Lecture 9 01
MPV:7.1-7.2

9. Some explanatory variables can be transformations of existing

variables.

a. log, exp, sin, cos can exist in a model along side the original.

2 .3

b. Moreimmediately, =, x°, etc.

i. Resultof having 1 (thatis, the intercept), z, 2%, 2, . .. xh s

called a polynomial of order &

ii. and so the model with no higher-order termsiis a first order

polynomial.

iii. Useful because well-behaved functions of the explanatory
variable can be expressed as a Taylor approximation about the

mean.

iv. Stone-Weierstrass theorem says that any continuous function
on a bounded range can be approximated arbitrarily well by a

polynomial.

v. Useful polynomials are of relatively small order.

2
c. Ex., log(X) near y is approximately log(p) + £ — (z g) 1
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I. SeeFig. 6.
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Fig. 6: Approximation to Log Function
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10. Disadvantages:

a. Quadratic approximation uses 2 parameters to represent

something that might be represented with 1 parameter times a

transformation

i. This gets worse if you add more powers of the variable.
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b. Adding parameters allows overfitting

I. For certain x configurations, onecanfitany n Y values

exactlyusing 1, z,22,..., 2",
(1 T1 m% e m?_l\
ii. Design matrix X = 2 2 2
Kl Tn T5 - $g_1)

iii. X isoften (but not always) non-singular.
e Will besingularif x; arerepeated.
v. (X'xX)"l=x"1x"11
v Y=XX"X)"IXTy =Y.
vi. Thisistosome extent a strawman argument, since no practical
statistician adds this many terms.
c. X " X hasnumber of rows and columns equal to the number of
parameters in the model.
i. Large matrices, even if invertible, may be close to singular
ii. Loosely,
e distance from singularity is referred to as the matrix’s

condition, and

e matrices close to singular are called ill conditioned.
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iii. lll-conditioned matries are bad:

e Exactinverse leadsto highly-variable responses.
e Numerical inverse harder to compute exactly.
e C(Centering variable before raising to power can help this.

d. Becausethese higher-order terms are highly variable,
extrapolation in this case is a bigger problem than in the linear
case.

11. Fitsareinvariant to affine transformations of regressors used in
polynomials

a. Suppose Y; = By + Brz; + fox?

b. z; =712 + 0

c. Then
Y; = Bo + Bi(v1zi +0) + Bo(viz7 + 291902 + 5)

= (Bo + B0 + Bap) + (Bimi + 2B20m)zi + g2
= o)+ 012 + CYQZZZ
i. For ag = By + B0 + 8275, o1 = Bivi + 282907,
ay = 2735 .
d. Hence model using quadraticin x; and model using quadraticin
4

I. give same fits.



Lecture9 95
ii. can convert back and forth without refitting.

e. Works only if you don't skip powers.
f. Text calls such models hierarchical

g. lftherange of the transformed variable is small relative to the

curvature of the transformation,

i. the higher-order terms may be almost colinear with the linear

terms.
ii. Can mask significance of lower-order terms.
12. Changes interpretation of parameter estimates

a. Columns of design matrix cannot be treated as changable
independently.

b. Hence in the case of polynomial terms, coefficients no longer
represent the change in response associated with a unit response

in the explanatory variable.

c. Inmodel E [Y;] = ﬁo+61xj+52x?, dE[Y] /dx = B1+2B9z,
and is hence dependenton .

MPV:7.2.3

13. Trigonometric terms

a. d1sin(z) + 1 cos(z).
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i. x should be scaled to make period 27

ii. Angles are measured in radians.
b. Counterpart of higher-order terms for polynomials:
0;sin(jx) + ~y; cos(jz)
I. Thereis a counterpart to the Stone-Weierstrass theorem

demonstrating that one can approximate a bounded function

arbitrarily closely with trig terms.
ii. Typically one uses only a few such terms.

c. Careful: if you have a time scale suggesting periodicity,
you probably have dependence between temporally similar

observations.
d. Terms can represent phase shift using Sum of Angles formula.
i Let o=/ +77, 0= tan"1(y1/01),(0 € (7/2,37/2) if
01 <0).
ii. Then 61 = a.cos(f), 71 = a.cos().
e SeeFig. 7.
iii. Then 1 sin(x) + 1 cos(x) = asin(z + 0) .
iv. 6 istimeshift.
MPV:7.2.2
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Fig. 7: Geometry behind Trigonometric Transformation
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14. Spline:
a. A way todraw a smooth curve between two points xg and x s :
i. Pick N — 1 intermediatepoints 71 < 29 < - < xy_9 <
xy_1 (called knots).
ii. Define a polynomial of degree M between x;_1 and x;
iii. Constrain so that the derivatives of order upto M — 1 match
up at knots.
b. Use to fit pairs of points (X1, Y7),...,(Xn, Yn).
I. Taken to an extreme, if all Xj are unique, then we can fitall n
points with a polynomial of degree n — 1.

c. Denotefitby [i(x)
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d. Choose to minimize > 7 (Y} — i(X;))?

i. Or penalize, to minimize > 7 (Y; — ,EL(X]'))2 +
Xn A~
A fX((1)) i (x)dx
e. Alternative: The B-spline gives rescaled versions of the
piecewise functions.

i. Divide by local product of knot spacing.
MPV:7.4

15. Caninsert polynomials with multiple explanatory variables.
a. Earlierideas about hierarchical models hold here too.

b. If youwant a model that gives the same fit under affine
transformation of all regressors, you can include interaction
terms

c. Thatis, the modelincluding terms az% and ZC% might include
x1xo aswell.

d. Thislogicisless compelling that for one variable.

MPV: 7.5
16. One may use orthogonal polynomials to remove colinearity
a. Calculate the constant, linear, quadratic, et cetera. terms as

before.
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I. Lettheresultbe X

b. Use orthogonalization as we did earlier to give orthogonal
regressors
I. Lettheresultbe Z
c. Normalize if desired, to make ) . ZZ~2j =1 forall ¢
d. Justasbefore, column j of Z isalinear combination of
columns 1,...,7 of X.
e. Hence get same fitted values.

f. With multiple variables, orthonormalization is applied only
to the portion of the matrix corresponding to powers of one

variable.

MPV: 7.3
J. Nonparametric Regression
1. Kernel smoothing:
a. Get an expression that is explicit rather than implicit:
() = ST Yiul(e — X)/A)) Ty wi(x — Xj)/A).
b. Weight function can be
I. thesame asabove

ii. Often a normal density.

99
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iii. Often uniform density centered at 0.

c. Method is kernel smoothing, and specifically is
Nadaraya-Watson smoothing.
2. Alocal regression smoother has smaller bias than kernel

smoother.

a. g(x) = ZéL:() Bpzt, for L =1
. r— X,

b. ﬁz&fgﬂliﬂ( i1 (Yj_zéL:oBng)Qw< Anj))'
3. LOESS

a. f(x) fitted value at z for low-degree (viz., linear or quadratic)
regression of points with X; near .
b. Specify the number of points &
c. Upweight points near x and downweight them away from x
d. Weighting function scaled to make pointin neighborhood
farthest from = have weight going down to zero.
I. This keeps the curve smooth as x moves.
e. Common weight functionis w(z) = (1 — |z|°)3.
f. So f(a:) = By + Bz + Box? for
. B= argmin(}_ic n () (Yj — Bo — B1.X; — 52X]2)2w((l’ -
X;)/A)) for
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ii. N(x)= indicesof k closest pointsto z, and

i. A =max{|X; —z||j € N(z)}.
g. Procedure formerly Lowess, Locally Weighted Sum of Squares.

h. Result can not be expressed as a simple formula.

09




