minimize sum of distances from observed

observations and fitted value
a. Let best fitting values be represented by the parameter with a
hat on top: BQ and Bl-
i. Thatis, 8y and 3; minimize S = > i 1Y — Bo — ﬁlXj\Q
i. (8o, 1) = argmin Y7, [V — By — Bi1X;[?
b. Resultis called Least squares regression
I. Could also have used exponent 1.

ii. Could have used other transformations of residuals.
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. We will see this later.

2. Canminimize S by differentiation
a. Generally using absolute values destroys differentiability
b. Squaring removes this
¢ g ==Y — o~ BiX;).
i. Hence > /" (Y — By — BlXj) =0.
ii. Hence Z] Y = =nBy — By 2?21 X;.
iii. Hence ijl j/n = By — By 2?21 Xj/n.
iv. Hence BO =Y — Bl)_(.

V. Notegzizn>0. )
g5 =S - - - X)X
I Substltute maximizer for 3
ii. Hence
o Y (Y= (Y —BX)—BiX;)X;=0.

(
o Hence 311 (V; —Y — ﬁl(X X)X 0.

e Hence 51 = ?:1(1/]' — Y)Xj/ Z?:1<Xj — )_()Xj.

2
e Note gﬁg Py X2>0.

11
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iii. More conventionally

e Onecanomitone of the means in the cross product
n n n

D (V=YX = X) =3 (V;=V)X; =3 (V; V)X
1=1

P =1
n —
=2 (¥ - V)X,
1=1

e Onecandothisforthe other mean
n T

>0 VI - )= Y0 X
1=1 1=1
e Onecan alsodo this for one mean when the difference

from meansissquared: 1 (X; — X)(X; — X) =
im1(Xj = X)X;

iv. So
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e Thatis, toevaluate the sum of products of quantities with

means removed, you need only remove means from one.
e. Two equations are called normal equations.
3. Minimizing .S without calculus:
a. 8=V = By — B1X;)’
b. S =n(B5 2311 (Y;—51X))/n+ 1y (Y;— 51X;)*/n)
=08y = 2Y = B1X)By + i (V) - BiX;)°/n)
ii. Completesquare: S =n((8y— (Y — 51.X))* +...)
iii. Hence minimizing f; satisfies 8y = Y — 51X
c. S=X14(Y; Y - Bi(X; — X))
i. Expand: S = Z?:l(yj — Y)2 — -2 Z?:l(yj — Y)(Xj —
X)+ 2 Z?:1(Xj — X)Q
ii. Completethesquare: S = AB% — 2By + C' for
A=3000 (X = X7 B = S0 (Y - Y)(X; -
X)) i (X = X)?
iii. Minimized with 5] = Z?:l(}/j -Y)(X;-X)/ Z?:l(Xj —
X2,
4. Estimating Variance

a. Fitted value
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= By + /31X

i. What is left over are residuals

ej =Y =Y

=Y — By — P1X;

=Y, — Z(l/n)YZ — (X — X) (Z({Xz — X}/ Sux)

1=1 1=1

n
Z Jji — 1/n — Wj@i)%

|1 ity =1
* 532_{0 ifj A
b. Moments of Residuals

I. Notethat

14

;
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. W2 W,
Var [e5] = o?(1=1/n = o2)+ 3 (1 fn + =47
i#]
W2 WV

— o[l —2/n — 27; + ;(1/71 + SZMJF]

2 21172

9 Ww: 1 wWw. W:2W:

2 J vt vt
=0" |[1-=—=2—"+) [—+2 +

W> W>
— 0’1 —2/n—2=—L +1/n+ =2L]
rxr xrx
W2
—o’[1 —1/n — =]
] rxr 5
i So[el] — 0?1 — 1/n — g1

i. SoE _Z] ﬂ — 2(n —2)
5. Estimating the Variance
a. Hence unbiased estimate of o2 is 6% = i A? (n — 2): this
is the estimator that is almost always used.
b. Estimateiscalled Mean square residual M Sp,, .
c. Sum of squared residualis SSp. -

6. Interpretation

a. (31 isamount by which response changes as explanatory variable
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changes by one unit.

b. [y is predicted value of response when explanatory variable is
Zero.
I. Improve interpretation by subtracting mean from explanatory

variable. See Fig. 1.

Fig. 1: Mean Squares for Regression

of Daugher Height o ot e%eight
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ii. Makes (3 predicted value of response when explanatory
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variable is at its mean

iii. Also improves numerical behavior. See Fig. 2.

Fig. 2: Mean Squares for Regression
of Daugher Height on Mother Height
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