ii. Case with variances not known to be common:

- Let $\sigma^2 = \operatorname{Var}[X_i]$, $\tau^2 = \operatorname{Var}[Y_i]$
- Pivotal quantity $S=(\bar{Y}-\bar{X}-\theta)/\sqrt{\sigma^2/m+\tau^2/n}$ if σ , τ known.
- If σ , τ unknown, estimate by $S_x=\sqrt{\Sigma_{i=1}^m(X_i-\bar{X})/(m-1)}$, $S_y=\sqrt{\Sigma_{i=1}^n(Y_i-\bar{Y})/(n-1)}$ respectively.
- Is $S=(\bar{Y}-\bar{X}-\theta)/\sqrt{S_x^2/m+S_y^2/n}$ pivotal? No.

 - ightarrow If $\sigma= au$, m=n , t_{m+n-2} .
- Standard solution: approximate by t_d , where d is complicated formula of S_x , S_y , m , n .
 - ⊳ See Fig. 4.

WMS: 9.2

- J. Relative Efficiency
 - 1. Definition: The ratio $\operatorname{Var}\left[\hat{\theta}_{1}\right]/\operatorname{Var}\left[\hat{\theta}_{2}\right]$ is the $relative\ efficiency$ of $\hat{\theta}_{2}$ re $\hat{\theta}_{1}$.
 - 2. Examples:
 - a. Binomial Distribution.

Fig. 4: Dependence of the Two Sample Test on Variance Ratio

- i. Rival Unbiased Estimators of π :
 - Suppose $X \sim \mathcal{B}{\rm in}(n,\pi)$ and $Y \sim \mathcal{B}{\rm in}(m,\pi)$.
 - Let $\delta_1(X,Y) = X/n$ and $\delta_2(X,Y) = (X+Y)/(m+n)$.
 - By not using some information, δ_1 throws away information. How is this mathematically quantified?
- ii. Calculating Relative Efficiency: Note that $\mathrm{Var}\left[\delta_2(X,Y)\right]=\pi(1-\pi)/(m+n)$ and $\mathrm{Var}\left[\delta_1(X)\right]=\pi(1-\pi)/n$. Note that $\mathrm{Var}\left[\delta_1(X)\right]>\mathrm{Var}\left[\delta_2(X,Y)\right]$.
- b. Estimating a general mean:

i. Consider two ind. measurements X_1 and X_2 , with a common mean μ and variance σ^2 .

- ii. Then $a_1X_1 + a_2X_2$ is unbiased if and only if $a_1 + a_2 = 1$.
- iii. The variance is $(a_1^2+a_2^2)\sigma^2$, which is minimized when $a_1=a_2=\frac{1}{2}$.
- iv. Relative efficiency of the variance minimizing estimator to the general estimator is $2(a_1^2+a_2^2)$.
- c. Poisson variable.
 - i. Mean and variance of a $\,\mathcal{P}(\mu)\,$ random variable are both $\,\mu$;
 - ii. hence an alternate estimator for μ might be the sample variance $\delta({\bf X})=(n-1)^{-1}(\Sigma_{i=1}^n\,X_i^2-n\bar{X}^2)$.
- iii. To see that this is unbiased, refer to discussion about generic variance
- iv. Kenney and Keeping (1954) p. 164 show that $\mathrm{Var}\left[\delta(\boldsymbol{X})\right]\approx \mu(1+2\mu)/n\,.$
- v. sample mean is unbiased and has variance $\,\mu/n$.
- vi. relative efficiency of the sample variance to the sample mean is approximately

$$\frac{\mu(1+2\mu)/n}{\mu/n} = 1 + 2\mu.$$

Lecture 3

vii. Here relative efficiency depends on $\, heta\,$.

 This is a relatively simple case, in which one estimator is always better than the other; 21

it need not be the case.

WMS: 9.3

K. Consistency.

- 1. As we saw with our efficiency calculations, $\operatorname{Var}\left[\hat{\theta}\right]$ usually decreases as n increases.
 - a. Think of $\hat{\theta}$ as the family of estimators based on various sample sizes,
- 2. Consistency Definition: An estimator $\hat{\theta}$ is called consistent if a. given
 - i. any high probability of seeing $\hat{\theta}$ within a certain band, and ii. any very small width for this band,
 - b. a large enough n ensures that the probability that $\hat{\theta}$ is within the required distance of the true value is as required.
- 3. $\forall C>0$ and $\delta>0\,\exists M$ possibly depending on δ and C such that $\mathbf{P}\left[|\hat{\theta}-\theta|\leq C\right]>1-\delta$ for any n>M .
- 4. Example:

a. if
$$X_1,\cdots,X_n \sim N(\mu,\sigma^2)$$
 ,

i. Estimate θ by $\hat{\theta}_n = \bar{X} \sim N(\mu, \sigma^2/n)$.

ii. Then
$$(\hat{\theta}_n - \mu)/(\sigma/\sqrt{n}) \sim N(0,1)$$
 .

iii. Hence $P\left[\left|\hat{\theta}_n - \mu\right| \leq C\right]$

$$= P\left[\frac{\left|\hat{\theta}_n - \mu\right|}{\left(\sigma/\sqrt{n}\right)} \le \frac{\sqrt{Cn}}{\sigma}\right] = \Phi\left(\frac{\sqrt{n}C}{\sigma}\right) - \Phi\left(\frac{-\sqrt{n}C}{\sigma}\right),$$

• where Φ is the c.d.f. of a N(0,1) variable.

iv.
$$\lim_{n\to\infty} P\left[\left|\hat{\theta}_n - \mu\right| \le C\right] = 1$$

- Let $z_{\delta/2}$ satisfy $\Phi(z_{\delta/2}) = 1 \delta/2$
- For all n such that $\sqrt{n}C/\sigma>z_{\delta/2}$ we have $\mathbf{P}\left[|\hat{\theta}_n-\theta|\leq C\right]>1-\delta\,.$
- Hence $n>z_{\delta/2}^2\sigma^2/C^2 \Rightarrow \mathrm{P}\left[\left|\hat{\theta}_n-\theta\right|\leq C\right]>1-\delta$.
- v. or $n > \ln(\delta) / \ln(1 C/\delta)$.

5. An inconsistent Estimator: Suppose $f_X(x;\mu) =$

$$\pi^{-1}(1+(x-\mu)^2)^{-1}$$
.

vi. density of $Z=\frac{1}{2}(X+Y)$ and W=X is

$$f_{W,Z}(w,z;\mu) = \pi^{-2}(1+(w-\mu)^2)^{-1}(1+(2z-w-\mu)^2)^{-1}2$$

vii. Integrate re w:

$$f_Z(z;\mu) = \int_{-\infty}^{+\infty} \frac{2 dw}{\pi^2 (1 + (w - \mu)^2)(1 + (2z - w - \mu)^2)}.$$

viii. Substitute $w-\mu=v+z$ and using partial fractions:

$$\frac{1}{4z\left(1+z^{2}\right)}\left[\frac{2z-v}{\left(1+v^{2}-2vz+z^{2}\right)}+\frac{v+2z}{\left(1+v^{2}+2vz+z^{2}\right)}\right]$$

ix. Hence Z has same distn as X and Y .

x. See Fig. 5.

xi. Hence mean of 2^k variables has the same distn as X

xii. Hence mean is inconsistent.

- 6. A general rule
 - a. Often hard: Usually the bounds on $\,n\,$ are not so easily derived explicitly.
 - b. Use Chebyshev's inequality:
 - i. Relate the probability that a random variable T is farther than a distance C from its mean θ to its variance.

$$Var [T] = \sum_{t} (t - \theta)^{2} p_{T}(t; \theta)$$

$$= \sum_{\{t \mid |t - \theta| < C\}} (t - \theta)^{2} p_{T}(t; \theta) + \sum_{\{t \mid |t - \theta| \ge C\}} (t - \theta)^{2} p_{T}(t; \theta)$$

$$\geq 0 + \sum_{\{t \mid |t - \theta| \ge C\}} (C)^{2} p_{T}(t; \theta)$$

$$= C^{2} \sum_{\{t \mid |t - \theta| \ge C\}} p_{T}(t; \theta) = C^{2} P[|T - \theta| \ge C\}].$$

- ii. So $P\left[\left|\hat{\theta} \theta\right| \ge C\right] \le Var\left[\hat{\theta}\right]/C^2$.
- c. Hence if $\mathbf{E}\left[\hat{\theta}\right]=\theta$ and $\lim_{n\to\infty}\mathrm{Var}\left[\hat{\theta}\right]=0$, then $\hat{\theta}$ is consistent.
- d. Examples
 - i. If $X \sim \mathfrak{Bin}(n,\theta)$, and $\hat{\theta}_n = X/n$, then $\operatorname{Var}\left[\hat{\theta}\right] = \theta(1-\theta)/n \text{ . Then}$ $\operatorname{P}\left[\left|\hat{\theta}_n \theta\right| \geq C\right] \leq \theta(1-\theta)/(C^2n) \leq 1/(4C^2n).$

ii. If
$$X_1, \cdots, X_n \sim \mathfrak{P}(\mu)$$
 , $\hat{\mu} = \bar{X}$

- iii. Var $[\hat{\mu}] = \mu/n$
- iv. Applying Chebyshev's inequality, $\Pr[|\hat{\mu} \mu| \geq C] \leq \mu/(C^2n)$ proves consistency,
- v. the values of n making the RHS smaller than some limit δ depend on μ .
- 7. Theorem: If $\hat{\theta}$ consistent for θ , and $g(\theta)$ continuous, then $g(\hat{\theta})$ consistent for $g(\theta)$.

WMS: Question 8.8

- L. Variance Bounds: How well can we possibly do?
 - 1. Definition: Define the $expected information \ \text{or } Fisher$ $information \ i(\theta) = n \mathbb{E} \left[\partial^2 \ln(f_X(X;\theta)) / \partial \theta^2 \right].$
 - a. 1st derivative tells how fast density changes with $\, heta$.
 - b. 2nd derivative tells how fast density curves with θ .
 - 2. Idea:
 - a. information about $\, heta\,$ depends on how quickly on average $f_X(X; heta)$ as a function of $\, heta\,$ drops away from its peak
 - b. This is measured by the inverse of the curvature.
 - c. For this course always interpret log as natural logs.

3. Conditions: i.i.d. observations from density smooth in parameter

- a. $f_X(X, heta)$ is positive on a set func. ind. of heta ,
- b. has two derivatives with respect to θ
- c. and X_1, \ldots, X_n are i.i.d. with p.d.f./p.m.f. $f_X(x, \theta)$
- 4. Result: A lower bound (the $Cram\acute{e}r$ - $Rao\ lower\ bound$) on the variance of an unbiased estimator $\hat{\theta}=\hat{\theta}(X_1,\cdots,X_n)$ of θ is $\mathrm{Var}\left[\hat{\theta}\right]\geq 1/[ni(\theta)]$.
- 5. Proof: Differentiate identities requiring density to integrate to one and requiring unbiasedness.
 - a. Note identity $1 = \int f_X(x; \theta) dx$,
 - i. differentiate:

$$0 = \int \frac{\partial (f_X(x;\theta))}{\partial \theta} dx = \int \frac{\partial \ln(f_X(x;\theta))}{\partial \theta} f_X(x;\theta) dx$$

ii. differentiate again:

$$0 = \int \frac{\partial^{2}(\ln(f_{X}(x;\theta)))}{\partial\theta^{2}} f_{X}(x;\theta) dx + \int \frac{\partial(\ln(f_{X}(x;\theta)))}{\partial\theta} \frac{\partial f_{X}(x;\theta)}{\partial\theta} dx$$
$$0 = \int \frac{\partial^{2}(\ln(f_{X}(x;\theta)))}{\partial\theta^{2}} f_{X}(x;\theta) dx + \int \partial(\ln(f_{X}(x;\theta))/\partial\theta)^{2} f_{X}(x;\theta) dx$$

b. Note identity: $\theta = f \cdot f \hat{\theta}(\boldsymbol{x}) f_X(x_1; \theta) \cdot f_X(x_n; \theta) d\boldsymbol{x}$.

i. Also differentiate:

$$1 = \int \cdot \cdot \int \hat{\theta}(\boldsymbol{x}) \frac{d}{d\theta} [f_X(x_1; \theta) \cdot \cdot \cdot \cdot f_X(x_n; \theta)] d\boldsymbol{x}$$

$$= \int \cdot \cdot \cdot \int \hat{\theta}(\boldsymbol{x}) \sum_{j=1}^{n} \frac{d}{d\theta} f_X(x_j; \theta) \prod_{k \neq j} f_X(x_k; \theta) d\boldsymbol{x}$$

$$= \int \cdot \cdot \cdot \int \hat{\theta}(\boldsymbol{x}) \sum_{j=1}^{n} (d/d\theta) \ln(f_X(x_j; \theta)) \prod_k f_X(x_k; \theta) d\boldsymbol{x}$$

$$= \operatorname{E} \left[\hat{\theta} \sum_{j=1}^{n} (d/d\theta) \ln(f_X(x_j; \theta)) \right].$$

- c. Call $U = \Sigma_{j=1}^n(d/d\theta) \ln(f_Y(Y_j;\theta))$ the $score \, statistic$.
 - i. U is the sum of i.i.d. summands;
 - ii. hence $\operatorname{Var}\left[U\right] = n\operatorname{Var}\left[\left(d/d\theta\right)\ln(f_Y(Y_j;\theta))\right]$
- iii. Since $\mathrm{E}\left[(d/d\theta)\ln(f_Y(Y_j;\theta))\right]=0$, then $\mathrm{Var}\left[(d/d\theta)\ln(f_Y(Y_j;\theta))\right]=i(\theta)\,.$
- iv. Hence $\mathrm{E}\left[\hat{\theta}U\right]=1$.
- v. By Cauchy–Schwartz, $\mathrm{E}\left[(\hat{\theta}-\theta)^2\right]\mathrm{E}\left[U^2\right]\geq 1$, and $\mathrm{Var}\left[\hat{\theta}\right]\geq 1/[ni(\theta)]$.
- d. Cauchy–Schwartz inequality: For any random variables X and Y , $\mathrm{Cov}\,[X,Y] \leq \sqrt{\mathrm{Var}\,[X]\,\mathrm{Var}\,[Y]}$
 - Let $U=(X-\operatorname{E}[X])/\sqrt{\operatorname{Var}[X]}$, $V=(Y-\operatorname{E}[Y])/\sqrt{\operatorname{Var}[Y]}$.
 - $0 \le E\left[(U-V)^2\right] = E\left[U^2\right] + E\left[V^2\right] 2Cov\left[U,V\right] =$

$$1 + 1 - 2\operatorname{Cov}\left[X, Y\right] / \sqrt{\operatorname{Var}\left[X\right] \operatorname{Var}\left[Y\right]}$$

Q.E.D

WMS: 9.6-9.7

M. Techniques for generating estimates

- 1. Method of Moments
 - a. Definition:
 - i. Suppose $X_1, \ldots, X_n \sim f_X(x; \theta)$
 - ii. Law of large numbers tells us that $\Sigma_{j=1}^{n} X_{j}/n \approx \mathbb{E}_{\theta}\left[X\right]$
 - iii. Method of moments says solve $\sum_{j=1}^n X_j/n = \operatorname{E}_{\hat{\theta}}[X]$ for $\hat{\theta}$.
 - iv. Expectations above are functions of $\, heta\,$.
 - v. If there are multiple parameters, might solve $\Sigma_{j=1}^n X_j^2/n = \mathrm{E}_{\hat{\boldsymbol{\theta}}}\left[X^2\right] \text{, and higher powers}$
 - b. Examples:
 - i. $X_1, \dots, X_k \sim \mathcal{NBin}(\theta, m)$
 - \bullet Number of trials it takes to get $\,m\,$ successes, if each has success probability $\,\theta\,$
 - $E[X_j] = m/\theta$ (Theorem 5.6).
 - Estimate θ
 - $\bar{X} = m/\hat{\theta}$

$$\bullet \quad \hat{\theta} = m/\bar{X}$$

ii. The normal distń. $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$.

• Then
$$\sum\limits_{j=1}^n X_j^1/n=\hat{\mu}^1, \sum\limits_{j=1}^n X_j^2/n=\hat{\mu}^2+\hat{\sigma}^2$$

- $\bullet \quad \text{Hence } \hat{\mu} = \bar{X} \text{ and } \Sigma_{j=1}^n X_j^2/n = \bar{X}^2 + \hat{\sigma}^2 \text{ , or } \\ \hat{\sigma} = \sqrt{\Sigma_{j=1}^n X_j^2/n \bar{X}^2} = \sqrt{\Sigma_{j=1}^n (X_j \bar{X})^2/n} \,.$
- Recall that this estimate of σ^2 is biased.
- Contrary to what may seem obvious from their definition, these estimators need not be unbiased.

iii.
$$X_1, \ldots, X_n \sim \mathfrak{Bin}(m, \pi)$$

- $E[X_j] = m\pi$
- $\hat{\pi} = \bar{X}/m = (\Sigma_j X_j)/(nm)$.

iv. Same setup as before

- This time estimate $\psi = \pi/(1-\pi)$

$$\Rightarrow$$
 $\pi = \psi/(1+\psi)$

- $\bar{X} = m\hat{\psi}/(1+\hat{\psi})$
- $\hat{\psi} = \bar{X}/m/(1 \bar{X}/m) = \hat{\pi}/(1 \hat{\pi})$
- c. Last example demonstrates equivariance: if you change scale of parameter, you change estimate in exactly the same way.

- d. Problems with m.o.m.e.s:
 - i. No guarantee of near-efficiency.
 - Since $\operatorname{Var}\left[\sum_{j=1}^n X_j^k/n\right]$ generally large k large, them in the estimating equations may add a lot of variability to $\hat{\theta}$.
 - ii. They may not even exist: cf. Cauchy distń.
- e. Main advantage:
 - i. Intuitive.
 - ii. Generally speaking consistent.

2. Extensions

- a. Can equate other sample quantities with population quantities
 - i. Ex., median
 - ii. Works better for some distributions like Cauchy
- 3. Likelihood methods.
 - a. Definition: The joint p.d.f. for all of the observations is known as the $likelihood\,function\ L({m heta})$.
 - i. with the observed data substituted in and
 - ii. viewed as a function of $oldsymbol{ heta}$,
 - iii. $L(\boldsymbol{\theta})$ arose earlier when talking about the Cramér-Rao bound.
 - iv. Heuristically $L({m heta})$ measures the relative likelihood of various

Lecture 3 potential values for heta .

- b. Parameter Estimation:
 - i. Take that value that is most likely in the sense described here;
 that is, maximize the likelihood function, or equivalently,
 maximize the log likelihood.
 - ii. Value of $\pmb{\theta}$ where $L(\pmb{\theta})$ is maximized is called the m.l.e. (m.l.e.) and is usually written $\hat{\theta}$.
- c. For ind. observations,

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n;\boldsymbol{\theta}) = \prod_{j=1}^n f_{X_j}(x_j;\boldsymbol{\theta})$$

i. Hence

$$L(\boldsymbol{\theta}; X_1, \cdots, X_n) = \prod_{1}^{n} L(\boldsymbol{\theta}; X_j)$$

ii. and

$$l(\boldsymbol{\theta}; X_1, \cdots, X_n) = \sum_{j=1}^n l(\boldsymbol{\theta}; X_j)$$

- iii. so the log likelihood for a collection of ind. random variables is the sum of the ind. log likelihoods.
- d. Examples:
 - i. Poisson: $l(\lambda;X) = \log(\prod_{i=1}^n \exp(-\lambda)\lambda_j^X/X_j! = \sum_{i=1}^n \log(\exp(-\lambda)\lambda_j^X/X_j!) = \sum_{i=1}^n -\lambda + X_j \log(\lambda) \log(/X_j!)$

• Setting the first derivative =0 , $-\sum_{i=1}^n [-1+X_i/\hat{\lambda}]=0$, or $\hat{\lambda}=\bar{X}$.

- Do we have a maximum? $l''(\lambda; X_1, \dots, X_n) = -\sum_{i=1}^n X_i/\lambda^2$; always negative, and so $\hat{\lambda}$ is a global maximizer.
- ii. Normal $l(\mu, \sigma; X) = -(X \mu)^2/(2\sigma^2) \ln(\sigma) \frac{1}{2}\ln(2\pi)$ \Rightarrow likelihood arising from an ind. sample X_1, \cdots, X_n is

$$l(\mu, \sigma; X_1, \dots, X_n) = -\frac{\sum_j (X_j - \mu)^2}{2\sigma^2} - n \ln(\sigma) - \frac{n}{2} \ln(2\pi).$$

- Setting the first derivative with respect to μ to 0, $-\Sigma_{j=1}^n(X_j-\hat{\mu})/(\hat{\sigma}^2)=0, \text{ and } \Sigma_{j=1}^n(X_j-\hat{\mu})=0 \text{ , and } \hat{\mu}=\bar{X} \,.$
- $\frac{\partial^2 l}{\partial \mu^2} = -\sigma^{-2} < 0 \, \forall \mu, \sigma$; hence we have a minimum regardless of σ

03