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5. Measuring the Strength of a Relationship

a. Recallthatthe [’ test tested whether any of the regression

parameters are non-zero

b. Recall that for one parameter, R? measured the strength rather

than tested for the strength.
c. Do this for more explanatory variables: R> = SSp /SS; =
1 — SSp.s/SSt.
. SSRes = 20 (Yi = )2
i SSp =30V -Y)?
i. SS; =31, (Y;—Y)?
d. R? € [0,1], represents the proportion of variablity explained by
explanatory variables.
e. Any additional variable will result in R? nosmaller.
i. Almost all will result in R? somewhat larger, even if variable is
probabilistically unrelated.
i. Adjust R? to penalize it for larger numbers of parameters:
o Ry, = 1—(SSpes/(n—p))/(SS)/(n—1)) =
L — (S5S5pges / 55¢)((n—1)/(n —p)).
e (n—1)/(n—p)) ~1if nlargeand p small.
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o Ridj dropsif SSp.s fixedand p increases.

6. Confidence Regions for Parameters
a. Recall that confidence intervals were found by determining set of
univariate null hypotheses that were not rejected
I. Constructed so that probability of incorrect rejection is « for
variables one at a time.
ii. Neither tests nor intervals had type | error /coverage controled
for sets of variables.
iii. Thatis, with two explanatory variables, P [5] € Z1| =
Plfoel]=1—a,but P|f; € Z1and fy € Ih] < 1 — «v.
iv. Also, P go |Hy : 81 = 7 not rejected]
= Pgg [Hy : By = 5 notrejected] = 1 — a,
but Pgo g9 [Neither null hypothesis rejected] < 1 — a
b. F' procedure tests for multiple included parameters
simultaneously.
i. Confidence region is the set of null hypotheses not rejected.

® -y issetof m parametersyou want to bound

e W isthe corresonding submatrix of (XTX)_1

e R={v[(¥—7)"W ¥ =) <6°F,_ka/t an
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elipse.

MPV: 3.5
7. Confidence Intervals for Fitted Values
a. Predict and bound the fitted value for explanatory variables
(1, 2q,...,2_1) -

I. Represent this as a row vector x .

b. Predictionis Y (x) = 23 = Z BJ:U]
i. Var [ (x )} Zk 1ZJ " TiT im0 o’
e for m;; theentryinrow ¢ and column j of (X" X))~
i. Canbewrittenas ' (X' X)) lao?
e If x isacovariate pattern in the data set, thisis the diagonal
element of the hat matrix, times o2
c. Prediction is unbiased estimator of (3

d. When observations are normally distributed, prediction is also

normally distributed.
e. Solevel 1 — o Clfor z8 is 3 + za/za\/mT(XTX)—

z3 + O'Z@/Z\/l/n + () (X X))~

i. ™ isvector of covariates with intercept part removed and

average subtracted off.
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ii. Inthe more-common case of o unknown, level

1 — « confidence interval for &3 is acB +

ka2 (X T X)"Las

f. Prediction interval is available as in the one-explanatory-variable

case.

I. Level 1 — o confidenceinterval for 3 is

2B+, a1 +2T(XTX) 25,

MPV: 3.8

g. Hidden extrapolation:

i. Predict response at a set of explanatory variables separately

typical
ii. anoutlierin a bivariate sense.

iii. Distance from center of data set may be indicated by diagonal

element of hat matrix.

MPV:3.11

8. Adding extra explanatory variables can change the sign of other

variables?

a. Adding a covariate may remove or change the direction of an
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effect.

I. Categorical response and two categorical explanatory

variables: Simpson’s paradox

b. Adding a baseline value is not the same as looking at a change

score

i. Continuous response and one categorical explanatory variables

and one continuous variable: Lord’s paradox

ii. Effect of the categorical variable is generally attenuated,

because of regression to the mean.
E. Linear Algebra Concepts
1. Anordered list of observations called a vector.
a. With n entries, call itan n vector.
b. Describe it by giving value for entry in place 5, foreach j

2. Agrid of observations, with entries in each row and column, is

called a matrix.
a. Describe by genericentry inrow ¢ and column j
b. With n rowsand k columnscalleda n X k& matrix.

i. Thisis not really multiplication: hereif n = 10 and k = 3,
read thisas “10 by 1" and not “30".
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3. Juxtaposition of a matrix X and vector 3 represents matrix

multiplication
a. Defined only if X has as many columns (that is, second

dimension) as 3 has entries.
b. Thatis, if = X 3, then isthevector
I. with as many componentsas X hasrows
ii. Valueinslot i is ), xi;0;
e sum of elementsin row ¢ of the matrix times corresponding
elements of vector.
4. + isvector addition:
a. need both sides to have same number of components
b. Resultis component-wise sum.

5. A matrix like X with rows and columns interchanged is called the

transpose of X
a. (AB)' =B'A".
b. Denoteby X '

6. Just aswith scalars, matrix multiplication is distributive:
A(b —c) = Ab+ Acif b and ¢ both have as many

componentsas A hascolumns.
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7. Sequential multiplications of the vector can be expressed as a

matrix.

a.

Vi.

VilI.

Formulate more generally: Find C sothat A(B3) = C[3

Let A haveentriesinrow ¢ and column j a;j

Let B haveentriesinrow i and column j 0;;

Recallthatentry i in BB is ), b;;[;

iv. Thenentry lin A(B@3)is ), ali(Zj bz’jﬁj)

Rearrange terms in sum to do summation over ¢ for j = 1

first, then summation over ¢ for j = 2, then ... :
D i(2_i ay;bijB;) - Commutative property of addition
Factorout (; from multiple terms that contain it:
D i(2_iaybij)B;: Distributive Property
Resultis > ;¢85 for ¢jj = »_; ajbi;
So define the matrix product A B to be the matrix with entry

c1j = _iay;bjj inrow [ column j.

. Defined only if number of rows of B isthe number of columns of

A.

Result has number of rows of first matrix and number of columns

of second matrix.
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f. The definition of multiplication of a matrix and a vectoris a

special case, if the vector is viewed as having one column.

g. Same argument shows matrix multiplication is associative:
A(BC)=(AB)C.

8. Matrix multiplication is NOT commutative.

a. Theproductofa 2 X 3 anda 3 x 4 matrixisa 2 X 4,

b. butthe product with the orders reversed is not defined, because
3 X 4 and 2 x 3 matrices do not have the number of columns of
first matching number of rows of second.

9. Some square matrices have an inverse.

a. Take A a matrix with the same number of rows and columns.
1 0

b. Canwefind C suchthat C A isofform | 0 1

i. All zeros except 1 if row number matches column number
ii. Such positions are called the diagonal.
lii. A matrix of all zeros except all 1 on the diagonalis called an
identity matrix, because
e if Bisan x m matrix,andif I isa n X n identity matrix,

then IB = B.

e if Bisan X m matrix,andif I isa m X m identity matrix,
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then BI = B .

iv. Solwanttofind C' A = I (ifitexists).
e Suchamatrix C iscalled the matrixinverse: C = A~!.
e A matrix without such aninverse is called singular
v. Whether this matrix exists, and its value in this case, is usually
straight-forward to compute.
e Wewill leave these details to the numerical linear algebrists.

10. Other definitions

a. A matrixthatisits own square is called idempotent.

MPV: 4.1
F. Model Checking
1. Recall Regression Assumptions

a. Response expectation is approximately linearly in explanatory

variables.

i. Tomake thissensible, the center of the error distribution needs

to be zero.
ii. For prediction purposes, this assumption is quite important.
iii. Fortesting purposes, thisis less important.

b. Errors are uncorrelated
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i. A moderate correlation can make standard errors misleading.

ii. A formaltest for one type of deviation will come later.
c. Errorshave a constant variance
I. Thisis not soimportant for a large sample.
d. Errorsare normal.
I. Thisis not soimportant for a moderate sample.
MPV: 4.2
2. Check viaresidual plot.
a. Plotvs. fitted value
b. Orvs. separate covariates.
c. Expectresiduals
I. exhibit no pattern,

ii. Beapproximately evenly spread out
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