MPV: 9.0-9.6

D. Collinearity

Lecture 11

- 1. Collinearity Definition
 - a. Recall model $\mathrm{E}\left[oldsymbol{Y}
 ight] = oldsymbol{X}oldsymbol{eta}$.
 - b. Opposite: orthogonality:
 - i. Inner product of columns of X is zero.
 - ii. $\sum_{i=1}^{n} x_{ij} x_{ik} = 0 \text{ if } j \neq k.$
 - iii. Careful with notation: does $oldsymbol{x}_j$ represent row j or column j?
 - c. Extreme collinearity:
 - i. Exist constants ω_i not all zero such that $\sum_{j=1}^{p} \omega_j x_{ij} = 0$

 - ii. Choose J such that $\omega_J \neq 0$. iii. Then $x_{iJ} = \sum_{j \neq J} x_{ij} \omega_j/(-\omega_J)$
 - iv. Makes $X^{\top}X$ singular.
 - v. More transparently, this makes β and $\beta + \lambda$ give the same fitted values, and so models with these parameters cannot be distinguished from Y.
 - d. More commonly, approximate collinearity:
 - i. Exist constants ω_j not all zero such that $\sum_{j=1}^{p} \omega_j x_{ij} \approx 0.$
 - ii. There are no two parameter vectors with exactly the same fitted values, but there are many that are close
 - iii. Consequence is that parameter estimates have inflated standard errors.
 - iv. Furthermore, $\mathrm{E}\left[\hat{\beta}_{j}^{2}\right]=\mathrm{Var}\left[\hat{\beta}_{j}\right]+\mathrm{E}\left[\hat{\beta}_{j}\right]^{2}=$ $\operatorname{Var}\left[\hat{\beta}_{j}\right] + \beta_{j}^{2}$

Symmetric real matrices as above have all

Lecture 11

107

- There are no more eigenvalues than there are rows of the matrix.
- The smallest of these is the one giving the closest to collinear. See Fig. 8and 9.
- vi. Eigenvalues shown in picture.
 - The picture is here:

Dotted circles represent level curves of $\|\boldsymbol{\omega}\|^2$

- vii. Eigenvalues shown in picture.
 - The picture is here:
- viii. Closeness to singularity measured by ratio of largest to smallest eigenvalue.
 - Called the condition number.
- 3. Origins of collinearity

• So if $\operatorname{Var} \left| \hat{\beta}_{j} \right|$ is inflated, so is the typical value

- 2. Detection of Multicollinearity:
 - a. Examine correlations between covariates.
 - i. Will not necessarily catch effects of three or more
 - b. Or Variance Inflation Factor.
 - i. See Trevor A. Craney & James G. Surles (2002) Model-Dependent Variance Inflation Factor Cutoff Values, Quality Engineering, 14:3, 391-403, DOI: 10.1081/QEN-120001878
 - c. Can also examine eigenvalues.
 - i. We want ω so that $X\omega=0$, for exact collinearity
 - ii. For approximate collinearity, find ω minimizing
 - subject to $\|\boldsymbol{\omega}\| = 1$.
 - $\|\omega\|$ is defined to be the vector norm $\sqrt{\sum_{j} \omega_{j}^{2}}$.
 - iii. Easier to picture finding ω minimizing $\|oldsymbol{X}\omega\|^2$
 - Lagrangian is $\boldsymbol{\omega}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\omega} \lambda (\boldsymbol{\omega}^{\top} \boldsymbol{\omega} 1)$.
 - iv. Stationary Points
 - Stationary points satisfy $2X^{T}X\omega 2\lambda\omega = \mathbf{o}$ and $oldsymbol{\omega}^{ op}oldsymbol{\omega}=1$
 - v. Vectors $\boldsymbol{\omega}$ satisfying $\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\omega} = \lambda \boldsymbol{\omega}$ are called eigenvectors of $oldsymbol{X}^{ op}oldsymbol{X}$.
 - λ is called an eigenvalue.
 - eigenvalues real.

108

Fig. 9: Level curves of $\boldsymbol{\omega}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\omega}$ -Ò.5 0.5 -1 -

Dotted circles represent level curves of $\|\omega\|^2$

- a. data collection method?
 - i. Investigators may choose to collect data in a way that makes variables collinear.
 - ii. I don't see this as particularly plausible.
- b. constraints on the model or population
 - i. If the population that is sampled from is a sub-manifold of the overall population, then resulting variables will be highly correlated.
 - ii. Ex. Rutgers studies relationship between graduate GPA (the response) vs. undergraduate GPA and GRE (explanatory variables).
- iii. Those admitted and who accept lie in a narrower range of overall desirability than the general

applicant pool.

- c. model specification
 - i. Ex., polynomial terms when data are constrained to a arrow range.
- d. over-defined model.
 - i. More regressors than variables.
 - ii. Quite common, for ex. in genetic studies
 - Often times one wants to determine which genes among tens of thousands are associated with disease in a few hundred subjects.
- 4. Solutions to collinearity:
 - a. Extend the range of the data set
 - Text notes that this is often infeasible because of cost or because new observations will no longer be typical.
 - b. Re-specify variables:
 - i. Ex., make orthogonal.
 - c. Omit variables.
- 5. Ridge Regression:
 - a. Model is still $extbf{\emph{Y}} = extbf{\emph{X}}eta + \epsilon$, ϵ independent and homoscedastic.
 - b. Least squares estimates $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$
 - c. Problematic if $X^{\top}X$ is close to singular
 - d. Ridge regression solution: $\tilde{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + k\boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y}$ for some $k \geq 0$.
 - i. k = 0 reduces to same least-squares approach.
 - ii. k > 0 results in a matrix easier to invert.
 - iii. Sometimes intercept term is not impacted.
 - iv. Note that this does penalizes all parameters equally.

• Might want to scale regressors first.

- e. $\mathrm{E}\left[\tilde{\boldsymbol{\beta}}\right]$ generally $\neq \boldsymbol{\beta}$ if k>0
 - i. Estimates are biased.
 - ii. k is called biasing constant.
- iii. Generally $\operatorname{Var}\left[\tilde{\beta}_{j}\right] \leq \operatorname{Var}\left[\hat{\beta}_{j}\right]$
- iv. k can be thought of as reflecting prior belief about the size of $\boldsymbol{\beta}$.
 - with distribution centered at zero.
- v. Estimates go to zero as $k \to \infty$.
 - Text suggests trying values $k \in [0, 1]$.
- vi. HKB estimator: $\hat{k} = p\hat{\sigma}^2/(\hat{\beta}^{\top}\hat{\beta})$ for $\hat{\beta}$ and $\hat{\sigma}$ from least-squares estimate.

MPV: 10.1-10.1.2

- E. Variable Selecton and Model Building
 - 1. Build a model:
 - a. Blindly-built regression model: add all seven covariates as linear predictors
 - b. Smarter model will use mathematical and subject matter knowledge to build a better model.
 - i. If response is always positive, and so taking log puts it on a scale that makes linear fits meaningful.
 - Log scale allows for multiplicative effects on original scale.
 - iii. Enter cyclic effects: Season, hour in day, wind direction.
 - Treat these using sines and cosines.
 - 2. Consequences of an incorrect model
 - a. Leaving out a variable that should be in the model:

Lecture 12 111 Lecture 12 112

- i. Slope estimates (including intercept) are biased, unless omitted variable is orthogonal to variables of interest.
- ii. $\check{oldsymbol{eta}}_p = (oldsymbol{X}_p^{ op} oldsymbol{X}_p)^{-1} oldsymbol{X}_p^{ op} oldsymbol{Y}$
- iii. $\mathrm{E}\left[\mathring{\boldsymbol{\beta}}_{p}\right] = (\boldsymbol{X}_{p}^{\top}\boldsymbol{X}_{p})^{-1}\boldsymbol{X}_{p}^{\top}\mathrm{E}\left[\boldsymbol{Y}\right] = (\boldsymbol{X}_{p}^{\top}\boldsymbol{X}_{p})^{-1}\boldsymbol{X}_{p}^{\top}\left(\boldsymbol{X}_{p}\boldsymbol{\beta}_{p} + \boldsymbol{X}_{r}\boldsymbol{\beta}_{r}\right) = \boldsymbol{\beta}_{p} + (\boldsymbol{X}_{p}^{\top}\boldsymbol{X}_{p})^{-1}\boldsymbol{X}_{p}^{\top}\boldsymbol{X}_{r}\boldsymbol{\beta}_{r}.$
- b. Variability estimates are biased, and inflated.
 - i. Variance of estimates of correct model are higher than in too-small model.
 - Represent the true regression matrix as (X_n, X_r)
 - ullet Choose A , B , C so that
 - hd A is square with as many columns as $oldsymbol{X}_p$ has,
 - Let e_j the vector with 1 in component j and 0 everywhere else.
 - $\bullet \quad \boldsymbol{X}_p^{\top} \boldsymbol{X}_p = \boldsymbol{A}^{-1 \top} \boldsymbol{A}^{-1}$
 - ullet Variance of incorrect model estimator for eta_j is $m{e}_j^{ op} m{A} m{A}^{ op} m{e}_j \sigma^2$
 - $\bullet \quad X^{\top}X = \begin{pmatrix} A & B \\ \mathbf{o} & C \end{pmatrix}^{-1\top} \begin{pmatrix} A & B \\ \mathbf{o} & C \end{pmatrix}^{-1}$
 - $egin{array}{cccc} oldsymbol{(} X^ op X)^{-1} &= egin{pmatrix} A & B \ \mathbf{o} & C \end{pmatrix} egin{pmatrix} A^ op & \mathbf{o} \ B^ op & C^ op \end{pmatrix} = egin{pmatrix} AA^ op + BB^ op & BC^ op \ CB^ op & CC^ op \end{pmatrix}$

- ullet Variance of correct model estimator for eta_j is $m{e}_j^ op (m{A}m{A}^ op + m{B}m{B}^ op)m{e}_j\sigma^2$
- 3. Which are Reasonable Submodels?
 - a. Statistical intuition tells us which models are coherent .
 - i. If powers of a term appear in the model, shifts in the origin of the measurement scale can arbitrarily knock out lower terms.
 - ii. Hence do not consider removing lower order terms in the presence of higher-order terms.
 - iii. Similar issues apply to interaction terms.
 - b. Removing parameters associated with some factors collapses that category with the baseline category.
 - i. Removing parameter associated with one level of a factor collapses the associated level into baseline.
 - ii. Model selection becomes dependent baseline choice, which is usually arbitrary.
 - c. Removing one sine-cosine pair members fixes start of cycle.
 - i. Arises as before from the sine-of-difference and cosine-of-difference formulae.
 - ii. Unless the model is parameterized to explicitly have a meaningful null-hypothesis start of the cycle, these coefficients should only be evaluated as a pair.