- 5. Measuring the Strength of a Relationship
 - a. Recall that the $\,F\,$ test tested whether any of the regression parameters are non-zero
 - b. Recall that for one parameter, R^2 measured the strength rather than tested for the strength.
 - c. Do this for more explanatory variables: $R^2 = SS_R / SS_t = 1 SS_{Res} / SS_t$.

i.
$$SS_{Res} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

ii.
$$SS_R = \sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2$$

iii.
$$SS_t = \sum_{i=1}^n (Y_i - \bar{Y})^2$$

- d. $R^2 \in [0,1]$, represents the proportion of variablity explained by explanatory variables.
- e. Any additional variable will result in \mathbb{R}^2 no smaller.
 - i. Almost all will result in R^2 somewhat larger, even if variable is probabilistically unrelated.
 - ii. Adjust R^2 to penalize it for larger numbers of parameters:

•
$$R_{Adj}^2 = 1 - (SS_{Res}/(n-p))/(SS_t/(n-1)) = 1 - (SS_{Res}/SS_t)((n-1)/(n-p)).$$

• $((n-1)/(n-p)) \approx 1$ if n large and p small.

- R^2_{Adj} drops if SS_{Res} fixed and p increases.
- 6. Confidence Regions for Parameters
 - a. Recall that confidence intervals were found by determining set of univariate null hypotheses that were not rejected
 - i. Constructed so that probability of incorrect rejection is α for variables one at a time.
 - ii. Neither tests nor intervals had type I error/coverage controled for sets of variables.
 - iii. That is, with two explanatory variables, $P[\beta_1 \in \mathcal{I}_1] = P[\beta_2 \in \mathcal{I}_2] = 1 \alpha$, but $P[\beta_1 \in \mathcal{I}_1 \text{ and } \beta_2 \in \mathcal{I}_2] < 1 \alpha$. iv. Also, $P_{\beta_1^{\circ}}[H_0 : \beta_1 = \beta_1^{\circ} \text{ not rejected}] = P_{\beta_2^{\circ}}[H_0 : \beta_2 = \beta_2^{\circ} \text{ not rejected}] = 1 - \alpha$,

but $P_{\beta_1^{\circ},\beta_2^{\circ}}$ [Neither null hypothesis rejected] $< 1 - \alpha$ *F* procedure tests for multiple included parameters

- b. F procedure tests for multiple included parameters simultaneously.
 - i. Confidence region is the set of null hypotheses not rejected.
 - $oldsymbol{\gamma}$ is set of m parameters you want to bound
 - \boldsymbol{W} is the corresonding submatrix of $(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}$
 - $\mathcal{R} = \{ \boldsymbol{\gamma} | (\hat{\boldsymbol{\gamma}} \boldsymbol{\gamma})^\top \boldsymbol{W}^{-1} (\hat{\boldsymbol{\gamma}} \boldsymbol{\gamma}) \leq \hat{\sigma}^2 F_{m,n-k,\alpha/2} \}$, an

Lecture 5 elipse.

MPV: 3.5

- 7. Confidence Intervals for Fitted Values
 - a. Predict and bound the fitted value for explanatory variables $(1,x_1,\ldots,x_{k-1})\,.$
 - i. Represent this as a row vector $oldsymbol{x}$.
 - b. Prediction is $\hat{Y}(\boldsymbol{x}) = \boldsymbol{x}\hat{\boldsymbol{\beta}} = \sum_{j=0}^{k-1} \hat{\beta}_j x_j$
 - i. Var $\left[\hat{Y}(\boldsymbol{x})\right] = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} x_i x_j m_{ij} \sigma^2$
 - for m_{ij} the entry in row i and column j of $({m X}^{ op}{m X})^{-1}$
 - ii. Can be written as $\boldsymbol{x}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x} \sigma^2$
 - If x is a covariate pattern in the data set, this is the diagonal element of the hat matrix, times σ^2 .
 - c. Prediction is unbiased estimator of xeta
 - d. When observations are normally distributed, prediction is also normally distributed.
 - e. So level 1α CI for $\boldsymbol{x}\boldsymbol{\beta}$ is $\boldsymbol{x}\hat{\boldsymbol{\beta}} \pm z_{\alpha/2}\sigma\sqrt{\boldsymbol{x}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{x}} = \boldsymbol{x}\hat{\boldsymbol{\beta}} \pm \sigma z_{\alpha/2}\sqrt{1/n + (\boldsymbol{x}^{*})^{\top}(\boldsymbol{X}_{c}^{\top}\boldsymbol{X}_{c})^{-1}\boldsymbol{x}^{*}}.$
 - i. x^* is vector of covariates with intercept part removed and average subtracted off.

ii. In the more-common case of σ unknown, level

$$1 - \alpha$$
 confidence interval for $x\beta$ is $\hat{x\beta} \pm \sqrt{1 - (1 - 1)^2}$

$$t_{n-k,\alpha/2} \sqrt{\boldsymbol{x}^{\top} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x} \hat{\sigma}}$$
.

- f. Prediction interval is available as in the one-explanatory-variable case.
 - i. Level 1α confidence interval for ${\boldsymbol x}{\boldsymbol \beta}$ is

$$\boldsymbol{x}\hat{\boldsymbol{\beta}} \pm t_{n-k,\alpha/2}\sqrt{1+\boldsymbol{x}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{x}}\hat{\sigma}.$$

MPV: 3.8

- g. Hidden extrapolation:
 - Predict response at a set of explanatory variables separately typical
 - ii. an outlier in a bivariate sense.
- iii. Distance from center of data set may be indicated by diagonal element of hat matrix.

MPV: 3.11

- 8. Adding extra explanatory variables can change the sign of other variables?
 - a. Adding a covariate may remove or change the direction of an

Lecture 5 effect.

- Categorical response and two categorical explanatory variables: Simpson's paradox
- Adding a baseline value is not the same as looking at a change score
 - i. Continuous response and one categorical explanatory variables and one continuous variable: Lord's paradox
 - ii. Effect of the categorical variable is generally attenuated, because of regression to the mean.
- E. Linear Algebra Concepts
 - 1. An ordered list of observations called a vector.
 - a. With n entries, call it an n vector.
 - b. Describe it by giving value for entry in place $\,j\,$, for each $\,j\,$
 - 2. A grid of observations, with entries in each row and column, is called a matrix.
 - a. Describe by generic entry in row i and column j
 - b. With n rows and k columns called a $n\times k$ matrix.
 - i. This is not really multiplication: here if n = 10 and k = 3, read this as "10 by 1" and not "30".

- 3. Juxtaposition of a matrix $oldsymbol{X}$ and vector $oldsymbol{eta}$ represents matrix multiplication
 - a. Defined only if X has as many columns (that is, second dimension) as β has entries.
 - b. That is, if = Xeta , then $\,$ is the vector
 - i. with as many components as $oldsymbol{X}$ has rows
 - ii. Value in slot i is $\sum_j x_{ij}\beta_j$
 - sum of elements in row *i* of the matrix times corresponding elements of vector.
- 4. + is vector addition:
 - a. need both sides to have same number of components
 - b. Result is component-wise sum.
- 5. A matrix like $oldsymbol{X}$ with rows and columns interchanged is called the transpose of $oldsymbol{X}$
 - a. $(\boldsymbol{A}\boldsymbol{B})^{\top} = \boldsymbol{B}^{\top}\boldsymbol{A}^{\top}$.
 - b. Denote by $\boldsymbol{X}^ op$
- 6. Just as with scalars, matrix multiplication is distributive:

A(b - c) = Ab + Ac if b and c both have as many components as A has columns.

- Sequential multiplications of the vector can be expressed as a matrix.
 - a. Formulate more generally: Find ${m C}$ so that ${m A}({m B}{m \beta})={m C}{m \beta}$
 - i. Let \boldsymbol{A} have entries in row i and column $j~a_{ij}$
 - ii. Let \boldsymbol{B} have entries in row i and column j b_{ij}
 - iii. Recall that entry i in $\boldsymbol{B}\boldsymbol{\beta}$ is $\sum_j b_{ij}\beta_j$
 - iv. Then entry l in ${\bm A}({\bm B}{\bm \beta})$ is $\sum_i a_{li}(\sum_j b_{ij}\beta_j)$
 - v. Rearrange terms in sum to do summation over i for j=1 first, then summation over i for j=2 , then \ldots :
 - vi. $\sum_{j} (\sum_{i} a_{li} b_{ij} \beta_j)$: Commutative property of addition
 - vii. Factor out β_j from multiple terms that contain it: $\sum_j (\sum_i a_{li} b_{ij}) \beta_j$: Distributive Property
 - b. Result is $\sum_j c_{lj}\beta_j$ for $c_{lj} = \sum_i a_{li}b_{ij}$
 - c. So define the matrix product AB to be the matrix with entry $c_{lj} = \sum_i a_{li}b_{ij}$ in row l column j.
 - d. Defined only if number of rows of $oldsymbol{B}$ is the number of columns of $oldsymbol{A}$.
 - e. Result has number of rows of first matrix and number of columns of second matrix.

- f. The definition of multiplication of a matrix and a vector is a special case, if the vector is viewed as having one column.
- g. Same argument shows matrix multiplication is associative: ${\bm A}({\bm B}{\bm C})=({\bm A}{\bm B}){\bm C}\,.$
- 8. Matrix multiplication is NOT commutative.
 - a. The product of a 2×3 and a $3\times 4\,$ matrix is a 2×4 ,
 - b. but the product with the orders reversed is not defined, because 3×4 and 2×3 matrices do not have the number of columns of first matching number of rows of second.
- 9. Some square matrices have an inverse.
 - a. Take $oldsymbol{A}$ a matrix with the same number of rows and columns.
 - b. Can we find C such that CA is of form $\begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$.
 - i. All zeros except 1 if row number matches column number
 - ii. Such positions are called the diagonal.
 - iii. A matrix of all zeros except all $\,1\,$ on the diagonal is called an identity matrix, because
 - if B is a $n \times m$ matrix, and if I is a $n \times n$ identity matrix, then IB = B.
 - if ${m B}$ is a n imes m matrix, and if ${m I}$ is a m imes m identity matrix,

then $oldsymbol{B}oldsymbol{I}=oldsymbol{B}$.

- iv. So I want to find CA = I (if it exists).
 - Such a matrix $oldsymbol{C}$ is called the matrix inverse: $oldsymbol{C} = oldsymbol{A}^{-1}$.
 - A matrix without such an inverse is called singular
- v. Whether this matrix exists, and its value in this case, is usually straight-forward to compute.
 - We will leave these details to the numerical linear algebrists.
- 10. Other definitions
 - a. A matrix that is its own square is called idempotent.

MPV: 4.1

- F. Model Checking
 - 1. Recall Regression Assumptions
 - Response expectation is approximately linearly in explanatory variables.
 - i. To make this sensible, the center of the error distribution needs to be zero.
 - ii. For prediction purposes, this assumption is quite important.
 - iii. For testing purposes, this is less important.
 - b. Errors are uncorrelated

- i. A moderate correlation can make standard errors misleading.
- ii. A formal test for one type of deviation will come later.
- c. Errors have a constant variance
 - i. This is not so important for a large sample.
- d. Errors are normal.
 - i. This is not so important for a moderate sample.

MPV: 4.2

- 2. Check via residual plot.
 - a. Plot vs. fitted value
 - b. Or vs. separate covariates.
 - c. Expect residuals
 - i. exhibit no pattern,
 - ii. Be approximately evenly spread out