- 4. Quantile Regression Justification
 - a. L^1 regression is MLE for Laplace error method.
 - b. Has advantage that fit is less driven by outliers.
 - i. Ex. L^2 will move line more towards outlier than will L^1 .

MPV: 15.1.2

- 5. Robust estimation via Huber's method.
 - a. Model: $Y_i = \boldsymbol{\beta}^{\top} \boldsymbol{x}_i + \epsilon_i$, ϵ_i iid, $\operatorname{Var}\left[\epsilon_i\right] = \sigma^2$ for σ^2
 - b. Recall: Least squares estimator minimizes $\sum_{i=1}^{n} (Y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i)^2$
 - i. Solves: Least squares estimator $\sum_{i=1}^{n} 2(Y_i - \boldsymbol{\beta}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i = 0$
 - c. Control the effect of residuals:
 - i. Minimize $\sum_{i=1}^n \rho((Y_i {m{\beta}}^{ op} {m{x}}_i)/\sigma) \sigma {m{x}}_i = 0$
 - ii. Set $\sum_{i=1}^n \overline{\psi}((Y_i {m{\beta}}^{ op}{m{x}}_i)/\sigma)\sigma{m{x}}_i = 0$
 - d. Can express as: $\sum_{i=1}^n w_i (Y_i oldsymbol{eta}^ op oldsymbol{x}_i) oldsymbol{x}_i = 0$ for $w_i = w(r) = \psi(r)/r$, r is standardized residual.
- 6. Common choices for w(r)
 - a. OLS: $\psi(r) = r$ and w(r) = 1.
 - b. Quantile Regression: $\psi(r) = \operatorname{sgn}(r)$ and

$$w(r) = \begin{cases} 0 & \text{if } r = 0 \\ 1/|r| & \text{if } r \neq 0 \end{cases}.$$

c. Huber: $\psi(r) = \begin{cases} r & \text{if } |r| < c \\ c \operatorname{sgn}(r) & \text{if } |r| \geq c \end{cases}$ and $w(r) = \begin{cases} 1 & \text{if } |r| < c \\ c/|r| & \text{if } |r| \geq c \end{cases}.$

Lecture 13

MPV: 15.3

VII. Bioassay

- A. Preliminary problem:
 - 1. Definitions:
 - a. $Y_j = \zeta + \epsilon_j$, b. $W_j = \mu + \delta_j$,

c.
$$(\epsilon_j, \delta_j) \sim \mathcal{N}\left(\mathbf{o}, \begin{pmatrix} \sigma^2 & \rho\sigma\tau \\ \rho\sigma\tau & \tau^2 \end{pmatrix}\right)$$
.

- 2. Estimate $\xi = \zeta/\mu$
 - a. Consider estimator \bar{Y}/\bar{W}
 - b. Problem: random variable in denomonator.
 - i. Unfortunately distribution is non-standard
 - ii. If $\rho = 0$ (easy case) expectation is

$$n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp(-\frac{(w-\mu)^2}{2\tau^2/n} - \frac{(y-\zeta)^2}{2\sigma^2/n})}{2\pi\tau\sigma} \frac{y}{w} dw dy.$$

iii. Can perform inner integration:

$$\sqrt{n} \int_{-\infty}^{\infty} \frac{\exp(-\frac{(w-\mu)^2}{2\tau^2/n})}{(2\pi)^{1/2}\tau} \frac{\zeta}{w} dw.$$

- Integral doesn't converge absolutely.
- Similar to log odds ratio case
- 3. Two Approximations to the mean ratio distribution.
 - a. Delta method: U a random vector, V = g(U) for some known function q.
 - i. Know g, $\mathrm{E}\left[\boldsymbol{U}\right]$, $\mathrm{Var}\left[\boldsymbol{U}\right]$.
 - ii. Want Var[V]
 - b. Construct a Taylor approximation for g(U) about $\mathrm{E}\left[oldsymbol{U}
 ight]$.

- d. Tukey's Bisquare: $w(r) = \begin{cases} (1-(r/c)^2)^2 & \text{if } |r| < c \\ 0 & \text{if } |r| \geq c \end{cases}$ and $\psi(r) = rw(r)$.
- e. It is useful to compare these functions.
 - i. See Fig 10.

Fig. 10: Psi functions for Huber regression

- 7. To Estimate Parameters:
 - a. Iteratively Re-Weighted Least Squares:
 - i. Pick initial choice of weights.
 - ii. Estimate linear and dispersion parameters
 - iii. Recalculate weights.
 - iv. Return to estimation step.
 - b. In more realistic setting with $\operatorname{Var}\left[\epsilon_{i}\right]$ to be estimated, estimating equations are modified a bit to avoid opportunity to get better estimate by shrinking σ to zero.

123 Lecture 13 124

i.
$$V = g(U) \approx g(E[U]) + g'(E[U])(U - E[U])$$
.

ii.
$$\operatorname{Var}[\boldsymbol{V}] \approx g'(\operatorname{E}[\boldsymbol{U}])^{\top} \operatorname{Var}[\boldsymbol{V}] g'(\operatorname{E}[\boldsymbol{U}])$$

c. Using delta method, mean and variance of approximating distribution are $\zeta/\mu=\xi$ and

$$\left(\frac{1}{\mu} - \frac{\xi}{\mu^2} \right) \begin{pmatrix} \sigma^2/n & \rho \sigma \tau/n \\ \rho \sigma \tau/n & \tau^2/n \end{pmatrix} \begin{pmatrix} \frac{1}{\mu} \\ -\frac{\xi}{\mu^2} \end{pmatrix} = \mu^{-2} n^{-1} (\sigma^2 - 2 \rho \sigma \tau \xi + \tau^2 \xi^2) .$$

d. Exact distribution: i. Let
$$U=\frac{\bar{W}-t\bar{Y}+t\mu-\zeta}{\sqrt{\tau^2/n+t^2\sigma^2/n-2t\rho\sigma\tau/n}}$$
 and $V=\frac{\bar{Y}-\mu}{\sigma/\sqrt{n}}$ ii. Let $u=\frac{\sqrt{n}(t\mu-\zeta)}{\sqrt{\tau^2+t^2\sigma^2-2t\rho\sigma\tau}}$ and $v=\frac{-\mu}{\sigma/\sqrt{n}}$.

ii. Let
$$u=rac{\sqrt{n}(t\mu-\zeta)}{\sqrt{ au^2+t^2\sigma^2-2t
ho\sigma au}}$$
 and $v=rac{-\mu}{\sigma/\sqrt{n}}$.

iii. P
$$[\bar{W}/\bar{Y} \leq t]$$
 is

=
$$P[\bar{W} - t\bar{Y} \le 0\&\bar{Y} > 0] + P[\bar{W} - t\bar{Y} \ge 0\&\bar{Y} < 0]$$

$$= P[U \le u\&V > v] + P[U \ge u\&V \le v]$$

$$= P[U \le u] - P[U \le u\&V \le v] + P[U \ge u\&V \le v]$$

$$=\Phi(\frac{\sqrt{n}(t-\xi)}{\sqrt{\tau^2+t^2\sigma^2-2t\rho\sigma\tau}/\mu})+R$$

for
$$|R| \leq \Phi(-\sqrt{n}\mu/\sigma)$$
.

4. Confidence intervals

a.
$$\xi W - Y \sim \mathcal{N}(0, \xi^2 \tau^2/n + \sigma^2/n - 2\rho \sigma \tau \xi/n)$$

$$\begin{split} \text{a.} \quad & \xi \bar{W} - \bar{Y} \sim \mathcal{N}(0, \xi^2 \tau^2/n + \sigma^2/n - 2\rho \sigma \tau \xi/n) \\ \text{b.} \quad & \text{P}\left[\frac{(\xi \bar{W} - \bar{Y})^2}{\xi^2 \tau^2/n + \sigma^2/n - 2\rho \sigma \tau \xi/n} \leq z_{\alpha/2}^2\right] = 1 - \alpha \,. \end{split}$$

- c. Set of ξ satisfying statement inside probability is CI (sort of)
 - i. Restriction is quadratic inequality.
- d. If $\rho = 0$, then

128

127 Lecture 13

- i. There's no need to consider the pairing
- ii. You need not require equal number of contributors to each mean.
- iii. Suppose \bar{W} and \bar{Y} are the means of m and n i.i.d. observations resp..
- iv. Defining analog is $\Pr\left[\frac{(\xi \bar{W} \bar{Y})^2}{\xi^2 \tau^2/m + \sigma^2/n} \le z_{\alpha/2}^2\right] = 1 \alpha$.
- 5. Solution at equality gives confidence set endpoints.
 - a. End points are

$$\frac{R - \rho \, \sigma \, \tau \, Z^2 \pm Z \sqrt{R^2 \, \tau^2 - 2 \, R \, \rho \, \sigma \, \tau + \sigma^2 \, (1 - (1 - \rho^2) \, \tau^2 \, Z^2)}}{(1 - \tau^2 \, Z^2)}$$

for
$$Z=z_{\alpha/2}/(\bar{W}\sqrt{n})$$

i. If $\rho = 0$, end points are

$$\frac{R \pm Z \sqrt{R^2 \; \tau^2 + (n/m) \sigma^2 \; (1 - \tau^2 \; Z^2)}}{(1 - \tau^2 \; Z^2)}$$

- b. Method generally called Fieller's method.
 - i. See Fig 11.
- 6. Possible deviant behavior
 - a. Value of squared normal deviate for very large $\,|\xi|\,$ is $\,\bar{W}n/\tau^2\,$
 - b. Hence confidence interval is outside of end points.
 - c. If and only if denominator of endpoints is negative.
 - i. See Fig. 12.
 - d. More extreme case: quadratic equation has no roots.
 - i. See Fig 13.
- 7. Special Cases

Lecture 13

- a. $\tau=0\Rightarrow$ End points are $R\pm Z\sigma$, the usual CI with denominator known
- b. For large n,

Fig. 11: Pivot whose distribution is used for ratio CI

- i. keeping terms that are constant or have a multiple of $1/\sqrt{n}$.
- ii. deleting others,
- iii. terms with $\,Z^2\,$ get deleted,
- iv. the result is $R\pm Z\sqrt{\sigma^2-2\,R\,\rho\,\sigma\,\tau+R^2\, au^2}$
- v. Same as delta method solution with R and \bar{W} in place of ξ and μ
- 8. More realistic case: σ and τ unknown.

Fig. 12: Pivot whose distribution is used for ratio CI

- a. Assume $\sigma = \theta \tau$, for θ known, and ρ known.
- b. Estimate σ with quantity $\tilde{\sigma}$ so that $\tilde{\sigma}^2/\sigma^2 \sim \chi_d^2$
- c. For example
 - i. θW_j and $(Y_j \rho \theta W_j)/\sqrt{1-\rho^2}$ are uncorrelated, mean zero, variance σ^2
 - ii. $s^2 = \frac{\theta^2 \sum_j (W_j \bar{W})^2 + \sum_j (Y_j \bar{Y} \rho \theta (W_j \bar{W}))^2/(1 \rho^2)}{n 1 + n 1}$ is unbiased estimator of σ^2 , independent of \bar{W} and

Fig. 13: Pivot whose distribution is used for ratio CI

- $ar{Y}$, with a $\chi^2_{n-1+n-1}$ distribution
- iii. Hence squared deviate defining CI has a $t_{n-1+n-1}$ distribution before squaring
- d. Same CI except with t critical value.
- 9. Example: inference on ordinary regression inverse
 - a. Want CI for $\,x_0\,$ satisfying $\,\beta_0+\beta_1x_0=y_0\,.$
 - b. Let $\hat{x}_0 = (y_0 \hat{\beta}_0)/\hat{\beta}_1$
 - c. y_0 has no error, since we pick it.
 - d. (β_0, β_1) has a bivariate normal distribution with known

correlation.

This page intentionally left blank.

$$\hat{x}_0 + \frac{\text{e. CI is}}{(\hat{x}_0 - \bar{x})g \pm (t\hat{\sigma}/\hat{\beta}_1)\sqrt{(\hat{x}_0 - \bar{x})^2/S_{xx} + (1-g)(1+1/n)}}{1-g}$$

- i. for $g=(t^2\hat{\sigma}^2/(\hat{\beta}_1^2S_{xx})$ and t the critical value. ii. This version of formula is from Greenwell and Kabban (2014), R investr package documentation. 13

Lecture 14 131 Lecture 14 132

This page intentionally left blank.

This page intentionally left blank.