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4. Quantile Regression Justification
a. L' regression is MLE for Laplace error method.
b. Has advantage that fit is less driven by outliers.
i. E>;. L? will move line more towards outlier than will
L.
MPV: 15.1.2
5. Robust estimation via Huber's method.
a. Model: Y; =3Tx; +¢;, ¢ iid, Var[e;] = o? for o2
known.
b. Recall: Least squares estimator minimizes
S (Yi = Bl ay)?
i. Solves: Least squares estimator
S 2(Yi— BT ai)e; =0
c. Control the effect of residuals:
i. Minimize Y7, p((Y; — B x;)/0)ox; =0
i. Set > w((Yi— B x;)/0)ox; =0
d. Can express as: > wi(Y; — B a;)x; = 0 for
w; =w(r) =¢(r)/r, r is standardized residual.
6. Common choices for w(r)
a. OLS: ¢(r) =r and w(r)=1.
b. Quantile Regression: (r) = sgn(r) and

w(r) = 0 ifr=20
T 1/ ifr#£0°
) r if |r| <c
c. Huber: ¢(r) = {csgn(r) if |r] > c and
w(r) = 1 if |r| <c
T/ ifr| =’
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MPV: 15.3
VII. Bioassay
A. Preliminary problem:
1. Definitions:
a. Y;=(+e¢j,
b. Wi =pu+9;,

0'2 gT
C. (Ej’éj)NN<0’<pch pT2 ))

2. Estimate £ =(/p
a. Consider estimator Y /W
b. Problem: random variable in denomonator.
i. Unfortunately distribution is non-standard
ii. If p=0 (easy case) expectation is
—n)? (y*C)z)

/OO /OO exp(_(;}‘l’2/n T 202/n
" oo J—oo 2nTo

iii. Can perform inner integration:

o exp(— @) ¢
\/ﬁ/_oo 2m)i/2r  w d
e Integral doesn't converge absolutely.
e Similar to log odds ratio case
3. Two Approximations to the mean ratio distribution.
a. Delta method: U a random vector, V = g(U) for
some known function g .
i. Know g, E[U], Var[U].
ii. Want Var[V]
b. Construct a Taylor approximation for g(U) about
EU.

Y dw dy.
w
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o _ _ A= (r/e)?)? iffr] <c
d. Tukey's Bisquare: w(r) = 0 if || > ¢

and ¥(r) = rw(r) .
e. It is useful to compare these functions.

i. See Fig 10.

Fig. 10: Psi functions for Huber regression
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7. To Estimate Parameters:
a. lteratively Re-Weighted Least Squares:
i. Pick initial choice of weights.
ii. Estimate linear and dispersion parameters
iii. Recalculate weights.
iv. Return to estimation step.

b. In more realistic setting with Var[e;] to be estimated,
estimating equations are modified a bit to avoid
opportunity to get better estimate by shrinking o to
zero.
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i. V=g(U)=~gE[U])+dEU)U-EU]).
i. Var[V]~ g (E[U])"Var[V]g'(E[U])

c. Using delta method, mean and variance of
approximating distribution are (/u = £ and

G mn () -

o
p2n"l(o? —2poTE+T2E2).
d. Exact distribution:_

. _ W—tY +tpu—¢ _ Y—u
i Let U = \/72/n+t20'2/n72tpa'7'/n and V = a/vn
- _ Vn(tp—¢) _

ii. Let u—\/mandv YNGR

i. P[W/Y<t]is

=P [W —tY <0&Y > 0] +P [W —tY > 0&Y < 0]
=P[U <u&V > 0]+ P[U > u&V < v
=PU<u-PU<u&V <v]+P[U >u&V <]
_ Vit =€)

VT2 + 1202 — 2tpoT /1

for [R| < ®(—y/nu/o).
4. Confidence intervals
a. EW =Y ~N(0,£27%/n + % /n — 2poTE/n)
wW-Y)?
b. P |:62T2/nf0'2/n7)2p0’7'f/n < 22/2:|
c. Set of ¢ satisfying statement inside probability is Cl
(sort of)
i. Restriction is quadratic inequality.
d. If p=0, then

=1—q«.
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i. There's no need to consider the pairing

ii. You need not require equal number of contributors to
each mean.

iii. Suppose W and Y are the means of m and n
i.i.d. observations resp..

iv. Defining analog is P £2£§W79)2 =1-a.

3=y ey i
5. Solution at equality gives confidence set endpoints.
a. End points are
R—poT Z2:i:Z\/R2 72—2RpoT+o? (1—(1—p2) 72 22)
(1—7222)

for Z = z4/2/(W+/n)
i. If p=20, end points are
R+Z\/R? r2+(n/m)o? (172 Z2)
a-7227)
b. Method generally called Fieller’s method.
i. See Fig 11.
6. Possible deviant behavior
a. Value of squared normal deviate for very large || is
Wn/7r?
b. Hence confidence interval is outside of end points.
c. If and only if denominator of endpoints is negative.
i. See Fig. 12.
d. More extreme case: quadratic equation has no roots.
i. See Fig 13.
7. Special Cases
a. 7=0 = End points are R+ Zo, the usual Cl with
denominator known
b. For large n,
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Fig. 12: Pivot whose distribution is used for ratio CI
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a. Assume o =07, for 8 known, and p known.
b. Estimate o with quantity & so that %/02 ~ 3
c. For example

i. OW; and (Y; — p0W;)/+/1 — p? are uncorrelated,
mean zero, variance o>
o _ OO0 Wi W)P Y (V=¥ —ph (W, —W))*/(1=p?)
n—1+n—1 _
is unbiased estimator of o2, independent of W and

ii. s
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Fig. 11: Pivot whose distribution is used for ratio CI
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i. keeping terms that are constant or have a multiple of
1/y/n.

ii. deleting others,

iii. terms with Z2 get deleted,

iv. the resultis R+ Z\/02 —2RpoT+ R272

v. Same as delta method solution with R and W in
place of £ and p

8. More realistic case: ¢ and 7 unknown.
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Fig. 13: Pivot whose distribution is used for ratio CI
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Y, witha x2_,,,_; distribution
iii. Hence squared deviate defining Cl has a #1451

distribution before squaring

d. Same Cl except with ¢ critical value.

9. Example: inference on ordinary regression inverse

a. Want Cl for zg satisfying By + Bizo0 = %o -

b. Let £o = (yo — fo)/b1

c. yo has no error, since we pick it.

d. (Bo, 1) has a bivariate normal distribution with known
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correlation. This page intentionally left blank.
e. Clis
o, o= 2)g = (t3/50) /o =3P /Se & (1= 9) 0+ /)
0 -y
i, for g = (t262/($25,2) and t the critical value.
ii. This version of formula is from Greenwell and
Kabban (2014), R investr package documentation. 13
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