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ii. Case with variances not known to be common:

o Let 0? = Var[X;], 7% = Var [Y}]
e Pivotalquantity S = (Y — X —0)/\Jo?/m+12/nifo, T

known.

e If o, 7 unknown, estimateby S, =

VS (X5 = X)/(m = 1), Sy = =i (Y = Y)/(n = 1)
respectively.

o IsS=(Y X — 9)/\/5%/m+ Sg/n pivotal? No.

> If c =0, reducesto t,,_1.
> fo=7,m=n,tya1n_9.
e Standard solution: approximate by ¢, where d is
complicated formulaof Sy, Sy, m, n.
> SeeFig. 4.
WMS: 9.2
J. Relative Efficiency
1. Definition: Theratio Var [@1] /Var [92] is the relative efficiency
of 65 re 0.
2. Examples:

a. Binomial Distribution.
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Fig. 4: Dependence of the Two
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I. Rival Unbiased Estimators of 7:
e Suppose X ~ Bin(n,m) and Y ~ Bin(m, 7).
o Let 61(X,Y)=X/nand 55(X,Y)=(X+Y)/(m+n).
e By not using some information, d; throws away information.
How is this mathematically quantified?
ii. Calculating Relative Efficiency: Note that Var [09(X,Y)] =
m(1 —7)/(m +n) and Var[01(X)] = 7(1 — 7)/n. Note
that Var [01(X)] > Var [62(X,Y)].

b. Estimating a general mean:
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Consider two ind. measurements X and X, with acommon

mean 1 and variance o2

. Then a1 X{ + a9 X9 isunbiasedifandonlyif a; + a9 = 1.

i. Thevarianceis (af + a3)o”, which is minimized when

1
ap =as=35.
Relative efficiency of the variance minimizing estimator to the

general estimatoris 2(af + a3) .

c. Poisson variable.

VvI.

Mean and variance of a P(1) random variable are both 1 ;
hence an alternate estimator for 11 might be the sample
variance 6(X) = (n — 1) 71z X7 — nX?).

Tosee that thisis unbiased, refer to discussion about generic

variance

iv. Kenney and Keeping (1954) p. 164 show that

Var [6(X)] ~ u(1+2u)/n.
sample mean is unbiased and has variance p/n .
relative efficiency of the sample variance to the sample meanis

approximately
p(l+2p)/n

p/n

=1+ 2p.
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vii. Here relative efficiency dependson 6.

e Thisisa relatively simple case, in which one estimator is
always better than the other;
e it need not be the case.
WMS: 9.3
K. Consistency.
1. Aswe saw with our efficiency calculations, Var [9] usually
decreases as n increases.
a. Think of § asthe family of estimators based on various sample
sizes,
2. Consistency Definition: An estimator 0 is called consistent if
a. given
I. any high probability of seeing 0 within a certain band, and
ii. any very small width for this band,
b. alargeenough n ensures that the probability that 0 is within
the required distance of the true value is as required.
3. YC > 0and 6 > 0dM possibly dependingon ¢ and C' such

thatP[@—Q‘SC’]>1—(5foranyn>M.

4. Example:
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a. if Xq,---, Xn~ N(u,o°),

i. Estimate 0 by 0, = X ~ N(u,02/n).
i. Then (0, — p)/(c/+/n) ~ N(0,1).

i HenceF[@n—,u‘ < (|
< o) o )

e where ¢ isthec.d.f. ofa N(0,1) variable.

iv. limn_moPl

o Let z5y satisfy O(z5/9) =1—0/2

e Forall nsuchthat \/nC/o > zs/5 wehave
P@n—ﬂ§6ﬂ>l—d

e Hencen > z§/202/02 = P[
v. orn > In(d)/In(1 — C/9).

én—e\gc]>1—5.

5. Aninconsistent Estimator: Suppose fx(z;u) =
T 1+ (2 —p)?) 7
vi. densityof Z = J(X +Y)and W = X is
fw,z(w, 2 p) = 72 (14 (w—p)?) T 1+ 2z —w—p)?) 712
vii. Integratere w:

Faloip) = [72 S

T (14 (w — p)?)(1+ (22 —w — p)?)
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viii. Substitute w — 1 = v + z and using partial fractions:
1 22 — v v+ 2z

_|_
Adz(1+29) [(1+0v2 =202+ 2%) (14024 20z + 2?)
ix. Hence Z hassamedistnas X and Y .

x. SeeFig. 5.

Fig. 5: Densztzes from Cauchy distribution
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xi. Hence mean of 2% variables has the same distri as X
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xii. Hence mean is inconsistent.

6. Ageneralrule
a. Often hard: Usually the boundson n are not so easily derived
explicitly.
b. Use Chebyshev’s inequality :
I. Relate the probability that a random variable 7T is farther than

adistance (' fromits mean 6 to its variance.

Var [T] = (¢ - 0)*pr(t; 0)

— t— 0)2pp(t: 0 — ) pr(t: 0
{th_ZeKCg pr(t;0)+ % §} )“pr(t;0)

{t]|t—0|=C
>0+ ¥ (C)Ypp(t;0)
{t[[t—0|=C"}
=C* x> pp(t;0)=C’P[IT —6] = C}].
{t[[t—0|=C"}
i. SoP |0 —6 > C| < Var|g| /C?.

c. Henceif E m = 6 and nli_>moo Var m = (0, then 0 is consistent.
d. Examples
. If X ~ Bin(n,0),and 0, = X/n, then
Var [9] =0(1 —6)/n. Then
P0n—0 >C| <0(1-0)/(C?n) <1/(4C7n).
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iU X, Xy~ Plu), = X
iii. Var[g] =pu/n
iv. Applying Chebyshev'sinequality, P [|it — | > C] <
11/(C?n) proves consistency,
v. thevalues of n making the RHS smaller than some limit ¢
dependon L.
7. Theorem: If 6 consistent for 6, and g(0) continuous, then ¢(6)

consistent for g(f).
WMS: Question 8.8

L. Variance Bounds: How well can we possibly do?
1. Definition: Define the expected information or Fisher
information i(0) = nk [82 In(fx(X; 9))/8921 .
a. lstderivative tells how fast density changes with 6.
b. 2nd derivative tells how fast density curves with 6.
2. ldea:

a. information about 6 dependson how quickly on average

fx(X;0) asafunction of # drops away from its peak
b. Thisis measured by the inverse of the curvature.

c. Forthiscourse always interpret log as natural logs.
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3. Conditions: i.i.d. observations from density smooth in parameter

a. fx(X,0) ispositiveon asetfunc. ind. of ,

b. hastwo derivatives with respect to 6
c. and Xq,..., X, arei.id. withp.d.f./p.m.f. fx(x,0)

4. Result: Alower bound (the Cramér-Rao lower bound ) on the
variance of an unbiased estimator 6 = 9(X1, o Xp) of Ois
Var 0] > 1/[ni(0)) .

5. Proof: Differentiate identities requiring density to integrate to
one and requiring unbiasedness.

a. Noteidentity 1 =/ fx(x;0) dz,

I. differentiate :
O x(@8)  OIn(fx(x;0)
0=1="86 =15

ii. differentiate again:

Pin(rx(:0)

fx(z;0)dx

0= (9(92) fx(x;0)dr+
OIn(fx(x;0))0fx(x;0)
/ 0 9o
_ PO b (1,0)drr

[ Oni fx(:6))/00)" (2 6) e
b. Noteidentity: 8 = - v0(x) fx (x1;6) - - - fx(zn; 0) dex.
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I. Also dlfferentlate

L=/ 0z fX 21;0) - fx(zn;0)] da
= [ b(x jilﬁfx( )kgjfx(fk 0) de

= fB(@) X (d/a0) I fx (25 0) 1L fx (o 0) d

=E 9]21(d/d9) In(fx(zj;0))|.

c. CallU =x7_1(d/df) In(fy(Y};0)) the score statistic .
I. U isthesumofi.i.d. summands;
i. hence Var [U] = nVar |(d/df) In( fy(Y}; 0))]
iii. Since E|(d/df)In(fy(Y};6))] = 0, then
Var |(d/df) In( fy(Y;;0))| = i(6).
iv. Hence E [QU] =1.
v. By Cauchy-Schwartz, E [(@ — 9)2] E lUQ] > 1,and
Var [9] > 1/[ni(9)].
d. Cauchy-Schwartzinequality: For any random variables X and
Y, Cov[X,Y] < Var [X] Var[Y]
o LetU = (X — E[X])//Var[X], V =
Y])/Var Y],

o 0<E|U-V)) =EU?+E|[V? -2Cov[U,V] =
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14+1—2Cov[X,Y]/|/Var [X] Var Y]

Q.E.D
WMS: 9.6-9.7

M. Techniques for generating estimates
1. Method of Moments
a. Definition:
i. Suppose X1,..., X, ~ fx(x;0)
ii. Law of large numberstellsusthat =%y X;/n ~ Eg [ X]
iii. Method of moments sayssolve =7/ X;/n = E, [ X] for 0.
iv. Expectations above are functionsof 8.
v. If there are multiple parameters, might solve
27 X]2/n = E, lX2] , and higher powers
b. Examples:
. Xq,..., X ~NBin(0,m)
e Numberof trialsit takes to get m successes, if each has

success probability 6
e E|X;| =m/f (Theorem5.6).
e Estimate 6
e X =m/0
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e 0=m/X
ii. Thenormaldistd. Xy, -+, X, ~ N(u,0?).
n n
e Then jng}/n — 1&17 j;lij/n — 1&2 + 67

e Hence i1 = X and Zylef/n = X% + (32,or
6= I X3 /n— X2 = M1 (X — X)?/n.

e Recall that this estimate of o is biased.

e C(Contrary to what may seem obvious from their definition,

these estimators need not be unbiased.
ii. Xq,..., X, ~ Bin(m, )
e | [Xj} = mm
o T=X/m=(2;X;)/(nm).
iv. Same setup as before
e Thistimeestimate ¢ = 7/(1 — 7)
> called odds
> m=1/(1+1)
o X =mi/(1+7)
o b= X/m/(1—X/m)=#/(1-7)
c. Last example demonstrates equivariance: if you change scale of

parameter, you change estimate in exactly the same way.
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d. Problemswithm.o.m.e.s:

I. No guarantee of near-efficiency.
e Since Var [2?21 Xf/n] generally large k large, themin the
estimating equations may add a lot of variability to 0.
ii. They may not even exist: cf. Cauchy distn.
e. Main advantage:
I. Intuitive.
ii. Generally speaking consistent.
2. Extensions
a. Canequate other sample quantities with population quantities
I. Ex., median
ii. Works better for some distributions like Cauchy

3. Likelihood methods.

a. Definition: The joint p.d.f. for all of the observations is known as
the likelihood function L(6).
I. with the observed data substituted in and
ii. viewed as a function of @,
iii. L(0) arose earlier when talking about the Cramér-Rao bound.

iv. Heuristically L(0) measures the relative likelihood of various
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potential values for 6.

b. Parameter Estimation:

i. Takethat value that is most likely in the sense described here;
that is, maximize the likelihood function, or equivalently,
maximize the log likelihood.

ii. Valueof 8 where L(0) is maximized is called the m.[.e.

(m.l.e.) and is usually written 0.
c. Forind. observations,
n
le,---,Xn(ZUla Ty Iny 9) - lile](x]7 9)

I. Hence

n
L(6; Xq,---, Xp) = llTL(H;Xj)

ii. and

n

7=1
lii. sothelog likelihood for a collection of ind. random variables is

the sum of the ind. log likelihoods.
d. Examples:
i. Poisson: [(\; X) = log(m}4 eXp(—)\>)\:7X/Xj! =
=y log(exp(=A)AS /X;1) = Iy =X + Xjlog(A) —
1og(/Xj!)
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e Setting the first derivative = 0, — = [—1 + X;/A] = 0, or

=X
e Do we have a maximum? l”()x;X1,°“,Xn) =

— X,L-/)\2 - always negative, and so ) isa global

maximizer.
i. Normal I(11, 05 X) = —(X — 1)?/(20?) — In(o) — 5 In(27)
= likelihood arising from anind. sample X{,---, X, is
(X — )2
0 X1, Xy = — 3 o)~ M)
20 2

e Setting the first derivative with respect to 1 to 0,
— (X — i1)/(6%) = 0, and »7_1(X; — ) = 0, and

>

— —0~2 < 0V, o ; hence we have a minimum

[
SR

regardless of o
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