
960:583– Methods of Inference– Spring, 2019

Exam 2
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1. Suppose that X1, · · · , Xn are independent normal random variables with expectation

µ and variance 1 , with n = 10 . Calculate the power for the level 0.05 test of the null

hypothesis µ = 0 vs. the alternative hypothesis µ = 1 .
(30 pts) The standard test (which is the Neyman-Pearson test) rejects the null hypothesis
if X̄ ≥ 1.64/

√
n . Power is PA

[

X̄ ≥ 1.64/
√
n
]

= PA

[

X̄ − 1 ≥ 1.64/
√
n− 1

]

=

PA

[√
n(X̄ − 1) ≥ 1.64 − 1

√
n
]

= Φ̄(1.64 −√
n) = 0.936 .

Total for this question: 30.

2. Consider random variables X1, · · · , Xn , independent and with mass function

λx(1 − λ) , for λ ∈ (0, 1) . Place a prior distribution with density proportional to

λ−1(1− λ)−1 .

a. Note that
∫ 1
0 λ−1(1− λ)−1 dλ = ∞ . What term describes this quality of a prior?

(5 pts) Improper. Noninformative was also accepted. The prior is also conjugate, but the

property I asked about doesn’t have anything to do with conjugacy.

b. Calculate the posterior density for λ , conditional on X1, · · · , Xn .
(20 pts)

f(λ) = λ−1(1− λ)−1
n
∏

i=1

λXi(1− λ)/

∫ 1

0
λ−1(1− λ)−1

n
∏

i=1

λXi(1− λ) dλ

= (1− λ)n−1λ
∑

n

i=1
Xi−1/

∫ 1

0
(1− λ)n−1λ

∑

n

i=1
Xi−1 dλ

= (1− λ)n−1λ
∑

n

i=1
Xi−1/B(n,

n
∑

i=1

Xi).

c. Write down two equations giving endpoints of the highest posterior density region of

probability α . Do not try to solve them.

(15 pts) (1 − L)n−1L
∑

n

i=1
Xi−1 = (1 − U)n−1U

∑

n

i=1
Xi−1 and

∫ U
L (1 − λ)n−1λ

∑

n

i=1
Xi−1 dλ =

B(n,
∑n

i=1 Xi)(1 − α) . Any interval satisfying the second equation above is credible,

but you need the first as well to make the interval HPD. For an asymetric

posterior, the equal-tailed credible region will generally NOT be HPD.

d. Calculate the posterior mode of λ , as an estimator of λ .
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(15 pts) The log density is (n − 1) log(1 − λ) + (
∑n

i=1 Xi − 1) log(λ) . Differentiating gives

−n−1
1−λ

+

∑

n

i=1
Xi−1

λ
. Substituting the mode and and setting to zero gives n−1

1−λ̃
=

∑

n

i=1
Xi−1

λ̃
. Solving

gives λ̃ =

∑

n

i=1
Xi−1

n+
∑

n

i=1
Xi−2

. The second derivative of the log density is − n−1
(1−λ)2 −

∑

n

i=1
Xi−1

λ2 < 0 ,

implying that the critical value is a maximizer.

Total for this question: 55.

3. Suppose that X has a Poisson distribution with mass function

pX(x; θ) = exp(−θ)θx/x!,

for θ > 0 and x ∈ {0, 1, 2, 3, . . .} . Suppose Y has a Poisson distribution with mass

function

pY (y; ρ) = exp(−ρ)ρy/y!,

for ρ > 0 and y ∈ {0, 1, 2, 3, . . .} . Suppose X and Y are independent.

a. Construct the (generalized) likelihood ratio test statistic Λ testing the null hypothesis

that θ = ρ vs. the alternative hypothesis that θ 6= ρ .
(35 pts) The likelihood is

L(θ, ρ) = exp(−θ)θX/X! exp(−ρ)ρY /Y !.

Maximizing the log over the union of the null and alternative, θ̂ satisfies
d
dθ
(−θ +X log(θ)− log(X!)) = 0 , or −1 +X/θ = 0 , or θ̂ = X . Similarly, the maximizer for ρ

is ρ̂ = Y . The likelihood under the null hypothesis is

L(υ, υ) = exp(−υ)υX/X! exp(−υ)υY /Y !,

with the maximizer satisfying −2 + (X + Y )/υ̂ = 0 , or υ̂ = (X + Y )/2 . Hence the likelihood
ratio statistic is

Λ =
exp(−X − Y )((X + Y )/2)X+Y

exp(−X)XX exp(−Y )Y Y
=

((X + Y )/2)X+Y

XXY Y
.

b. Suppose a value of Λ of 1/4 is observed. Use an approximate test of level 0.05 to

determine whether the null hypothesis is rejected.

(15 pts) Use Wilks’ lemma to note that under the null hypothesis, −2 ln(Λ) χ2
1 . Hence reject if

−2 ln(Λ) > 3.84 . In our case, −2 ln(Λ) = 2 ln(4) = 2.773 . Do not reject the null hypothesis.
This test was demonstrated in class under the assumption of large sample size,

leading to asymptotic normality of the score function. We do not have this here;

note, however, that the sum of independent Poisson random variables is Poission,

with a rate parameter equal to the sum of the rate parameters of the individual

observations, and furthermore, the sum of independent Poisson variables is

sufficient for inference on a common rate. Hence the random variables X and Y
in the statement of the question can be considered as the sum of a large number of

Poisson summands with a correspondingly smaller rate. Then the large sample

assumption of Wilk’s lemma is equivalent to a large rate parameter for the

Poisson totals. You might note this, but it wasn’t required.
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c. Suppose a value of Λ of 1/4 is observed. Approximate the p -value.
(10 pts) The P0 [Λ < 1/4] = P [−2 ln(Λ) > 2.773] = .1 . The p -value is .1.

Total for this question: 60.

4. Consider random variables X1, · · · , Xn , independent and with mass function

λx(1 − λ) for x ∈ {0, 1, 2, . . .} and λ ∈ [0, 1] . Construct tests of level α . You do

NOT need to calculate a critical value.

a. Construct a most powerful test for testing the null hypothesis that λ = 1/4 , vs. the

alternative that λ = 3/4 , or tell why this is impossible.

(25 pts) The likelihood is L(λ) =
∏n

i=1 λ
Xi(1 − λ) = (1 − λ)nλ

∑

n

i=1
Xi . The likelihood ratio

statistic is

Λ =
(3/4)n(1/4)

∑

n

i=1
Xi

(1/4)n(3/4)
∑

n

i=1
Xi

= 3n−
∑

n

i=1
Xi .

Reject when Λ small. Equivalently, reject when
∑n

i=1Xi > c , for some critical value c . If you

do not simplify this to a rejection region defined in terms of X̄ , the next two

parts of the question will be harder to think through.

b. Construct a uniformly most powerful test for testing the null hypothesis that λ = 1/4 ,

vs. the alternative that λ > 1/4 , or tell why this is impossible.
(15 pts) In this case, the Neyman Pearson statistic is

Λ =
(3/4)n(1/4)

∑

n

i=1
Xi

(1− λ)nλ
∑

n

i=1
Xi

= (3/(4(1 − λ)))n(4λ)−
∑

n

i=1
Xi .

Since 4λ > 1 , reject when
∑n

i=1 Xi large. The critical value depends only on the null hypothesis,
and so the most powerful test does not depend on which member of the alternative hypothesis we
consider. The point of this question is to review the most powerful quality of tests

for a compound alternative when the form of the tests for each separate simgle

alternative does not depend on the alternative. Using a generalized likelihood

ratio test here takes you off on the wrong track, because generalized likelihood

ratio tests generally have no power-maximizing properties.

c. Construct a uniformly most powerful test for testing the null hypothesis that λ = 1/4 ,

vs. the alternative that λ 6= 1/4 , or tell why this is impossible.
(15 pts) Again

Λ = (3/(4(1 − λ)))n(4λ)−
∑

n

i=1
Xi .

In this case, for λ < 1/4 , the most powerful test rejects for
∑n

i=1Xi small. Hence no test can be
uniformly most powerful.
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