I. Introduction

A. The problem:

- 1. Explain a response or dependent variable
 - a. using one or more explanatory or independent variables
 - b. Motivation
 - i. The response is what you want to explain
 - In the height example, child height
 - ii. The explanatory variable is what you use to explain.
 - iii. The dependent variable is one that depends on the rest of the variables
 - iv. The independent variable is one that does not depend on other variables
 - c. Alternatively "response" and "explanatory" are often called "dependent" and "independent" resp.
 - i. These terms are too close too probabilistic terms that they might cause confusion.
 - ii. "independent" implies the ability to adjust these, which is not present in the height example.

iii. I suggest not using "dependent" and "independent" in this way.

2. Uses of regression

- a. Description
- Inference about parameters with some interpretation beyond statistics
- c. Interpolation
- d. Bioassay
 - i. That is, find covariate values associated with a certain (conditional) expectation for the response.
- e. Extrapolation (dangerous!)

B. The model:

- 1. Notation
 - a. Consider bivariate observations (X,Y) .
 - b. Y represents the response.
 - c. X represents the explanatory variable.
 - d. In this case, both quantities are random
 - i. Whether this matters will be discussed shortly.
- 2. Treat relationship as linear

- a. That is, $Y = \beta_0 + \beta_1 X + \epsilon$
- b. ϵ is the error.
- c. Let $\mu_{Y|X}$ represent the expectation of Y conditional on X .

3

- d. For most of the course, we will define the errors so that $\mathbf{E}\left[\epsilon\right]=0$.
- e. In fact, we need this to hold even with X held constant: $\mathbf{E}\left[\epsilon|X\right]=0\,.$
 - i. That is, we won't be satisfied with systematically overshooting for some X and undershooting for others.
- f. So $\mu_{Y|X} = \beta_0 + \beta_1 X$.
- 3. Variances and Covariances
 - a. Most models we will explore will treat these pairs as independent.
 - b. Most models we will explore will have errors with constant variance, conditional on the explanatory variable
 - i. Let $\sigma^2 = \operatorname{Var}[Y|X] = \operatorname{Var}[\epsilon|X]$.
 - c. Note that Var[Y] = E[Var[Y|X]] + Var[E[Y|X]],
 - i. Hence marginal variance is higher than conditional variance.
- 4. Linear model is often just an approximation to the truth.

a. A curve that mostly follows the regression line but wiggles a small amount might not be distinguishable from a straight line.

- i. The difference is likely not to matter.
- b. A true relationship might actually be curved, but the observed values of X may be too concentrated to distinguish this from a straight line.
 - i. Hence the linear fit may be reasonable for explanatory variables in the range observed, but fit poorly for X outside the range.
 - ii. Hence interpolation is safer than extrapolation
- 5. Parameter interpretation:
 - a. β_1 represents the expected change in the response as the explanatory variable increases by one unit.
 - b. β_0 represents the expected value of the response variable when the explanatory variable is zero.
 - i. Note the warning above about extrapolation, if $\,X=0\,$ is not in the range of values observed.
 - ii. The value zero may not be plausible, or even plausible.
 - Zero degrees Celsius corresponds to freezing,
 - Zero degrees Fahrenheit corresponds to freezing point of a

Lecture 1 5 salt water solution,

 Zero degrees Kelvin corresponds to a complete absence of any kinetic energy.

- 6. A particular model for errors
 - a. Distribution of ϵ conditional on X is normal for all values of X .
 - b. Earlier assumptions are that expectation is zero and variance is1.
 - c. Deviations from this assumption will have generally mild consequences.
- 7. Review of Assumptions
 - a. $Y=\beta_0+\beta_1X+\epsilon$, ϵ centered about zero.
 - i Crucial.
 - b. Errors ϵ are independent:
 - i. very important.
 - c. Errors have the same variance
 - i. Good to have.
 - d. Errors are normal.
 - i. Except for very small samples, central limit theorem comes to the rescue.

6

C. Extensions:

- 1. Multiple regression
 - a. Multiple explanatory variables:

b.
$$\mu_{Y|X_1,...,X_k} = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

c.
$$Var[Y|X_1,...,X_k] = \sigma^2$$

- d. Ex., daughter's height might depend on mother's, father's heights: k=2.
- e. We will need to review some ideas from linear algebra in order to handle these cases.
- f. This will make up the bulk of the course.
- 2. Observations with a more complicated relationship between response and explanatory variables
 - a. Address by transforming response
 - b. Address by transforming explanatory variables
 - c. Address by adding multiple transformations of explanatory variables into a multiple regression.
- 3. Observations with differing variances
 - a. Phenomenon is called heteroscedasticity
 - b. As opposed to homoscedasticity: equal variances.

c. Techniques will adjust to treat those observations as less informative

4. Non-normal errors

- a. In many cases non-normality is a serious issue.
- b. We will see how to modify our procedures to address this.

II. Data Sources

A. Observational study:

- 1. Definition of an Observational Study
 - a. Rely on processes not of our design to generate sets of response and explanatory variables
 - b. We impact the process only in so far as we collect data
- 2. Advantages and Disadvantages
 - a. Upsides:
 - i. Usually cheap.
 - ii. No ethical issues arising from assigning subjects to treatments
 - b. Downsides:
 - i. Generally can't measure why an association is present.
 - ii. Ex., a kind of treatment whose intensity is related to disease severity might be judged ineffective if the most severely ill get

Lecture 1 8 the highest dose.

the highest dose.

- 3. Subtype: Retrospective study
 - a. Data are measurements collected in the past.
 - Almost always for purposes other than the study at hand.
 - b. Upsides:
 - i. Even cheaper
 - ii Fast
 - c. Downsides:
 - Often the things measured aren't exactly what we want measured.
 - ii. There can be ethical considerations in whether observations on human subjects may be used.
 - d. A common example: chart review.
- B. Designed experiments
 - 1. Definition of a Designed Experiment
 - a. Investigator chooses values of X.
 - b. If experimental subjects are in some sense identical, experimental treatment differences can be seen as causative.
 - i. Ex., one can randomly assign subjects to treatments.

9

c. A designed experiment in medicine is often called clinical trial

2. Model Building

- a. Determine expected relationship between explanatory and response variables
- b. Embed in a mathematical structure broad enough to be able to tell you if you are wrong.
- c. Fit the model
 - i. Look for evidence that the model fits poorly.
 - ii. Look for evidence that the model performs poorly.
- iii. Interpret parameter estimates.

MPV: 2.0-2.1

III. The Simple Linear Regression Model

A. Using One Covariate

1. The Model

a.
$$Y_j = \beta_0 + \beta_1 X_j + \epsilon_j$$

- i. Here j indicates which subject it is ("indexes subject") and runs from 1 to n
- b. Errors ϵ have "center" zero
 - i. Otherwise β_0 doesn't have meaning.

10

- c. Errors are uncorrelated
 - Might assume something slightly stronger: errors are independent.
- d. Errors have constant dispersion
- e. Errors are normal
 - i. Least important assumption, as long as the tails are not too heavy
 - ii. Cauchy errors won't work.

MPV: 2.2

- B. Least Squares estimation
 - 1. Parameter estimates minimize sum of distances from observed observations and fitted value
 - a. Let best fitting values be represented by the parameter with a hat on top: $\hat{\beta}_0$ and $\hat{\beta}_1$.
 - i. That is, $\hat{\beta}_0$ and $\hat{\beta}_1$ minimize $S = \sum_{i=1}^n |Y_j \beta_0 \beta_1 X_j|^2$
 - ii. $(\hat{\beta}_0, \hat{\beta}_1) = \operatorname{argmin} \sum_{i=1}^n |Y_i \beta_0 \beta_1 X_j|^2$
 - b. Result is called Least squares regression
 - i. Could also have used exponent 1.
 - ii. Could have used other transformations of residuals.

11 iii. We will see this later.

- 2. Can minimize S by differentiation
 - a. Generally using absolute values destroys differentiability
 - b. Squaring removes this

c.
$$\frac{\partial S}{\partial \beta_0} = -\sum_{i=1}^n (Y_j - \beta_0 - \beta_1 X_j)$$
.

i. Hence
$$\sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) = 0$$
.

ii. Hence
$$\sum_{j=1}^n Y_j = n\hat{\beta}_0 - \hat{\beta}_1 \sum_{j=1}^n X_j$$
.

iii. Hence
$$\sum_{j=1}^n Y_j/n = \hat{\beta}_0 - \hat{\beta}_1 \sum_{j=1}^n X_j/n$$
 .

iv. Hence
$$\hat{eta}_0 = \bar{Y} - \hat{eta}_1 \bar{X}$$
 .

v. Note
$$\frac{\partial^2 S}{\partial \beta_0^2} = n > 0$$
.

$$ullet$$
 For $ar{Y} = \sum_{j=1}^n Y_j/n$, $ar{X} = \sum_{j=1}^n X_j/n$.

d.
$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n -(Y_j - \beta_0 - \beta_1 X_j) X_j.$$

- i. Substitute maximizer for β_0
- ii. Hence

•
$$\sum_{i=1}^{n} (Y_j - (\bar{Y} - \beta_1 \bar{X}) - \hat{\beta}_1 X_j) X_j = 0$$
.

• Hence
$$\sum_{i=1}^{n} (Y_j - \bar{Y} - \hat{\beta}_1 (X_j - \bar{X}) X_j = 0$$
.

• Hence
$$\sum_{i=1}^n (Y_j - \bar{Y}) X_j = \hat{\beta}_1 \sum_{j=1}^n (X_j - \bar{X}) X_j$$
.

• Hence
$$\hat{\beta}_1 = \sum_{i=1}^n (Y_j - \bar{Y}) X_j / \sum_{j=1}^n (X_j - \bar{X}) X_j$$
 .

• Note
$$\frac{\partial^2 S}{\partial \beta_1^2} = \sum_{i=1}^n X_j^2 > 0$$
.

iii. More conventionally

One can omit one of the means in the cross product

$$\sum_{i=1}^{n} (Y_j - \bar{Y})(X_j - \bar{X}) = \sum_{i=1}^{n} (Y_j - \bar{Y})X_j - \sum_{i=1}^{n} (Y_j - \bar{Y})\bar{X}$$
$$= \sum_{i=1}^{n} (Y_j - \bar{Y})X_j$$

One can do this for the other mean

$$\sum_{i=1}^{n} (Y_j - \bar{Y})(X_j - \bar{X}) = \sum_{i=1}^{n} (X_j - \bar{X})Y_j,$$

• One can also do this for one mean when the difference

from means is squared:
$$\sum_{i=1}^n (X_j - \bar{X})(X_j - \bar{X}) = \sum_{i=1}^n (X_j - \bar{X})X_j$$

iv. So

$$\hat{\beta}_1 = \sum_{i=1}^n (Y_j - \bar{Y})(X_j - \bar{X}) / \sum_{j=1}^n (X_j - \bar{X})^2$$

$$= \sum_{i=1}^n (X_j - \bar{X})Y_j / \sum_{j=1}^n (X_j - \bar{X})^2$$

$$= \sum_{i=1}^n c_j Y_j.$$

•
$$S_{xx} = \sum_{j=1}^{n} (X_j - \bar{X})^2$$

$$\bullet \quad W_j = X_j - \bar{X}$$

$$\bullet \quad c_i = (X_i - \bar{X})/S_{xx}$$

$$ho$$
 $\sum_{i=1}^n c_j = 0$, $\sum_{i=1}^n c_j W_j = 1$.

• That is, to evaluate the sum of products of quantities with means removed, you need only remove means from one.

- e. Two equations are called normal equations.
- 3. Minimizing S without calculus:

a.
$$S = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

b.
$$S = n(\beta_0^2 - 2\sum_{j=1}^n (Y_j - \beta_1 X_j)/n + \sum_{i=1}^n (Y_j - \beta_1 X_j)^2/n)$$

i.
$$= n(\beta_0^2 - 2(\bar{Y} - \beta_1 \bar{X})\beta_0 + \sum_{i=1}^n (Y_i - \beta_1 X_j)^2 / n)$$

ii. Complete square:
$$S=n((\beta_0-(\bar{Y}-\beta_1\bar{X}))^2+\ldots)$$

iii. Hence minimizing
$$\,eta_0\,$$
 satisfies $\,\hat{eta}_0=\bar{Y}-eta_1\bar{X}\,$

c.
$$S = \sum_{i=1}^{n} (Y_j - \bar{Y} - \beta_1 (X_j - \bar{X}))^2$$

i. Expand:
$$S = \sum_{i=1}^n (Y_j - \bar{Y})^2 - -2\beta_1 \sum_{i=1}^n (Y_j - \bar{Y})(X_j - \bar{X}) + \beta_2 \sum_{i=1}^n (X_j - \bar{X})^2$$

ii. Complete the square:
$$S=A\beta_1^2-2B\beta_2+C$$
 for $A=\sum_{i=1}^n(X_j-\bar{X})^2$, $B=\sum_{i=1}^n(Y_j-\bar{Y})(X_j-\bar{X})/\sum_{i=1}^n(X_j-\bar{X})^2$

iii. Minimized with
$$\,\hat{\beta}_1 = \sum_{i=1}^n (Y_j - \bar{Y})(X_j - \bar{X})/\sum_{i=1}^n (X_j - \bar{X})^2$$
 .

4. Estimating Variance

a. Fitted value

i.
$$\hat{Y}_j = \hat{\beta}_0 + \hat{\beta}_1 X_j$$

ii. What is left over are residuals

$$\begin{split} \hat{\epsilon}_j &= Y_j - \hat{Y}_j \\ &= Y_j - \hat{\beta}_0 - \hat{\beta}_1 X_j \\ &= Y_j - \sum_{i=1}^n (1/n) Y_i - (X_j - \bar{X}) \left(\sum_{i=1}^n (\{X_i - \bar{X}\}/S_{xx}) Y_i \right) \\ &= \sum_{i=1}^n (\delta_{ji} - 1/n - W_j c_i) Y_i \\ &\text{for} \end{split}$$

$$\bullet \quad \delta_{ji} = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

b. Moments of Residuals

i. Note that

$$\begin{aligned} & \text{Var}\left[\hat{\epsilon}_{j}\right] = \sigma^{2}[(1-1/n - \frac{W_{j}^{2}}{S_{xx}})^{2} + \sum_{i \neq j}(1/n + \frac{W_{j}W_{i}}{S_{xx}})^{2}] \\ &= \sigma^{2}[1-2/n - 2\frac{W_{j}^{2}}{S_{xx}} + \sum_{i}(1/n + \frac{W_{i}W_{j}}{S_{xx}})^{2}] \\ &= \sigma^{2}\left[1 - \frac{2}{n} - 2\frac{W_{j}^{2}}{S_{xx}} + \sum_{i}\left(\frac{1}{n^{2}} + 2\frac{W_{i}W_{j}}{nS_{xx}} + \frac{W_{i}^{2}W_{j}^{2}}{S_{xx}^{2}}\right)\right] \\ &= \sigma^{2}[1 - 2/n - 2\frac{W_{j}^{2}}{S_{xx}} + 1/n + \frac{W_{j}^{2}}{S_{xx}}] \\ &= \sigma^{2}[1 - 1/n - \frac{W_{j}^{2}}{S_{xx}}] \\ &\text{ii. So } \mathbf{E}\left[\hat{\epsilon}_{j}^{2}\right] = \sigma^{2}[1 - 1/n - \frac{W_{j}^{2}}{S_{xx}}] \\ &\text{iii. So } \mathbf{E}\left[\sum_{j}\hat{\epsilon}_{j}^{2}\right] = \sigma^{2}(n - 2) \end{aligned}$$

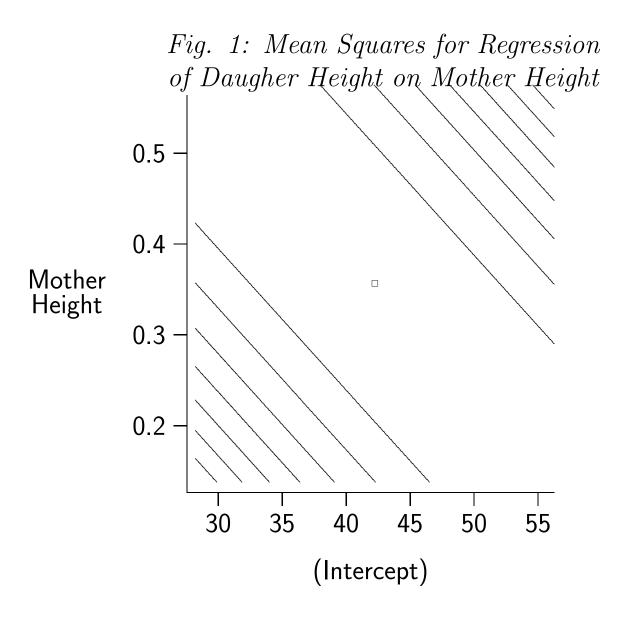
5. Estimating the Variance

- a. Hence unbiased estimate of σ^2 is $\hat{\sigma}^2 = \sum_{j=1}^n \hat{\epsilon}_j^2/(n-2)$: this is the estimator that is almost always used.
- b. Estimate is called Mean square residual $\,MS_{Res}\,$.
- c. Sum of squared residual is $\,SS_{Res}\,$.

6. Interpretation

a. β_1 is amount by which response changes as explanatory variable

- b. β_0 is predicted value of response when explanatory variable is zero.
 - i. Improve interpretation by subtracting mean from explanatory variable. See Fig. 1.



ii. Makes β_0 predicted value of response when explanatory

iii. Also improves numerical behavior. See Fig. 2.

