Lecture 11

MPV: 9.0-9.6
D. Collinearity

1. Collinearity Definition

a. Recall model E[Y] = Xg3.

b. Opposite: orthogonality:
i. Inner product of columns of X is zero.
ii. Z?:l LijTik = 0 if ] 75 k.
iii. Careful with notation: does x; represent row j or

column j7?
c. Extreme collinearity:
i. Exist constants w; not all zero such that
1 wimij =0
ii. Choose J such that wy # 0.
i. Then z;57 = Zj;é,] 9cijwj/(—wJ)

iv. Makes X T X singular.

v. More transparently, this makes 3 and B+ A give
the same fitted values, and so models with these
parameters cannot be distinguished from Y .

d. More commonly, approximate collinearity:

i. Exist constants w; not all zero such that
Yy wizi = 0.

ii. There are no two parameter vectors with exactly the
same fitted values, but there are many that are close

iii. Consequence is that parameter estimates have
inflated standard errors.

iv. Furthermore, E [Bﬂ = Var [BJ} IR [33}2 -
Var [BJ + 67
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e There are no more eigenvalues than there are rows
of the matrix.
e The smallest of these is the one giving the closest
to collinear. See Fig. 8and 9.
vi. Eigenvalues shown in picture.
e The picture is here:

Fig. 8: Level curves of w' X Xw

Dotted circles represent level curves of |lw/|?

vii. Eigenvalues shown in picture.
e The picture is here:
viii. Closeness to singularity measured by ratio of largest
to smallest eigenvalue.
e Called the condition number.
3. Origins of collinearity
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e Soif Var {37} is inflated, so is the typical value

of 372
2. Detection of Multicollinearity:
a. Examine correlations between covariates.

i. Will not necessarily catch effects of three or more
variables.

b. Or Variance Inflation Factor.

i. See Trevor A. Craney & James G. Surles (2002)
Model-Dependent Variance Inflation Factor Cutoff
Values, Quality Engineering, 14:3, 391-403, DOI:
10.1081/QEN-120001878

c. Can also examine eigenvalues.

i. We want w so that Xw = 0, for exact collinearity

ii. For approximate collinearity, find w minimizing
[ Xw].

e subject to Jjw| =1.

o |[wl| is defined to be the vector norm />~ w? .
iii. Easier to picture finding w minimizing || Xw|?
e Lagrangianis w' X ' Xw - ANw'w—1).

iv. Stationary Points
e Stationary points satisfy 2X " Xw — 2 \w = o
and wlw=1
v. Vectors w satisfying X" Xw = \w are called
eigenvectors of X ' X .
e )\ is called an eigenvalue.
e Symmetric real matrices as above have all
eigenvalues real.
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Fig. 9: Level curves of w' X" Xw
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N -1
Dotted circles represent level curves of ||w||?

a. data collection method?

i. Investigators may choose to collect data in a way
that makes variables collinear.

ii. | don't see this as particularly plausible.

b. constraints on the model or population

i. If the population that is sampled from is a
sub-manifold of the overall population, then resulting
variables will be highly correlated.

ii. Ex. Rutgers studies relationship between graduate
GPA (the response) vs. undergraduate GPA and GRE
(explanatory variables).

iii. Those admitted and who accept lie in a narrower
range of overall desirability than the general
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applicant pool.
c. model specification
i. Ex., polynomial terms when data are constrained to a
arrow range.
d. over-defined model.
i. More regressors than variables.
ii. Quite common, for ex. in genetic studies
e Often times one wants to determine which genes
among tens of thousands are associated with
disease in a few hundred subjects.
4. Solutions to collinearity:
a. Extend the range of the data set
i. Text notes that this is often infeasible because of
cost or because new observations will no longer be
typical.
b. Re-specify variables:
i. Ex., make orthogonal.
c. Omit variables.
5. Ridge Regression:
a. Model is still Y = X3 + €, € independent and
homoscedastic. A
b. Least squares estimates 3= (X 'X)"!X'Y
c. Problematic if X "X is close to singular
d. Ridge regression solution: 3= (XTX +kI)"'XTY
for some k> 0.
i. k=0 reduces to same least-squares approach.
ii. k>0 results in a matrix easier to invert.
iii. Sometimes intercept term is not impacted.
iv. Note that this does penalizes all parameters equally.
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i. Slope estimates (including intercept) are biased,
unless omitted variable is orthogonal to variables of
interest.
i. Bp= (X;Xp)’lXpTY
i. BBy = (X, X,) 'XJE[Y] =
(X;—)FXP)ilX;—)r(Xpﬁp + XTBT‘) =
By + (X;Xp)_lX;XTﬁT .
b. Variability estimates are biased, and inflated.
i. Variance of estimates of correct model are higher
than in too-small model.
e Represent the true regression matrix as (X, X,)
e Choose A, B, C so that
> A is square with as many columns as X, has,
A B\
> and so that (X,,X,) =(Z,, Z,) 0 C
for (Z,, Z,) orthogonal.
o lLet e; the vector with 1 in component j and 0
everywhere else.
XpTXp =A1TA!
e Variance of incorrect model estimator for (3; is
e/ AATe;o?
-1T -1
A B A B
Ty —
o X X= ( o C> ( o C>

- (478) (8 )

AAT +BBT BCT
CB' cc’
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e Might want to scale regressors first.

e. E {B} generally =3 if k>0

i. Estimates are biased.
ii. k is called biasing constant.
iii. Generally Var [BJ} < Var [BJ}
iv. k can be thought of as reflecting prior belief about
the size of 3.
e with distribution centered at zero.
v. Estimates go to zero as k — oo .
e Text suggests trying values k € [0,1].
vi. HKB estimator: k = p&2/(873) for B and &
from least-squares estimate.
MPV: 10.1-10.1.2
E. Variable Selecton and Model Building
1. Build a model:
a. Blindly-built regression model: add all seven covariates
as linear predictors
b. Smarter model will use mathematical and subject
matter knowledge to build a better model.
i. If response is always positive, and so taking log puts
it on a scale that makes linear fits meaningful.
ii. Log scale allows for multiplicative effects on original
scale.
iii. Enter cyclic effects: Season, hour in day, wind
direction.
e Treat these using sines and cosines.
2. Consequences of an incorrect model
a. Leaving out a variable that should be in the model:
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e Variance of correct model estimator for 3; is
e/ (AAT + BB )e;o?

3. Which are Reasonable Submodels?
a. Statistical intuition tells us which models are coherent .
i. If powers of a term appear in the model, shifts in the
origin of the measurement scale can arbitrarily knock
out lower terms.
ii. Hence do not consider removing lower order terms in
the presence of higher-order terms.
iii. Similar issues apply to interaction terms.
b. Removing parameters associated with some factors
collapses that category with the baseline category.
i. Removing parameter associated with one level of a
factor collapses the associated level into baseline.
ii. Model selection becomes dependent baseline choice,
which is usually arbitrary.
c. Removing one sine-cosine pair members fixes start of
cycle.
i. Arises as before from the sine-of-difference and
cosine-of-difference formulae.
ii. Unless the model is parameterized to explicitly have
a meaningful null-hypothesis start of the cycle, these

coefficients should only be evaluated as a pair. 1




