- 4. $\delta(X_1,\ldots,X_n)=\mathsf{median}(X_1,\ldots,X_n)$, estimating $\theta=\mathsf{median}$
 - a. Median for sample of size 2n+1 has a density $\frac{(2n+1)!}{n!n!}F(x)^n(1-F(x))^nf(x)$
 - b. Consider exponential model with CDF $F(x) = 1 \exp(-x)$.
 - c. Value of population median is log(2) = 0.693147
 - d. Integral for \mathbb{E} [median] can be done in closed form.
 - e. Table 1 has results

Table 1: True Expectation for the Exponential Median Sample Size Expectation of Median

- 3 0.833333
- 5 0.783333
- 7 0.759524
- 9 0.745635
- 11 0.736544
- ∞ 0.693147

E. General Rule about Unibiased Estimators

- 1. For identically distributed observations, mean is unbiased, without regard to the distribution.
 - a. This does not require independence.
- 2. Convex combination of unbiased estimators is unbiased estimator

a. Convex combination is the sum of items combined times nonnegative constants, with constants summing to 1.

9

- 3. Hence sample average is always an unbiased estmator of the expectation of each observation, if expectation exists.
- 4. If $\delta(X)$ is an unbiased estimator of θ , then $a+b\delta(X)$ is an unbiased estimator of $a+b\theta$
- 5. If $\delta(X)$ is an unbiased estimator of θ , and f is a transformation not of the form $x\mapsto a+bx$, then $f(\delta(X))$ is generally a biased estimator of $f(\theta)$.

WMS: 8.5

F. Confidence Intervals

- 1. Example: Paleontology.
 - a. Goal: estimate how long ago a certain species of animal first walked or crawled the earth.
 - b. You assume
 - i. species population has been constant since its advent $\,\theta\,$ years ago,
 - ii. the probability of finding any one of these animals is the same regardless of its age.

Lecture 2 10

c. Completely unreasonable assumptions imply that the age X of a given sample $\sim \mathcal{U}(0,\theta)$.

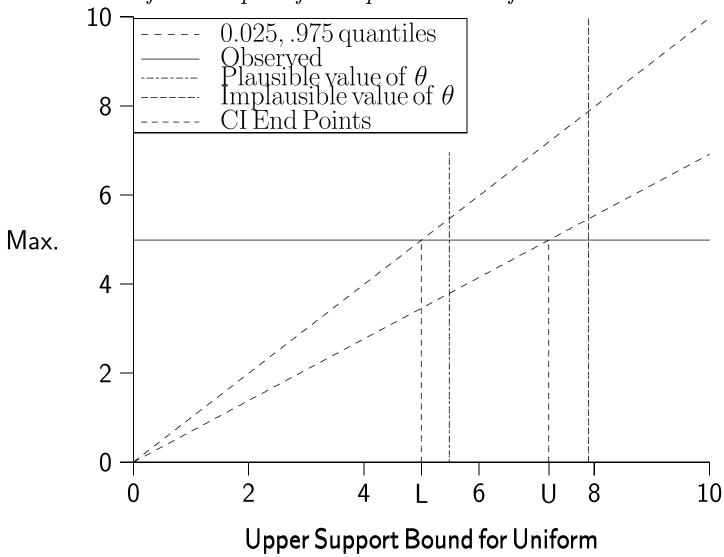
- d. You date n specimens.
 - i. $\max X_j$ is biased, but $(\max X_j)(n+1)/n$ is unbiased.
- 2. Confidence Interval goal is to give a range containing true parameter.
 - a. Extreme Answers:
 - i. Probability of hitting the true value on the head is zero
 - ii. In order to get a range of possible values that will always include the true value, we'd have to take the whole parameter domain.
 - b. Compromise solution is to look for bounds $\theta_L(X_1,\cdots,X_n)$ and $\theta_U(X_1,\cdots,X_n)$ such that $\theta_L(X_1,\cdots,X_n)$ will fall below the parameter and that $\theta_U(X_1,\cdots,X_n)$ will fall above the parameter with a certain probability.
 - c. If such an $\theta_L(X_1,\cdots,X_n)$ and $\theta_U(X_1,\cdots,X_n)$ exist $(\theta_L(X_1,\cdots,X_n),\theta_U(X_1,\cdots,X_n)) \text{ is called a } confidence interval \text{ (c.i.)}$
 - i. In symbols, $\mathrm{P}\left[\theta_L \leq \theta \leq \theta_U\right] \geq 1 \alpha$.
 - $1-\alpha$ called confidence level.

- Most often, $1-\alpha=.95=95\%$.
- 3. Strategy: Manipulate a probability statement about the parameter of interest and a statistic that the interval end points are likely to be a function of.

11

- a. Graphical strategy:
 - i. Choose $t_1(\theta)$ and $t_2(\theta)$ such that $\forall \theta$, $P[T \ge t_1(\theta)] \ge .975$ and $P[T \le t_2(\theta)] \ge .975$.
 - ii. Here set $t_1(\theta) = F^{-1}(.025; \theta)$ and $t_2(\theta) = F^{-1}(.975; \theta)$.
- iii. For each potential value of $\hat{ heta}$,
 - draw a horizontal line between the curves.
 - This will be the c.i. as a function of $\hat{\theta}$.
- iv. If $t_2(\theta)$ and $t_1(\theta)$ are increasing in θ the vertical line above θ from $t_2(\theta)$ to $t_1(\theta)$ is the c.i..
- v. How often will this cover θ ?
 - ullet c.i. covers heta if and only if the vertical and horizontal lines cross,
 - ullet if and only if $\hat{ heta}$ lies between t_2 and t_1 ,
 - happens 1α of the time.
- b. Fig. 2 shows graphical construction for continuous variable

- c. Fig. 3 shows graphical construction for discrete variable
 - i. CDF has flat parts
 - ii. CI runs to ends of flat parts in such a way as to make the intervals wider.



d. Algebraic strategy:

13

- i. Choose S a function of T and θ such that the distribution of S does not depend on θ .
- ii. we say S is pivotal.
- iii. Let ${\cal F}_S(s)$ be the c.d.f. of ${\cal S}$
- iv. Solve $F_S(s_{.975}) = .975$ and $F(s_{.025}) = .025$.
- v. Construct intervals for the pivotal quantity, and solve for θ .
- 4. Example: $n \ \mathcal{U}[0,\theta]$ variables,
 - a. Let $S = T/\theta$
 - b. cumulative distribution function of T is $F(t;\theta)=t^n/\theta^n$ if $t\leq \theta$.
 - c. $s_{.95}^n = .95$ or $s_{.95} = \sqrt[n]{.95}$ and $s_{.05}^n = .05$ or $s_{.05} = \sqrt[n]{.05}$.
 - d. Hence $P\left[T < \theta \sqrt[n]{.05}\right] = P\left[T > \theta \sqrt[n]{.95}\right] = .05$.
 - e. Hence $P\left[\theta\sqrt[n]{.05} \le T \le \theta\sqrt[n]{.95}\right] = .90$.
 - f. Hence $P\left[T \sqrt[-n]{.05} \le \theta \le T \sqrt[-n]{.95}\right] = .90$.
 - g. Works because $S=T/\theta\,$ has a distń func. ind. of what we were trying to estimate or other unknown parameters;

WMS: 8.6

- G. Confidence Intervals Using the Normal Distribution
 - 1. Normal Distribution with known variance. $T=\bar{X}$;

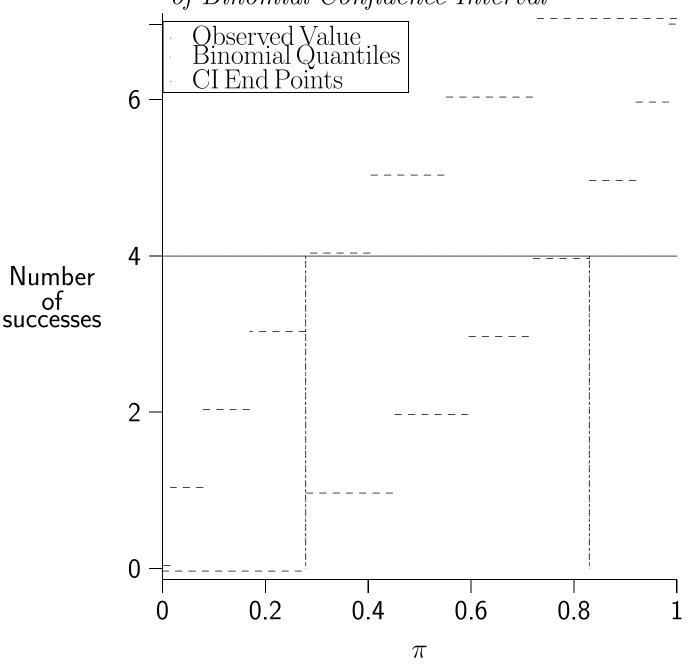
$$F_T(t;\mu) = \Phi((t-\mu)\sqrt{n}\sigma^{-1}).$$

- a. Hence $(T-\mu)\sqrt{n}\sigma^{-1}$ is pivotal.
- b. Confidence interval is $T \pm \sigma z_{\alpha/2}/\sqrt{n}$
 - i. Here z_{β} is the number with probability β above it in the normal table.

$$\begin{aligned} 1 - \alpha &= \mathbf{P} \left[-z_{\alpha/2} \leq (T - \mu) \sqrt{n} \sigma^{-1} \leq z_{\alpha/2} \right] \\ &= \mathbf{P} \left[-\sigma z_{\alpha/2} / \sqrt{n} \leq T - \mu \leq \sigma z_{\alpha/2} / \sqrt{n} \right] \\ &= \mathbf{P} \left[\sigma z_{\alpha/2} / \sqrt{n} \geq \mu - T \geq -\sigma z_{\alpha/2} / \sqrt{n} \right] \\ &= \mathbf{P} \left[T + \sigma z_{\alpha/2} / \sqrt{n} \geq \mu \geq T - \sigma z_{\alpha/2} / \sqrt{n} \right] \end{aligned}$$

- 2. Formula generally works if σ must be replaced by estimate.
 - a. Ex. X_1, \ldots, X_n iid, unknown variance σ^2 .
 - i. Estimate σ^2 by $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$.
 - ii. Hence approximate CI is $\bar{X} \pm z_{\alpha/2} S/\sqrt{n}$.
 - b. Ex. $X \sim \mathfrak{B}\mathrm{in}(\theta,n)$, $\hat{\theta} = X/n$.
 - i. $(\hat{\theta} \theta)/\sqrt{\theta(1-\theta)/n} \sim \mathcal{N}(0,1)$.
 - ii. $(\hat{\theta} \theta)/\sqrt{\hat{\theta}(1-\hat{\theta})}/n \sim \mathcal{N}(0,1)$.
 - iii. Using the above rule, 95% CI for θ is $(\hat{\theta} 1.96\sqrt{\hat{\theta}(1-\hat{\theta})/n}, \hat{\theta} + 1.96\sqrt{\hat{\theta}(1-\hat{\theta})/n})$
 - iv. Alternatively, use as interval $\, \{ \theta | (\hat{\theta} \theta)^2 / (\theta (1 \theta) / n) \leq$

Fig. 3: Graphical Construction of Binomial Confidence Interval



$$z_{\alpha/2}^2$$
 .

 \bullet Expressible as (θ_L,θ_U) , where endpoints are solution to quadratic equation.

• Very close to plug-in solution.

WMS: 8.7

H. Sample size:

- 1. Suppose you want to estimate parameter to within a certain accuracy \boldsymbol{e}
 - a. called $margin\ of\ error$.
- 2. As measured by ci of level $1-\alpha$.
- 3. Suppose you have pre-knowledge of the standard deviation.
- 4. Then $\sigma z_{\alpha/2}/\sqrt{n} \leq e$
- 5. Then $\sigma z_{\alpha/2}/e \leq \sqrt{n}$
- 6. Then $n \geq \sigma^2 z_{\alpha/2}^2/e^2$
 - a. Ex., to estimate binomial proportion (ex. poll result) to 2%,

i.
$$\sigma^2 = \theta(1 - \theta) \le .25$$

ii. Can get by with $n = .25(1.96)^2/.02^2 \approx 2500$.

WMS: 8.8-8.9

- I. Common Applications
- 1. Above we saw one-sample binomial and means confidence intervals
- 2. Two-sample mean difference

- a. Assume
 - i. X_1,\ldots,X_m same expectation and finite variance
 - ii. Y_1, \ldots, Y_n same expectation and finite variance
- iii. All independent
- b. Estimate $\theta = E[Y_i] E[X_i]$
 - i. Case with common variance:
 - Pivotal quantity $S=(\bar{Y}-\bar{X}-\theta)/(\sigma\sqrt{1/m+1/n})$ if common variance were known to be σ .
 - $\bullet \ \ {\rm Pivotal \, quantity} \, \, S = (\bar{Y} \bar{X} \theta)/(S_p \sqrt{1/m + 1/n}) \\$
 - $S_p = \sqrt{(\Sigma_{i=1}^m (X_i \bar{X}) + \Sigma_{i=1}^n (Y_i \bar{Y}))/(m+n-2)}$: pooled standard deviation.
 - ullet Pivot has distribution approximately $\mathfrak{N}(0,1)$
 - \triangleright More closely, t_{m+n-2} .

വ